Lecture VI
Introduction to complex networks

Santo Fortunato
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VI.

Plan of the course

Networks: definitions, characteristics, basic
concepts in graph theory

Real world networks: basic properties
Models

Community structure |

Community structure |

Dynamic processes in networks



Dynamic processes on networks

Many social networks are the support of some
dynamical processes

Percolation -> Robustness/resilience
Epidemics

Opinion/consensus formation
Search

Navigation

Cooperative phenomena...



Robustness

Complex systems maintain their basic functions
even under errors and failures
(cell > mutations; Internet — router breakdowns)
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Case of Scale-free Networks
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R. Albert, H. Jeong, A.L. Barabasi, Nature 406, 378 (2000)



Modelling resilience in networks:
random attacks

Configuration model, degree distribution P(k)

A fraction 1-q of the vertices is removed at random

Probability that a vertex with degree k has k' neighbors left:

k ' Y
Pk = (k’) ¢ (1—¢q)F "

Degree distribution of graph after random attack:
o0 00 L ’ .
PI) = Y PO = Y PO () (1)t
k=k' k=k'

R. Cohen, D. ben-Avraham, S. Havlin, Phys. Rev. Lett. 85, 4626 (2000)



Modelling resilience in networks:
random attacks

P(k')= ) P(k)pww = ) P(k) ( :’,) & (1— )k

k=k’ k=k'

Molloy-Reed criterion for the existence of a giant component:

Y k(k—2)P(k) =0
k

k2 1
%""“‘q"zz Ty k) -1

R. Cohen, D. ben-Avraham, S. Havlin, Phys. Rev. Lett. 85, 4626 (2000)



Modelling resilience in networks:
random attacks

Special case
N iy (R
Erd6s-Rényi random graphs: P(k) =€ T

(k%) _ L og= L

Threshold for giant component: (k) > 1

If <k>>1 one has to remove a macroscopic fraction of vertices to
destroy the giant component!

R. Cohen, D. ben-Avraham, S. Havlin, Phys. Rev. Lett. 85, 4626 (2000)



Modelling resilience in networks:
random attacks

Special case

Scale-free random graphs: P(k;) ~ k™% k€ [kmq',n, kma:c]

Threshold for giant component:

Ky if v > 3;
2 . min s 9
(A;c) > g a X k%;ﬁkf,;‘;, if 2 < a<3;
(k) o Ko ifl<a<?2.

* |f >3, non-zero threshold!

* |If o< 3, zero threshold: there is always a giant component, no matter
how many vertices are removed (super-robustness)

R. Cohen, D. ben-Avraham, S. Havlin, Phys. Rev. Lett. 85, 4626 (2000)



Modelling resilience in networks:
random attacks

Alternative approach

Configuration model, degree distribution P(k)

A fraction 1-q, of the vertices with degree k is removed at random

Generating functions

& _ Y kP(K)gpz!
F()(.’B) — ’;P(k)qkzk, I (CU) — ka k-P(k)

Mean component size
_ Fy(1)F1(1)

D. S. Callaway, M. E. J. Newman, S. H. Strogatz, D. J. Watts,
Phys. Rev. Lett. 85, 5468 (2000)



Modelling resilience in networks:
random attacks

Alternative approach
Relative size of giant component
S=F0(1)—F0(U), U = 1—F1(1)—|—F1(U)

1 — (k+1)P(k+1)zF
fa=a de = Fry Gi(z) = Zk: D

D. S. Callaway, M. E. J. Newman, S. H. Strogatz, D. J. Watts,
Phys. Rev. Lett. 85, 5468 (2000)



Modelling resilience in networks:
random attacks

Special case: scale-free networks

0 for Kk =0
P(k) = { k-o/C(a)  fork> 1

(-1
T {(a—2) -~ (la—1)

e |If o< 3, g, Is zero or negative (unphysical!): there is always a giant
component, no matter how many vertices are removed (super-
robustness)

e If3< ®<3.4788...,02q9.51 (“normal” robustness)

e |If ¢ 23.4788..., q. 2 1 (unphysical) there is no giant component
from the start

D. S. Callaway, M. E. J. Newman, S. H. Strogatz, D. J. Watts,
Phys. Rev. Lett. 85, 5468 (2000)



Modelling resilience in networks:
random attacks

Advantage of approach by Callaway et al.: vertices can be removed
In the order of (decreasing or increasing) degree!

Example: g = 0(kmax — k)

All vertices with degree larger than k.., are removed!

Equations have to be solved numerically!

