Lecture II Introduction to complex networks

Santo Fortunato

Plan of the course

- Networks: definitions, characteristics, basic concepts in graph theory
- II. Real world networks: basic properties. Models I
- III. Models II
- IV. Community structure I
- V. Community structure II
- VI. Dynamic processes in networks

Two main classes

Natural systems:
Biological networks: genes, proteins...
Foodwebs
Social networks

Infrastructure networks:

Virtual: web, email, P2P

Physical: Internet, power grids, transport...

Genome

Protein-gene interactions

Proteome

Protein-protein interactions

Metabolism

Bio-chemical reactions

Metabolic Networks

Protein Interactions

Vertices: metabolites Edges: chemical reactions **Vertices**: proteins **Edges**: interactions

Scientific collaboration networks

Vertices: scientists

Edges: co-authored papers

Weights: depending on

- number of co-authored papers
- number of authors of each paper
- number of citations...

Actors collaboration networks

Vertices: actors

Edges: co-starred movies

World airport network

complete IATA database

- V = <u>3100</u> airports
- E = <u>17182</u> weighted edges
- w_{ij} #seats / (time scale)

> 99% of total

traffic

Meta-population networks

Each vertex: internal structure

Edges: transport/traffic

Internet

- Computers (routers)
- Satellites
- Modems
- Phone cables
- Optic fibers
- •EM waves

Internet

Graph representation

different granularities

Internet mapping

- continuously evolving and growing
- intrinsic heterogeneity
- self-organizing

Mapping projects:

- Multi-probe reconstruction (router-level): traceroute
- Use of BGP tables for the Autonomous System level (domains)

• CAIDA, NLANR, RIPE, IPM, PingER, DIMES

Topology and performance measurements

The World-Wide-Web

Virtual network to find and share information

- web pages
- hyperlinks

CRAWLS

Sampling issues

- social networks: various samplings/networks
- transportation network: reliable data
- biological networks: incomplete samplings
- Internet: various (incomplete) mapping processes
- WWW: regular crawls

•

possibility of introducing biases in the measured network characteristics

Networks characteristics

Networks: of very different origins

Do they have anything in common?

Possibility to find common properties?

the abstract character of the graph representation and graph theory allow to answer....

Social networks: Milgram's experiment

Milgram, *Psych Today* **2**, 60 (1967)

Dodds et al., *Science* **301**, 827 (2003)

Total no. of

"Six degrees of separation"

SMALL-WORLD CHARACTER

0 2 4 6 8 10 12

No. of Intermediaries needed to reach Target Person

In the Nebraska Study the chains varied from two to 10 intermediate acquaintances with the median at five.

Small-world properties

Internet:

Distribution of distances between two vertices

Small-world properties

Average number of vertices within a distance I

Airport network

Scientific collaborations

Internet

Small-world properties

N vertices, edges with probability p: static random graphs

short distances (log N)

Clustering coefficient

Empirically: large clustering coefficients

Higher probability to be connected

Clustering: My friends will know each other with high probability (typical example: social networks)

Topological heterogeneity

Statistical analysis of centrality measures:

Two broad classes

- homogeneous networks: light tails
- heterogeneous networks: skewed, heavy tails

Airplane route network

Topological heterogeneity

Statistical analysis of centrality measures

Broad degree distributions

Power-law tails $P(k) \sim k^{-\gamma}$, typically $2 < \gamma < 3$

Topological heterogeneity

Statistical analysis of centrality measures

Poisson

VS.

Power-law

Exp. vs. Scale-Free

Poisson distribution

Exponential Network

Power-law distribution

Scale-free Network

Consequences

Power-law tails:
$$P(k) \sim k^{-\gamma}$$

e

$$\langle k \rangle = \int kP(k)dk$$

$$\langle k^2 \rangle = \int k^2 P(k) dk \sim k_c^{3-\gamma}$$

 k_c =cut-off due to finite-size diverging degree fluctuations for $\gamma < 3$

Level of heterogeneity:

$$\kappa = \frac{\langle k^2 \rangle}{\langle k \rangle}$$

Other heterogeneity levels

Weights

Strengths

Other heterogeneity levels

Betweenness centrality

Clustering and correlations

non-trivial structures

Real networks: summary!

