Lecture |l
Introduction to complex networks
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Classical random graphs

Solomonoff & Rapoport (1951), Erdos-Rényi (1959)

n vertices, edges with probabillity
p: static random graphs

Average number of edges: |E|] = pn(n-1)/2

Average degree: <k >=p(n-1)

&

p=c/n to have
finite average degree

Related formulation

n vertices, m edges: each configuration is
equally probable



Classical random graphs

Probability to have a vertex of degree k
econnected to k vertices,
enot connected to the other n-k-1

iy (k)" -
Pk)=e <k>7 S

Exponential decay at large k




Classical random graphs

Properties

. Poisson degree distribution (on large graphs)
1. Small clustering coefficient: <C>=p=<k>/n (goes to zero in the limit of
infinite graph size for sparse graphs)

1. Short distances: diameter | ~ log (n)/log(<k>) (number of neighbors at
distance d: <k>¢)



Classical random graphs

<k> < 1: many small subgraphs

< k>>1: giant component + small subgraphs




Classical random graphs

Self-consistent equation for relative size of giant component

probability that a vertex, taken at random, does NOT belong to the
giant component

Average cluster size

(8)

Tl <k>+<k>S



Classical random graphs
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Generalized random graphs

The configuration model (Molloy & Reed, 1995, 1998)

Basic idea: building random graphs with arbitrary degree
distributions

How it works

. Choose a degree sequence compatible with some given
distribution

1. Assign to each vertex his degree, taken from the sequence, in
that each vertex has as many outgoing stubs as its degree

1. Join the stubs in random pairs, until all stubs are joined



Generalized random graphs

Simple model: easy to handle analytically

Important point: the probability that the degree of vertex reached by
following a randomly chosen edge is k is not given by P(k)!

Reason: vertices with large degree have more edges and can be
reached more easily than vertices with low degree

Conclusion: distribution of degree of vertices at the end of randomly
chosen edge is proportional to kP(k)



Generalized random graphs

Excess degree: number of edges leaving a vertex reached from a
randomly selected edge, other than the edge followed

Distribution of excess degree: Q(k)

_ (k+DP(k+1) _ (k+ 1Pk + 1)

Q(k) S kP(k) <k>



Generalized random graphs

Chance of finding loops within small (i.e. non-giant) components

Consequence: graphs of the configuration model are essentially
loopless, tree-like, unlike real-world networks

Generating functions




Generalized random graphs
Gi(z) = G)(z)/ < k >
< k>=GhH(1)
<k’*>-—<k>=Gy(1)G(1)

< k >2

=14
<52 2<k>—-—<k?>

Condition for existence of giant component:

D k(k-2)P(k)=0 « g/ (1)=1
k



Generalized random graphs

(= robability that a randomly chosen edge is not in the giant
component

U = Z Q(k)u* = G1(u)

k=0

1-8S= iP(k‘)uk = Go(u)
k=0

Self-consistent equations for the relative size S of the giant
component



Generalized random graphs

Example: power-law degree distribution

0 for k =
P(k) = { vo/c@)  fork >
Go(z) = Léc(f)”)’ Gi(x) = fg?;l_(?) Li (z):g;z—i

Gi(1)=1 — ((a—2) =2(a—1)

Critical exponent value: o, = 3.4788

For a<a _there is always a giant connected component!

For o> _there is no giant connected component!



Generalized random graphs
S=1-Go(u), u=Gi(u)

_ Liﬂ_l(’u)
u(a—1)

U

For &< 2,u=0and S=1 =» All vertices are in the giant component!

W. Aiello, F. Chung, L. Lu, Proc. 32th ACM Symposium on Theory of
Computing 171-180 (2000)



Small-world networks

Regular Small-world

L vertices form a reqgular
lattice, with degree 2k. With
probability p, each edge is
rewired randomly among
those in the clockwise sense

=>Shortcuts

Increasing randomness
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Nature 393, 440 (1998)



Small-world networks

Problems of original formulation:

1) Only one extreme of an edge is rewired
2) No vertex has to be connected to itself
3) No multiple edges

4) The graph may become disconnected =» average distance between
vertices may get ill-defined

Formulation by Monasson and Newman-Watts. edges are
added to the system, not rewired!

p = probabillity per edge that there is a shortcut anywhere in
the graph

Mean number of shortcuts = Lkp, mean degree = 2Lk(1+p)

R. Monasson, European Physical Journal B 12, 555 (1999)
M. E. J. Newman & D. J. Watts, Physics Letters A 263, 341 (1999)



Small-world networks

Clustering coefficient

__ 3(k—1)
C(0) = 2(2k—1)

WS model
C(p) = 2?’((Qkk__11)) (1—p)?
MNW mode!
) = 5k = ?§k—|—_4llcj)o(p +2)



Small-world networks

Degree distribution

WS model

Two contributions:

1) Probability that n'. neighbors remain such

1

Pi(n;) = (k ) (1 —p)mipF—m

1
n;

2) Probability that n% vertices have become neighbors because of
rewiring (for large L)

(kp)™:

2
ng!