D. S. Callaway, M. E. J. Newman, S. H. Strogatz, D. J. Watts,
Phys. Rev. Lett. 85, 5468 (2000)



Modelling resilience in networks:
random attacks
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D. S. Callaway, M. E. J. Newman, S. H. Strogatz, D. J. Watts,
Phys. Rev. Lett. 85, 5468 (2000)



Cascading fallures in networks

Watts’ model

Motivation: binary decisions with externalities

How it works:

* Random graph with given degree distribution (configuration model)
* Avertexifails if a fraction @, of its neighbors also fails

* The quantities {®} are taken from a distribution f(®P)

* Initially a fraction @, of vertices, randomly selected, fall

D. J. Watts, Proc. Natl. Acad. Sci. USA 99, 5766 (2002)



Cascading fallures in networks

Watts’ model

How to solve it:

e If ®g < liled vertices are initially isolated (approximately)

* If a vertex i has only one failed neighbor, it will fail only if @ .<1/k, where k; is
the degree of i (vulnerable vertices)

®* The probability of a vertex with degree k being vulnerable is

1/k

qk = f(¢)do

0

Through the generating function approach by Callaway et al. It is
possible to find the condition for the existence of a giant component
of vulnerable vertices

The computation of the full size of the cascades is done numerically

D. J. Watts, Proc. Natl. Acad. Sci. USA 99, 5766 (2002)



Epidemiology

Two levels:
* Microscopic: researchers try to disassemble and
kill new viruses => quest for vaccines and medicines

* Macroscopic: statistical analysis and modeling of
epidemiological data in order to find information
and policies aimed at lowering epidemic outbreaks
=> macroscopic prophylaxis, vaccination
campaigns...



Stages of an epidemic outbreak

pre—outbreak
free spreading

1
| clean—up / endemic

density of infected individmals

{ .
i

Infected individuals => prevalence/incidence




Standard epidemic modeling

Compartments: S, I, R... (for, e.g., influenza)

S (susceptible) | (infected) @® R(removed)

O —_— —_—
9 B ® S @ S (susceptible)

Homogeneous mixing assumption (mean-field)

20 @ 2090 o0 ® eo® @

00.% 5 00,% 5 00,0 ,0,°
000 00,0 T 00,0 90,0
0% ® 0% S ® o%?



The SIR model

W. O. Kermack, A. G. MacKendrick, Proc. Roy. Soc. Lond. A 115, 700 (1927)

s = fraction of susceptible agents
| = fraction of infective agents
r = fraction of recovered agents

<k> = number of contacts in the unit time

Mean field equations:

ds . di : . dr .
a——,@<k>zs, %—,8<k>zs—'yz, =

There is an epidemic threshold!

Initial conditions: 3(0) ~ 1, z(()) ~ 0, 7'-(0) ~ 0

§=—<k>és=—<k‘>)\s A
dr 9

= [



The SIR model

Solution: s(t) — e—<k>>\'r(t)

Large t limit

(i = 0): oo = 1 — @7 AK>Too

reoc = 0 always solution

Condition for the existence of non-zero solution:

% (1 - e—)\<k>'roo) > 1

Too =0

1

A> A =
< k>




The Susceptible-Infected-
Susceptible (SIS) model

Model for non-immunizing diseases (e.g., tuberculosis, computer viruses)

sEach node is infected with rate B if connected to one or more infected nodes

Infected nodes are recovered (cured) with rate ¥y

Effective spreading rate: A=/ v

ds . N 1} . .
a——ﬁ<k>zs—l—7z, a—ﬁ<k>zs—'yz
s+1=1 —>%=(ﬁ<k>—7)i—ﬁ<k>z’2
stable  dt 1 2 Y _ 1
st:tes?a:(] ’Lf—O, zf_l ,3<k>_1 A< k>
1
if A > Ap = ’ z?e > (0 and stable!

< k>



Absorbing
phase

Virus death

Phase diagram

Active phase

Finite prevalence

* Non-equilibrium phase
transition

» A =epidemic threshold
= critical point

* Prevalence | =order
parameter

NB: The guestion of thresholds in epidemics is central



Complex networks

Viruses propagate on networks:
e Social (contact) networks

e Technological networks:

* Internet, Web, P2P, e-mail...

...which are complex, heterogeneous networks



Broad degree distributions
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The web of human sexual contacts
(Liljeros et al., Nature 411, 907-908,
2001)
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Phys. Rev. E 66, 035103 (2002)



Epidemic spreading on heterogeneous
networks

Number of contacts (degree) can vary a lot

huge fluctuations (<k?>/ < k >)
In networks without degree-degree
correlations....:

<k>
- <k2>




Epidemic threshold in heterogeneous

networks

<k>
- <k?>

<k?> — o0

Order parameter

behavior in an infinite -

system

/

—
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Epidemic threshold In
heterogeneous networks

* Wide range of spreading rate with low prevalence
» Lack of healthy phase = standard immunization cannot
drive the system below threshold!!!



Dynamical behaviour

At short times: i(t) ~ exp(t/ T ), with

_ (K
A((k?) = (k)

T

<k®>— oo »> 10

M. Barthélemy, A. Barrat, R. Pastor-Satorras, A. Vespignani
Phys. Rev. Lett. 92, 178701(2004)



Summary: epidemic spreading

 Absence of an epidemic/immunization threshold

* The network is prone to infections (endemic state always
possible)

 Small prevalence for a wide range of spreading rates

« Random immunization totally ineffective

(targeted immunization instead!)

