Lecture II

 Introduction to complex networks

 Introduction to complex networks}

Santo Fortunato

Plan of the course

I.

Networks: definitions, characteristics, basic concepts in graph theory
II. Real world networks: basic properties, Models I
III. Models II
IV. Community structure I
V. Community structure II
VI. Dynamic processes in networks

Two main classes

Natural systems:
Biologic al networks: genes, proteins...
Foodwebs
Social networks

Infra structure networks:
Virtual: web, email, P2P
Physic al: Intemet, power grids, tra nsport...

Metabolic Networks

Protein Interactions

Vertices: meta bolites
Edges: chemic al reactions

Scientific collaboration networks

Vertices: scientists
Edges: co-a uthored pa pers

Weights: depending on

- number of co-a uthored pa pers
- number of authors of each pa per
- number of citations...

Actors collaboration networks

Vertices: actors
Edges: co-sta rred movies

World a irport network

complete IATA database

V = 3100 aiports $E=17182$ weighted edges
w_{ij} \#seats/ (time scale)

Meta-population networks

Each vertex: intemal struc ture
Edges: transport/traffic

Intemet

- Computers (routers)
- Satellites
- Modems
- Phone cables
- Optic fibers
- EM waves

Intemet

Graph representation

different granula rities

Router Level

Intemet mapping

- continuously evolving a nd growing
- intrinsic heterogeneity
- self-orga nizing
\longrightarrow Largely unknown topology/properties
Mapping projects:
- Multi-probe rec onstruction (router-level): traceroute
- Use of BG P ta bles for the Autonomous System level (doma ins)

Topology and performance mea surements

Netname:
(1717)
as-ebone(3215)
as-telianetse(3301)
bbn/gte(1)
digex(2548)
ebone(3269)
janet(786)
mci(3561)
sprint(1239)
uunet(701)

The World-Wide-Web

Virtual network to find and share information
 - web pages
 -hyperilinks

Sa mpling issues

- social networks: va rious samplings/networks
- transportation network: reliable data
- biological networks: inc omplete samplings
- Intemet: va rious (inc omplete) mapping processes
- WWW: regularcrawls
- . .
possibility of introducing bia ses in the measured network characteristics

Networks cha racteristic s

Networks: of very different origins

Do they have a nything in common? Possibility to find common properties?

the abstract character of the graph representation a nd graph theory a llow to a nswer....

Social networks:

Milg ram's experiment

Milgram, Psych Today 2, 60 (1967)
Dodds et al., Science 301, 827 (2003)

Small-world properties

Intemet:

Distribution of distances between two vertices

Sma ll-world properties

Average number of vertices within a distance I

Aiport network

Scientific collaborations

Intemet

Small-world properties

N vertices, edges with probability
p:
static random graphs

short distances $(\log \mathrm{N})$

Clustering coeffic ient

Clustering: My friends will know each other with high probability (typic al example: social networks)

Topological heterogeneity

Sta tistic a I a na lysis of c entra lity mea sures:
$P(k)=n_{k} / n=$ probability that a rand omly chosen vertex has degree k
also: $\mathrm{P}(\mathrm{b}), \mathrm{P}(\mathrm{w}) . .$.

Two broad classes

- homogeneous networks: light ta ils
- heterogeneous networks: skewed, hea vy ta ils

Airpla ne route network

Netname:
(1717)
as-ebone(3215)
as-telianetse(3301)
bbn/gte(1)
digex(2548)
ebone(3269)
janet(786)
mci(3561)
sprint(1239)
uunet(701)

Topologic al heterogeneity

Statistic a I a na lysis of centra lity mea sures

Broad degree distributions

Power-law tails
$P(k) \sim k^{-\gamma}$,
typic ally $2<\gamma<3$

Topological heterogeneity

 Sta tistic a I a na lysis of centra lity mea sures
linear scale

Poisson
VS.
Power-law
log-scale

Exp. vs. Scale-Free

Poisson distribution

Power-law distribution

Consequences

Power-law tails: $P(k) \sim k^{-\gamma}$
Averag $\langle k\rangle=\int k P(k) d k$
e

$$
\left\langle k^{2}\right\rangle=\int k^{2} P(k) d k \sim k_{c}^{3-\gamma}
$$

$k_{c}=c$ ut-off due to finite-size diverging degree fluctuations for $\gamma<3$

Level of heterogeneity:

Other heterogeneity levels

Other heterogeneity levels

Betweenness c entra lity

Clustering a nd correlations

non-trivial structures

Real networks: summa ry!