Py(nj) = exp (—pk)



Small-world networks

Degree distribution

WS model
min(j—k,k) i fo—
N k n._k—n (pk)J b ~—DPk
PU) = ; (n)(l_p)p (G—k—mn)!"
MNW model

Each vertex has degree at least 2k plus a contribution which
has a binomial distribution

T ok 192k 1 L—j+2k
(' ) D . 2kp
j L | _ L




Small-world networks

Average shortest path

Scaling form

L

E(Lap) = Ef(Lkp)
1 forz K1
fz) ~ { (logz)/x for z > 1.

M. Barthélemy, L. A. N. Amaral, Physical Review Letters 82, 3180 (1999)
A. Barrat, M. Weigt, European Physical Journal B 13, 547 (2000)
M. E. J. Newman & D. J. Watts, Physics Letters A 263, 341 (1999)



Small-world networks

Average shortest path

L
if Lkp <1 — 4(L,p)~ 7

if Lkp>1 — #(L,p) ~logL

L — oo for any non-zero va_Iu“e of”p the
average shortest path is “small”!

Phase transition at p=0!



Statistical physics approach

Microscopic processes of the
many component units

!

Macroscopic statistical and dynamical
properties of the system

Cooperative phenomena

) Natural outcome of
Complex topology the dynamical evolution

‘ Find microscopic mechanisms




Modelling growing networks

(1) The number of vertices (N) is NOT fixed.

Networks continuously expand by the addition of new
vertices

Examples:
WWW: addition of new documents
Citation: publication of new papers

(2) The attachment is NOT uniform.

A vertex is linked with higher probability to a vertex that
already has a large number of links.

Examples :

WWW : new documents link to well known sites

(CNN, YAHOO, New York Times, etc)

Citation : well cited papers are more likely to be cited again



Price’s model

D. de Solla Price, Networks of scientific papers, Science 149, 510 (1965)

D. de Solla Price, A general theory of bibliometric and other cumulative advantage
processes, J. Amer. Soc. Inform. Sci. 27, 292 (1976)

Citation networks have a broad distribution of in-degree!

ldea: popular papers become more popular (cumulative advantage)

H. A. Simon, On a class of skew distribution functions, Biometrika 42, 425 (1955)



Price’s model

Directed graph of n vertices

Mean in-degree/out-degree m

Y kP(k) =m
k

Principle: probability that a newly appearing paper cites a previous
paper is proportional to the number k of citations of the paper
Problem: what happens if a paper has no citations?

Solution: proportionality to k+k,, where k, is constant

Price took k, =1 (publication of the paper is a sort of first
citation)



Price’s model

Probability that a new edge attaches to any of the vertices
with in-degree k:

(k+1)P(k)  (k+1)P(k)

> ik + 1)k m+ 1

Mean number of new edges (per vertex added) attached
to vertices of in-degree k:

m

(k +1)P(k) ——

P(k,n)= probability distribution of in-degree k when there are n vertices
in the graph



Price’s model

Master equation

m

(n+1)P(k,n+1) — nP(k,n) = [kP(k — 1,n) — (k + 1) P(k,n)) oy for k> 1
m
(n + l)P(O,n—I—l)—nP(O,n)—1—P(O,n)m+1 for k=0

Stationary solution

P(k,n+1) = P(k,n) = P(k)

[ TkP(k—1)— (k+ )PE)|m/(m+1)  for k> 1,
P(k) = { g — P(0)m/(m + 1) | for k = 0.



Price’s model

Stationary solution

| [kP(k —1) — (k+ 1)P(k)|m/(m + 1) for k> 1.
Pk) = { { — POm/(m+1) | for k= 0.

1

P0) = 2?:'& +1

~ P(k—1)k
Pik) = k+2+4+1/m

B k(k —1)...1 B \
P(k) = h+2+1/m)..3+ 1/m) PO)=(1+1/m)B(k+1,2+1/m

I'(a)I'(b)

Bla,b) = ['(a+d)

Beta function!