* Infinite propagation velocity

Huge consequences of the heterogeneous topology

R. Pastor-Satorras, A. Vespignani, Phys. Rev. Lett. 86, 3200-3203 (2001)
R. Pastor-Satorras, A. Vespignani, Phys. Rev. E 65, 036104 (2002)

Z. Dezso, A.-L. Barabasi, Phys. Rev. E. 65, 055103(R) (2002)

R. Cohen, D. ben Avraham, S. Havlin, Phys. Rev. E 66, 036113 (2002)



Opinion formation models

Simplified models of interaction between
agents

Questions:

*k Convergence to consensus?
XHow?

> 1n how much time?



Opinion formation models

Voter model:

n agents i=1,..n

Opinions,=1or -1

At each time step:

*Choose one agent i

*i chooses at random one of his neighbors j
K Agent i adopts the opinion of agent j

@ o mmmd G G



Voter model

* n,(t) = fraction of “active” links
(active= linking two non-agreeing agents)

= p(t) = fraction of runs “surviving” at time t, i.e.
not having reached full agreement

= 7(n) = time for n agents to reach agreement



Voter model

Mean-field=agents on a complete graph

t(n) ~ n

h No ordering in the infinite size limit!
(surviving runs keep a finite fraction of active links)



Voter model

Agents forming a relationship network:
At each time step:

choose an agent i

choose a neighbor of j

i adopts j’s opinion
Or:

choose an agent i

choose a neighbor of j

j adopts i’s opinion

- Reverse voter model

can be important in heterogeneous networks because:
- a randomly chosen node has typically small degree
- the neighbour of a randomly chosen vertex has typically
large degree



Voter model

On random (homogeneous) graphs:
similar to mean-field

TN

No ordering for surviving runs

1 1 I ) 1 I 1 I 1 I 1
1
& o N=200
mwm o N=1000
on o N = 10000
&q
o a)
Qo
U]E OODO
=" OUO
<0
/—: e}
Nt Lo
= “o
©n
[&]
LT
kL5 WOn 0y ®un® u® q0 T0 40

0.25 I | 1 | 1 | I | | 1 |

0 01 02 03 04 05 06
UN




Voter model

On scale-free (heterogenous) graphs
TV nY
No ordering for surviving runs

p(H), 1,V
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Axelrod model

n agents i=1,..,n on a lattice

* Eac
* Eac

n agent has F attributes

n attribute can take g values

A IRPIRPWOIDN|PF
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Axelrod model

Dynamical interaction:

* |fiandjhave no common attribute:

No interaction possible

* Ifiand jhave at least one common attribute:

i chooses one of the other attributes

and adopt j’s value

Bounded confidence



Axelrod model

Dynamical interaction: example

=
~
=
~

NPl |lWw
N W[N|F-




Axelrod model

Dynamical interaction: favors convergence

Large F (humber of attributes): large probability to have at least one
common attribute

Large q: small probability to have at least
one common attribute

h Transition from consensus to fragmented
state as g increases



Axelrod model

On a Watts-Strogatz network

Order parameter:
Size of the largest
cluster with
agreeing agents




Axelrod model
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d. grows as n%39%: the transition disappears in the limit of infinite
network size, only one cultural domain survives for any value of g

Agents on a scale-free network: no transition as n —» oo

The hubs “polarize” the system — convergence



Other models

Deffuant model: continuous opinions,
bounded confidence

Naming Game

Many possible variants: zealots, external
fields, noise...

Dynamically evolving networks



Search and Navigation on the Web

The two processes are intertwined: what is the best strategy to look for
interesting sites on the Web?

Before the search engines era, people used to look for sites by surfing
on the Web following hyperlinks.




Problems with Web surfing:

* Pages without incoming links (in-degree zero)
are unreachable

* If one reaches a page without outgoing links
(out-degree zero, dangling end), one gets
stuck in there






What is then the best way to navigate on a directed network?

|deally, one should have the chance to visit all pages and to move on
from dangling ends: the simplest way is to introduce a probability to
leap from a page to any other!

The resulting navigation is a mix of two processes



a) with probability 1-q, a user moves from a page O to a
neighboring page by following any of the outlinks of O
(random walk);

b) with probability g, it jumps to any other page of the Web

(random jump).




PageRank

The navigation can be simulated by placing an agent on an
arbitrarily chosen node and making it move

After a sufficient number of iterations, for a fixed probability g, each
node will have a well defined probability to be visited by the agent.



Problem: users cannot jump from a page to another, because they
would need to know all Web pages

Who can do that? GO Ogle

All search engines need to rank Web pages according to their
supposed importance

PageRank iIs the prestige measure of a Web page
according to Google



Google stores a (large) sample of the Web graph in its
database; the full information contained in the sampled
Web pages is stored as well

The PageRank value of all pages/nodes of the graph is calculated

When a user submits a query, Google selects all pages which contain

the input string(s) and return them listed in decreasing order of
PageRank
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A simple alternative to PageRank would be just to count the number
of incoming links to a page (link popularity)

A page with many in-links is usually more important than a page with
just a few in-links

PageRank is better than link popularity because it not only
takes into account the in-degree of a page but also how
Important the in-neighbors of the page are



Amazon

Ebay

Yahoo

Link popularity: 4. PageRank p



Santo

Alfio

Andrea

Link popularity: 4. PageRank q«p



Relation between PageRank and in-degree
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