	Network	Type	7	m	z	ℓ	α	$C^{(1)}$	$C^{(2)}$	r	Ref(s).
	film actors compary directors math coant horship physics coan thorship biology coauthorship telephone call graph email measages email address books student relationships sexual contacts	undirected	449913	25516482	113.43	3.48	2.3	0.20	0.78	0.208	[20, 415]
		undirected	7673	55392	14.44	4.60	-	0.59	0.88	0.276	[105, 322]
		undirected	253339	496489	3.92	7.57	-	0.15	0.34	0.120	[107, 181]
		undirected	52909	245300	9.27	6.19	-	0.45	0.56	0.363	$[310,312]$
		undirected	1520251	11803064	15.53	4.92	-	0.088	0.60	0.127	[310, 312]
		undirected	47000000	80000000	3.16		2.1				[8,9]
		directed	59912	86300	1.44	4.95	1.5/2.0		0.16		[136]
		directed	16881	57029	3.38	5.22	-	0.17	0.13	0.092	[320]
		undirected	573	477	1.66	16.01	-	0.005	0.001	-0.029	[45]
		undirected	2810				3.2				[264, 265]
	WWW nd. edu	directed	269504	1497135	5.55	11.27	2.1/2.4	0.11	0.29	-0.067	[14, 34]
	WWW Altavista	directed	203549046	2130000000	10.46	16.18	2.1/2.7				[74]
	citation network	directed	783339	6716198	8.57		3.0/-				[350]
	Roget's Thesaurus	directed	1022	5103	4.99	4.87	-	0.13	0.15	0.157	[243]
	word co-occurrence	undirected	460902	17000000	70.13		2.7		0.44		[119, 157]
	Internet	undirected	10697	31992	5.98	3.31	2.5	0.035	0.39	-0.189	[86, 148]
	power grid	undirected	4911	6594	2.67	18.99	-	0.10	0.080	-0.003	[415]
	train routes	undirected	587	19603	66.79	2.16	1.0/1.		0.69	-0.033	[365]
	software puckages	directed	1439	1723	1.20	2.42	1.6/1.4	0.070	0.082	-0.016	[317]
	software classes	directed	1377	2213	1.61	1.51	-	0.033	0.012	-0.119	[394]
	electronic circuits	undirected	24097	53248	4.34	11.05	3.0	0.010	0.030	-0.154	[155]
	peer-to-peer network	undirected	880	1296	1.47	4.28	2.1	0.012	0.011	-0.366	[6, 353]
	metabolic network	undirected	765	3686	9.64	2.56	2.2	0.090	0.67	-0.240	[213]
	protein interactions	undirected	2115	2240	2.12	6.80	2.4	0.072	0.071	-0.156	[211]
	marine food web	directed	135	598	4.43	2.05	-	0.16	0.23	-0.263	[203]
	freshwater food web	directed	92	997	10.84	1.90	-	0.40	0.48	-0.326	[271]
	neural network	directed	307	2359	7.68	3.97	-	0.18	0.28	-0.226	[415, 420]

C omplex networks

Complex is not just "c omplic ated"

C ars, a ipla nes. . => c omplic a ted, not c omplex

Complex (no unique definition):

- many interacting units
- no c entra lized a uthority, self-o rga nized
- complic ated at all sc a les
- evolving structures
-emerging properties (hea vy-tails, hiera rchies...)

Exa mples: Intemet, WWW, Soc ial nets, etc ...