Price’s model

For large a and fixed b: B(a,b) — a™®

P(k)=(1+1/m)Bk+1,2+1/m) — k~@F1/™) for large k

For generic k,:

m+ 1 B(k+k092+1/m) . .—(241/m)

P(k) = m(ko+1)+1 B(ko,2+ 1/m)

Exponent of the power law tail is independent of k,

The exponent only depends on m and is always larger than 2!



Barabasi-Albert model

Analogies with Price’s model
1) Cumulative advantage < preferential attachment
2) Average degree of vertices is m at all stages of the evolution

k.
I I — ! Differences from Price’s model
Z;kr

=1 1) Networks are undirected (which solves Price’s
problem with uncited papers)

2) Number of edges coming with new vertex is fixed
tom (so mis integer 2 1!)

A.-L. Barabasi, R. Albert, Science 286, 509 (1999)




Barabasi-Albert model

Probability that a new edge attaches to any of the vertices
with in-degree k:

kP(k)  kP(k)
S kP(k)  2m

Mean number of vertices of degree k gaining an edge when a single
new vertex with m edges is added:

kP (k)
2

m X kP(k)/2m =

P(k,n)= probability distribution of in-degree k when there are n vertices
in the graph



Barabasi-Albert model

Master equation
1 1
(n+1)P(k,n+1) = nP(kn) = 5(k— )P(k — 1,n) - SkP(k,n) for k>m

(n+1)P(m,n+1) —nP(m,n) =1— %mP(m, n) for k=m

Stationary solution

P(k,n+1) = P(k,n) = P(k)

P(k) = { = (k - 1)P(k — 1) — 2kpx for k > m,

1 — smpm for £k = m.



Barabasi-Albert model

Stationary solution

1 1
[ 2(k—1)P(k—1) — 2kpx for k > m,
P(k)_{ 1_%mpm fork=m.

2
P(m):m—l—Z

P(k—1)k—-1

(s = FE= V=)
2m(m + 1)

- (k=1)(k-2)...m B
P(k) = (k+2)(k+1)...(m+3) P(m)_(

k+2)(k+ 1)k



Barabasi-Albert model

(k—1)(k—2)...m 2m(m + 1)

PR) = e k+1)...m+3) L™ = Gy )k + 1)k

For large k:

P(k) ~ k7

Important difference from Price’s model: the exponent of the degree
distribution does not depend on m!

P. L. Krapivsky, S. Redner, F. Leyvraz, Phys. Rev. Lett. 85, 4629 (2000)
S. N. Dorogovtsey, J. F. F. Mendes, A. N. Samukhin, Phys. Rev. Lett. 85, 4633 (2000)



Connectivity distribution

BA network




Barabasi-Albert model

Features

1) Correlation between the degree of vertices and their age: early vertices have a
much higher probability to reach high degree values!

2) The average shortest path scales as log n/[log (log n)]

3) The clustering coefficient scales as n-3/* (slower than random graphs)

Limits
1) The correlation between degrees of neighboring vertices goes to zero in the
infinite size limit

2) The clustering coefficient goes to zero in the infinite size limit

3) All vertices belong to the same connected component

4) Only one exponent value for the degree distribution

Real networks are characterized by relevant degree correlations, high clustering

coefficients, different values for the degree exponent and may have several
components => refined versions of the BA model account for these features



Simulations of the BA model

Typical starting point: complete graph with m+1 vertices, where m is
the average degree of the graph

Naive procedure too costly: O(n) for a loop over all vertices (to check
their degree and compute the linking probability) and O(n?) to build the
graph

Faster procedure [complexity O(n)]:

1)One has to maintain a list, in which the label of each vertex is
repeated as many times as its degree

2)When a new vertex joins the system, one picks labels at random from
the list, all with the same probability, and the new vertex gets linked to
the vertex corresponding to the selected label



Microscopic mechanism:;

Non-linear preferential attachment

[[=<
LL 5 k>

(1) x<1: P(k) has exponential decay (power law times
stretched exponential)! f(z) = ="

(2)x>1. one or more vertices is attached to a
macroscopic fraction of vertices (condensation); the
degree distribution of the other vertices is exponential

(3) & =1: P(k) ~ k3

P.L. Krapivsky, S. Redner, F. Leyvraz, Phys. Rev. Lett. 85, 4629 (2000)



Preferential attachment: is it

justified?
ki
=5z

One could try to test the hypothesis on real networks

Method: measure the fraction of edges that get attached to vertices
with degree k in a (short) time window

Problem: data could be noisy if one focuses on single degree classes!