	Network	Type	TE	m	z	Ĺ	α	$C^{(1)}$	$C^{(2)}$	T	Ref(s).
Social	film actors	undirected	449 913	25 51 6 4 8 2	113.43	3.48	2.3	0.20	0.78	0.208	[20, 415]
	company directors	undirected	7 673	55392	14.44	4.60	_	0.59	0.88	0.276	[105, 322]
	math coauthorship	undirected	253 339	496489	3.92	7.57	_	0.15	0.34	0.120	[107, 181]
	physics coauthorship	undirected	52 909	245 300	9.27	6.19	_	0.45	0.56	0.363	[310, 312]
	biology coauthorship	undirected	1520251	11 803 064	15.53	4.92	_	0.088	0.60	0.127	[310, 312]
	telephone call graph	undirected	47 000 000	80 000 000	3.16		2.1				[8, 9]
	email messages	directed	59 91 2	86300	1.44	4.95	1.5/2.0		0.16		[136]
	email address books	directed	16 881	57029	3.38	5.22	_	0.17	0.13	0.092	[320]
	student relationships	undirected	573	477	1.66	16.01	_	0.005	0.001	-0.029	[45]
	sexual contacts	undirected	2810				3.2				[264, 265]
Information	WWW nd.edu	directed	269 504	1 497 135	5.55	11.27	2.1/2.4	0.11	0.29	-0.067	[14, 34]
	WWW Altavista	directed	203 549 046	2130000000	10.46	16.18	2.1/2.7				[74]
	citation network	directed	783 339	6716198	8.57		3.0/-				[350]
	Roget's Thesaurus	directed	1 022	5103	4.99	4.87	_	0.13	0.15	0.157	[243]
	word co-occurrence	undirected	460 902	17 000 000	70.13		2.7		0.44		[119, 157]
Technological	Internet	undirected	10 697	31992	5.98	3.31	2.5	0.035	0.39	-0.189	[86, 148]
	power grid	undirected	4 941	6594	2.67	18.99	_	0.10	0.080	-0.003	[415]
	train routes	undirected	587	19603	66.79	2.16	_		0.69	-0.033	[365]
	software packages	directed	1 439	1723	1.20	2.42	1.6/1.4	0.070	0.082	-0.016	[317]
	software classes	directed	1 377	2213	1.61	1.51	_	0.033	0.012	-0.119	[394]
	electronic circuits	undirected	24 097	53248	4.34	11.05	3.0	0.010	0.030	-0.154	[155]
	peer-to-peer network	undirected	880	1296	1.47	4.28	2.1	0.012	0.011	-0.366	[6, 353]
Biological	metabolic network	undirected	765	3686	9.64	2.56	2.2	0.090	0.67	-0.240	[213]
	protein interactions	undirected	2 115	2240	2.12	6.80	2.4	0.072	0.071	-0.156	[211]
	marine food web	directed	135	598	4.43	2.05	_	0.16	0.23	-0.263	[203]
	freshwater food web	directed	92	997	10.84	1.90	_	0.40	0.48	-0.326	[271]
	neural network	directed	307	2359	7.68	3.97	_	0.18	0.28	-0.226	[415, 420]

Complex networks

Complex is not just "complicated"

Cars, airplanes...=> complicated, not complex

Complex (no unique definition):

- many interacting units
- no centralized authority, self-organized
- complicated at all scales
- evolving structures
- emerging properties (heavy-tails, hierarchies...)

Examples: Internet, WWW, Social nets, etc...

Example: Internet growth

Main features of complex networks

- Many interacting units
- Self-organization
- Small-world
- Scale-free heterogeneity
- Dynamical evolution

Standard graph theory

Random graphs

- Static
- Ad-hoc topology

Example: Internet topology generators

Modeling of the Internet structure with ad-hoc algorithms
tailored on the properties we consider more relevant

Statistical physics approach

Microscopic processes of the many component units

Macroscopic statistical and dynamical properties of the system

Cooperative phenomena
Complex topology

Natural outcome of the dynamical evolution

Robustness

Complex systems maintain their basic functions even under errors and failures (cell → mutations; Internet → router breakdowns)

S: fraction of giant component

Fraction of removed vertices, f

Case of Scale-free Networks

R. Albert, H. Jeong, A.L. Barabasi, Nature 406 378 (2000)

Failures vs. attacks

Failures

Topological error tolerance

Attacks

Failures = percolation

f=fraction of vertices removed because of failure

p=probability of a vertex to be present in a percolation problem

Question: existence or not of a giant/percolating cluster, i.e. of a connected cluster of nodes of size O(N)

Betweenness

⇒ measures the "centrality" of a vertex i:

for each pair of vertices (I,m) in the graph, there are σ^{lm} shortest paths between I and m σ^{lm}_{i} shortest paths going through i

 b_i is the sum of $\sigma_i^{lm}/\sigma^{lm}$ over all pairs (I,m)

Attacks: other strategies

- * Most connected vertices
- * Vertices with largest betweenness
- * Removal of edges linked to vertices with large k
- * Removal of edges with largest betweenness
- * Cascades
- * ...

P. Holme et al (2002); A. Motter et al. (2002); D. Watts, PNAS (2002); Dall'Asta et al. (2006)...

Solomonoff & Rapoport (1951), Erdös-Rényi (1959)

$$\mathcal{G}_{n,p}=rac{ ext{n vertices, edges with probability}}{ ext{p: static random graphs}}$$

Average number of edges: $\langle E \rangle = pn(n-1)/2$

Average degree: < k > = p(n-1)

p=c/n to have finite average degree

Related formulation

$$\mathcal{G}_{n,m}=rac{ ext{n vertices, m edges: each configuration is}}{ ext{equally probable}}$$