Exa mple: Intemet growth

Ma in features of c omplex networks

- Many interacting units
- Self-orga nization
-Small-world
- Scale-free heterogeneity
-Dyna mic al evolution

Standard graph theory

Random graphs

- Sta tic
-Ad-hoc topology

Example: Intemet topology generators Modeling of the Intemet structure with ad-hoc algorithms tailored on the properties we consider more relevant

Sta tistic al physic s a p proa ch

Mic roscopic processes of the many component units

Macroscopic statistical and dynamical properties of the system

Cooperative phenomena Complex topology

Natural outc ome of the dynamical evolution

Robustness

Complex systems ma inta in their basic functions

 even under emors and failures (cell \rightarrow mutations; Intemet \rightarrow router breakdowns)S: fraction of giant component

Fraction of removed vertices, f

vertex fa ilure

Case of Scale-free Networks

S
 Random failure $\mathrm{f}_{\mathrm{c}}=1 \quad(2<\gamma \leq 3)$

Attack $=$ progressive failure of the most Connected vertices $\mathrm{f}_{\mathrm{C}}<1$
$\mathrm{f}_{\mathrm{c}} \quad 1$
Intemetmaps

R. Albert, H. J eong, A.L. Bara basi, Nature 406378 (2000)

Failures vs, attacks

Failures

Topological enrortolerance

Fa ilures = perc olation

ffraction of vertic es removed because of failure
p=probability of a vertex to be present in a percolation problem

Question: existence or not of a giant/percolating cluster, i.e. of a connected cluster of nodes of size O(N)

Betweenness

\Rightarrow mea sures the "centrality" of a vertex i:
for each pair of vertices $(1, m)$ in the graph, there are σ^{Im} shortest paths between I and m $\sigma_{i}^{l m}$ shortest paths going through i
b_{i} is the sum of $\sigma_{i}^{\text {Im }} / \sigma^{\text {lm }}$ over all pairs (l, m)

b_{j} is la rge
b_{j} is small

Atta c ks: other strategies

* Most connected vertices
* Vertic es with largest betweenness
* Removal of edges linked to vertic es with large k
* Removal of edges with largest betweenness
* Cascades
P. Holme et al (2002); A. Motter et al. (2002);
D. Watts, PNAS (2002); Dall'Asta et al. (2006)...

Classical random graphs

Solomonoff \& Rapoport (1951), Erdös-Rényi (1959)
$\mathcal{G}_{n, p}=\begin{aligned} & \mathrm{n} \text { vertices, edges with probability } \\ & \mathrm{p}: \text { static random graphs }\end{aligned}$

Average number of edges: $\varangle \mathbb{=}=\mathrm{pn}(\mathrm{n}-1) / 2$
Average degree: $<k>=p(n-1)$
$p=c / n$ to have
finite average degree
Related formulation
$\mathcal{G}_{n, m}=\mathrm{n}$ vertices, m edges: each configuration is

Classic al random graphs

Probability to have a vertex of degree k

- connected to k vertices,
- not connected to the othern-k-1

$$
P(k)=\binom{n-1}{k} p^{k}(1-p)^{n-k-1}
$$

Large N, fixed $p N=<k>$: Poisson distribution

$$
P(k)=e^{-\langle k\rangle} \frac{\langle k\rangle^{k}}{k!}
$$

Exponential decay at large k

Classical random graphs

Properties

I. Poisson degree distribution (on la rge graphs)
II. Small clustering coefficient: <C>=p=<k>/n (goesto zero in the limit of infinite graph size for sparse graphs)
III. Short distances: dia meter I ~log (n)/log($\langle k\rangle$) (number of neighbors at distance d : $<k>d$

Classical random graphs

$<k><1$: many small subgraphs
<k>>1: giant c omponent + small subgraphs

Classical random graphs

Self-c consistent equation for relative size of giant component

$$
\begin{gathered}
u=\sum_{k=0}^{\infty} P(k) u^{k}=e^{-<k>} \sum_{k=0}^{\infty} \frac{(<k>u)^{k}}{k!}=e^{<k>(u-1)} \\
S=1-u \rightarrow S=1-e^{-<k>S}
\end{gathered}
$$

Avera ge cluster size

$$
\langle s\rangle=\frac{1}{1-<k>+<k>S}
$$

Classical random graphs

Near the transition (<k>~1)

$$
\begin{gathered}
S \sim(<k>-1)^{\beta} \\
<s>\sim|<k>-1|^{-\gamma} \\
\beta=1, \gamma=1
\end{gathered}
$$

Generalized random graphs

The configuration model (Molloy \& Reed, 1995, 1998)

Basic idea: building random graphs with a rbitrary degree distributions

How it works
I. Choose a degree sequence compatible with some given distribution
II. Assign to each vertex his degree, ta ken from the sequence, in that each vertex has as many outgoing stubs a sits degree
III. J oin the stubs in random pairs, until all stubs a re joined

Generalized random graphs

Simple model: easy to handle a nalytically

Important point: the probability that the degree of vertex reached by following a randomly chosen edge is k is not given by $P(k)$!