Solution:
(k) = / (k) dk

H. Jeong, Z. Néda, A.-L.Barabasi, Europhys. Lett. 61, 567 (2003)



Preferential attachment: is it
justified?
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Linear preferential attachment

(1) GROWTH :

At every timestep we add a new vertex with m edge(connected to the
vertices already present in the system).

(2) PREFERENTIAL ATTACHMENT :

The probability TT that a new vertex will be connected to vertex i
depends on the connectivity k; of that vertex and a constant k,

(attractivity), with -m <k, < oo

kit ko
l_[ _Zg(ki + ko)

j—>i

S. N. Dorogovtey, J. F. F. Mendes, A. N. Samukhin, Phys. Rev. Lett. 85, 4633 (2000)



Stationary solution

(k—1)P(k—1) — kP(k)|m/(2m + ko) for K > m.
P(k) = { E — P(m)m?/(2m + ko) ] i for Kk =m.
- 2m + kg
P(m) = m?2 + 2m + ko
(k—1)...m B(k,3 + ko/m)

P(k) = P(m) =

(k+2 + ko/m)...(m+ 3+ ko/m)
P(k) ~ k=Btko/m)  for large k

Extension to directed graphs:

B(m,2+ ko/m)

-I- ko

j—i

No problems with vertices with zero indegree!



The copying model

Originally proposed as a model for the

Web graph
2
a. Selection of a vertex
b. Introduction of a new vertex ¢
c. The new vertex copies m edges
of the selected one ®

d. Each new edge is kept with probability 1-a, rewired
at random with probabillity o

J. M. Kleinberg, S. R. Kumar, P. Raghavan, S. Rajagopalan, A. Tomkins, Proc. Int. Conf.
Combinatorics & Computing, LNCS 1627, 1 (1999)



The copying model

Probability for a vertex to receive a new edge after t vertices
have been added to the system:

eDue to random rewiring: o/t
=Because it is neighbour of the selected vertex: (1-« )k, /(mt)

(it equals the probability that a randomly chosen edge is
attached to a vertex with in-degree k)

H=%—I—(1—a)kg"’

mi

j—

effective preferential attachment, without
a priori knowledge of degrees!




The copying model

Degree distribution:

P(kin) ~ (ko & kin) o

=> Heavy-tails

In addition, bipartite motifs are formed (as in the Web graph)!

=> model for WWW and evolution of genetic networks



Fitness models

e|In models based on preferential attachment, the older a
vertex, the higher its degree (degree is correlated with age)

«|n real systems, this is not true! Young vertices may become
more important/connected than older vertices (Ex. Web)

Fitness model: each vertex has a fithess n; with distribution o (7)

G. Bianconi, A.-L. Barabasi, Phys. Rev. Lett. 86, 5632 (2001)



Fitness models

* If n isthe same for all vertices = preferential attachment
e |f o(n)isuniform in [0:1]

k_2'26

P(k) ~ In(k)




Ranking model

Criteria of standard models: complete knowledge of prestige
of vertices (degree, fithess)

H — f(kiania )

t—1

Problem: in real systems
usually only a partial
knowledge is possible |

Ranking is easier!




Ranking model

1) Prestige measure is chosen.
2) New node t joined to | with probability

—

- s

t—3

Result:

P(k) ~ k—l—l/a

S. Fortunato, A. Flammini, F. Menczer, Phys. Rev. Lett. 96, 218701 (2006)



Ranking model
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Weighted growing networks

- Growth: at each time step a new vertex is added with m
edges to be connected with previous vertices

- Preferential attachment: the probability that a new edge
|s:[ Con?ﬁcted to a given vertex is proportional to the vertex
streng

The preferential attachment follows the probability distribution:

Preferential attachment driven by weights

A. Barrat, M. Barthélemy, A. Vespignani, Phys. Rev. Lett. 92, 228791 (2004)



Redistribution of weights

New vertex: n, attached to i n i
New Weight Wni:WO:1 T
Weights between | and its other
neighbours:
W
1
Wij!wi+AWij .&wi- — O
53
A Only
Si Sj + Wp + O~ parameter

The new traffic n-i increases the traffic i-j



Analytical results

Power law distributions for k, s and w:
P(k) ~k-7 ; P(s)~s"

 46+3
26 +1

f')/

1
P(w)~w ¢ azZ—I—g

S; — (25 = l)ki — 2md

Correlations topology/weights: _



Numerical results: P(w), P(s)

(N=10°)
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Models: other ingredients/features

* Vertex/edge deletion

e Edge rewiring

e Clustering

e Assortatitivy

e More connected components

Model validation: comparison with large scale datasets!
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