Probability to have a vertex of degree k

- connected to k vertices,
- not connected to the other n-k-1

$$P(k) = \binom{n-1}{k} p^{k} (1-p)^{n-k-1}$$

Large N, fixed $pN = \langle k \rangle$: Poisson distribution

$$P(k) = e^{-\langle k \rangle} \frac{\langle k \rangle^k}{k!}$$

Exponential decay at large k

Properties

- Poisson degree distribution (on large graphs)
- II. Small clustering coefficient: <C>=p=<k>/n (goes to zero in the limit of infinite graph size for sparse graphs)
- III. Short distances: diameter I ~ log (n)/log(<k>) (number of neighbors at distance d: <k>d

<k> < 1: many small subgraphs

< k > > 1: giant component + small subgraphs

Self-consistent equation for relative size of giant component

$$u = \sum_{k=0}^{\infty} P(k)u^k = e^{-\langle k \rangle} \sum_{k=0}^{\infty} \frac{(\langle k \rangle u)^k}{k!} = e^{\langle k \rangle (u-1)}$$

$$S = 1 - u \rightarrow S = 1 - e^{-\langle k \rangle S}$$

Average cluster size

$$\langle s \rangle = \frac{1}{1 - \langle k \rangle + \langle k \rangle S}$$

Near the transition (<k>~1)

$$S \sim (< k > -1)^{\beta}$$
 $< s > \sim |< k > -1|^{-\gamma}$
 $\beta = 1, \gamma = 1$

The configuration model (Molloy & Reed, 1995, 1998)

Basic idea: building random graphs with arbitrary degree distributions

How it works

- Choose a degree sequence compatible with some given distribution
- II. Assign to each vertex his degree, taken from the sequence, in that each vertex has as many outgoing stubs as its degree
- III. Join the stubs in random pairs, until all stubs are joined

Simple model: easy to handle analytically

Important point: the probability that the degree of vertex reached by following a randomly chosen edge is k is not given by P(k)!

Reason: vertices with large degree have more edges and can be reached more easily than vertices with low degree

Conclusion: distribution of degree of vertices at the end of randomly chosen edge is proportional to kP(k)

Excess degree: number of edges leaving a vertex reached from a randomly selected edge, other than the edge followed

Distribution of excess degree: Q(k)

$$Q(k) = \frac{(k+1)P(k+1)}{\sum_{k} kP(k)} = \frac{(k+1)P(k+1)}{\langle k \rangle}$$

Chance of finding loops within small (i.e. non-giant) components goes as $O(n^{-1})$

Consequence: graphs of the configuration model are essentially loopless, tree-like, unlike real-world networks

Generating functions

$$G_0(x) = \sum_{k=0}^{\infty} P(k)x^k$$

$$G_1(x) = \sum_{k=0}^{\infty} Q(k)x^k$$

$$G_1(x) = G'_0(x)/\langle k \rangle$$

$$< k > = G_0'(1)$$

$$< k^2 > - < k > = G'_0(1)G'_1(1)$$

$$< s > = 1 + \frac{< k >^2}{2 < k > - < k^2 >}$$

Condition for existence of giant component:

$$\sum_{k} k(k-2)P(k) = 0 \quad \Longleftrightarrow \quad G_1'(1) = 1$$

 $\overline{u}=$ probability that a randomly chosen edge is not in the giant component

$$u = \sum_{k=0}^{\infty} Q(k)u^k = G_1(u)$$

$$1 - S = \sum_{k=0}^{\infty} P(k)u^k = G_0(u)$$

Self-consistent equations for the relative size S of the giant component

Example: power-law degree distribution

$$P(k) = \begin{cases} 0 & \text{for } k = 0 \\ k^{-\alpha}/\zeta(\alpha) & \text{for } k \ge 1 \end{cases}$$

$$G_0(x)=rac{Li_lpha(x)}{\zeta(lpha)}, \hspace{0.5cm} G_1(x)=rac{Li_{lpha-1}(x)}{x\zeta(lpha-1)} \hspace{0.5cm} ext{Li}_s(z)=\sum\limits_{k=1}^\inftyrac{z^k}{k^s}$$

$$\operatorname{Li}_{s}(z) = \sum_{k=1}^{\infty} \frac{z^{k}}{k^{s}}$$

$$G_1'(1) = 1 \rightarrow \zeta(\alpha - 2) = 2\zeta(\alpha - 1)$$

Critical exponent value: $lpha_c=3.4788$

For $\alpha < \alpha_c$ there is always a giant connected component! For $\alpha > \alpha_c$ there is no giant connected component!

$$S = 1 - G_0(u), \quad u = G_1(u)$$

$$u = \frac{\operatorname{Li}_{\alpha-1}(u)}{u\zeta(\alpha-1)}$$

For α < 2, u=0 and S=1 \rightarrow All vertices are in the giant component!

W. Aiello, F. Chung, L. Lu, *Proc. 32th ACM Symposium on Theory of Computing* 171-180 (2000)

Plan of the course

- Networks: definitions, characteristics, basic concepts in graph theory
- II. Real world networks: basic properties. Models I
- III. Models II
- IV. Community structure I
- V. Community structure II
- VI. Dynamic processes in networks