Reason: vertices with large degree have more edges and can be reached more easily than vertices with low degree

Conclusion: distribution of degree of vertic es at the end of randomly chosen edge is proportional to $\mathrm{KP}(\mathrm{k})$

Generalized random graphs

Excess degree: number of edges leaving a vertex reached from a randomly selected edge, other than the edge followed

Distribution of excess degree: $Q(k)$

$$
Q(k)=\frac{(k+1) P(k+1)}{\sum_{k} k P(k)}=\frac{(k+1) P(k+1)}{<k>}
$$

Generalized random graphs

Chance of finding loops within small (i.e. non-giant) components goesas $O\left(n^{-1}\right)$

Consequence: graphs of the configuration model are essentially loopless, tree-like, unlike real-world networks

Generating functions

$$
\begin{aligned}
& G_{0}(x)=\sum_{k=0}^{\infty} P(k) x^{k} \\
& G_{1}(x)=\sum_{k=0}^{\infty} Q(k) x^{k}
\end{aligned}
$$

Generalized random graphs

$$
G_{1}(x)=G_{0}^{\prime}(x) /<k>
$$

$$
<k>=G_{0}^{\prime}(1)
$$

$$
<k^{2}>-<k>=G_{0}^{\prime}(1) G_{1}^{\prime}(1)
$$

$$
<s>=1+\frac{<k>^{2}}{2<k>-<k^{2}>}
$$

Condition for existence of giant component:

$$
\sum_{k} k(k-2) P(k)=0 \quad \leftrightarrow \quad G_{1}^{\prime}(1)=1
$$

Generalized random graphs

 $u=$ probability that a randomly chosen edge is not in the giant component$$
\begin{gathered}
u=\sum_{k=0}^{\infty} Q(k) u^{k}=G_{1}(u) \\
1-S=\sum_{k=0}^{\infty} P(k) u^{k}=G_{0}(u)
\end{gathered}
$$

Self-c onsistent equations for the rela tive size S of the giant component

Generalized random graphs

Example: power-law degree distribution

$$
P(k)= \begin{cases}0 & \text { for } k=0 \\ k^{-\alpha} / \zeta(\alpha) & \text { for } k \geq 1\end{cases}
$$

$G_{0}(x)=\frac{L i_{\alpha}(x)}{\zeta(\alpha)}, \quad G_{1}(x)=\frac{L i_{\alpha-1}(x)}{x \zeta(\alpha-1)}$

$$
\operatorname{Li}_{s}(z)=\sum_{k=1}^{\infty} \frac{z^{k}}{k^{s}}
$$

$$
G_{1}^{\prime}(1)=1 \rightarrow \zeta(\alpha-2)=2 \zeta(\alpha-1)
$$

Critical exponent value: $\alpha_{c}=3.4788$
For $\alpha<\alpha_{c}$ there is always a giant connected For aponentiere is no giant connected component!

Generalized random graphs

$$
S=1-G_{0}(u), \quad u=G_{1}(u)
$$

$$
u=\frac{\operatorname{Li}_{\alpha-1}(u)}{u \zeta(\alpha-1)}
$$

For $\alpha<2, \mathrm{u}=0$ and $\mathrm{S}=1 \Rightarrow$ All vertices are in the giant component!
W. Aiello, F. Chung, L. Lu, Proc. 32th ACM Symposium on Theory of Computing 171-180 (2000)

Plan of the course

Networks: definitions, characteristics, basic concepts in graph theory
Real world networks: basic properties. Models I
III. Models II
IV. Community structure I
V. Community structure II
vI. Dynamic processes in networks

