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Plan of the course

I. Networks: definitions, characteristics, basic concepts 
in graph theory

II. Real world networks: basic properties. Models I
III. Models II
IV. Community structure I
V. Community structure II
VI. Dynamic processes in networks



Two main classes

Natural systems:
Biological networks: genes, proteins…
Foodwebs
Social networks

Infrastructure networks:
Virtual: web, email, P2P
Physical: Internet, power grids, transport…



Protein-protein 
interactions

Genome



Metabolic Networks

Vertices: proteins
Edges: interactions

Protein Interactions

Vertices: metabolites             
Edges: chemical reactions



Scientific collaboration networks

Vertices: scientists

Edges: co-authored papers

Weights: depending on
•number of co-authored papers
•number of authors of each paper
•number of citations…



Actors collaboration networks

Vertices: actors

Edges: co-starred movies



World airport network

complete IATA database
V = 3100 airports
E = 17182 weighted edges
wij #seats / (time scale)

> 99% of total 
traffic



Meta-population networks

City a

City j

City i

Each vertex: internal structure
Edges: transport/traffic



•Computers (routers)
•Satellites
•Modems 
•Phone cables
•Optic fibers
•EM waves

Internet



Graph representation

different
granularities

Internet



Mapping projects:
•Multi-probe reconstruction (router-level): traceroute
•Use of BGP tables for the Autonomous System level (domains)

•CAIDA, NLANR, RIPE, 
IPM, PingER, DIMES

Topology and performance 
measurements

Internet mapping

•continuously evolving and growing
•intrinsic heterogeneity
•self-organizing

Largely unknown topology/properties



CAIDA AS  cross section map 





Virtual network to find and share information
•web pages 
•hyperlinks

The World-Wide-Web

CRAWLS



Sampling issues

• social networks: various samplings/networks
• transportation network: reliable data
• biological networks: incomplete samplings
• Internet: various (incomplete) mapping processes
• WWW: regular crawls
• …

possibility of introducing biases in the
measured network characteristics



Networks characteristics
Networks: of very different origins

Do they have anything in common?
Possibility to find common properties?

the abstract character of the graph representation
and graph theory allow to answer….



Social networks:
Milgram’s experiment

Milgram, Psych Today 2, 60 (1967)

Dodds et al., Science 301, 827 
(2003)

“Six degrees of separation”

SMALL-WORLD CHARACTER



Small-world properties

Distribution of distances
between two vertices

Internet:



Small-world properties
Average number of vertices within a distance l

Scientific collaborations

Internet

Airport network



Small-world properties

N vertices, edges with probability
p: 
static random graphs

short distances
(log N)



Clustering coefficient

1

2

3

n

Higher probability to be connected

Clustering: My friends will know each other with high probability
(typical example: social networks)

Empirically: large clustering coefficients



Topological heterogeneity

Statistical analysis of centrality measures:

P(k)=nk/n=probability that a randomly chosen
vertex has degree k

also: P(b), P(w)….

Two broad classes
•homogeneous networks: light tails
•heterogeneous networks: skewed, heavy tails



Airplane route network



CAIDA AS  cross section map 



Topological heterogeneity
Statistical analysis of centrality measures

Broad degree
distributions

Power-law tails
P(k) ~ k-γ ,
typically 2< γ <3



Topological heterogeneity
Statistical analysis of centrality measures

Poisson
vs.
Power-law

log-scale

linear scale



Exp. vs. Scale-Free
Poisson distribution

Exponential Network

Power-law distribution

Scale-free Network



Consequences

kc=cut-off due to finite-size
diverging degree fluctuations for γ < 3

Level of heterogeneity:

Averag
e

Power-law tails:

Fluctuations



Other heterogeneity levels

Weights

Strengths



Other heterogeneity levels

Betweenness
centrality



Clustering and correlations

non-trivial
structures



Real networks: summary!



Complex networks
Complex is not just “complicated”

Cars, airplanes…=> complicated, not complex

Complex (no unique definition):
•many interacting units
•no centralized authority, self-organized
•complicated at all scales
•evolving structures
•emerging properties (heavy-tails, hierarchies…)

Examples: Internet, WWW, Social nets, etc…



Example: Internet growth



Main features of complex networks

•Many interacting units
•Self-organization
•Small-world
•Scale-free heterogeneity
•Dynamical evolution

•Many interacting units
•Self-organization
•Small-world
•Scale-free heterogeneity
•Dynamical evolution Standard graph theory

•Static
•Ad-hoc topology

Random graphs

Example: Internet topology generators
Modeling of the Internet structure with ad-hoc algorithms

tailored on the properties we consider more relevant



Statistical physics approach

Microscopic processes of the 
many component units

Macroscopic statistical and dynamical
properties of the system

Cooperative phenomena
Complex topology

Natural outcome of
the dynamical evolution



Robustness
Complex systems maintain their basic functions             

even under errors and failures                            
(cell → mutations; Internet → router breakdowns)

vertex failure

S: fraction of giant 
component



Case Case ofof ScaleScale--freefree NetworksNetworks

s

fc 1

Random failure fc =1 (2 < γ ≤ 3) 

Attack =progressive failure of the most
Connected vertices fc <1

Internet Internet mapsmaps

R. Albert, H. Jeong, A.L. Barabasi, Nature 406 378 (2000)



Failures vs. attacks

1

S

0 1ffc

Attacks

γ ≤ 3 : fc=1
(R. Cohen et al PRL, 2000)

Failures

Topological 
error tolerance



Failures = percolation

p=probability of a 
vertex to be present
in a percolation
problem

Question: existence or not of a giant/percolating cluster, 
i.e. of a connected cluster of nodes of size O(N)

f=fraction of
vertices removed
because of failure

p=1-f



Betweenness
⇒ measures the “centrality” of a vertex i: 

for each pair of vertices (l,m) in the graph, there are
σlm shortest paths between l and m
σi

lm shortest paths going through i

bi is the sum of  σi
lm / σlm over all pairs (l,m)

i
j

bi is large
bj is small



Attacks: other strategies

Most connected vertices

Vertices with largest betweenness

Removal of edges linked to vertices with large k

Removal of edges with largest betweenness

Cascades

...

P. Holme et al (2002); A. Motter et al. (2002); 
D. Watts, PNAS (2002); Dall’Asta et al. (2006)…



Classical random graphs 

Average number of edges:  <E > = pn(n-1)/2

Average degree: < k > = p(n-1)

p=c/n to have
finite average degree

Solomonoff & Rapoport (1951), Erdös-Rényi (1959)

n vertices, edges with probability 
p: static random graphs

Related formulation

n vertices, m edges: each configuration is 
equally probable



Probability to have a vertex of degree k
•connected to k vertices, 
•not connected to the other n-k-1

Large N, fixed pN=< k > : Poisson distribution

Exponential decay at large k

Classical random graphs 



Classical random graphs 

I. Poisson degree distribution (on large graphs)
II. Small clustering coefficient: <C>=p=<k>/n (goes to zero in 

the limit of infinite graph size for sparse graphs)
III. Short distances: diameter l ~ log (n)/log(<k>) (number of 

neighbors at distance d: <k>d

Properties



<k> < 1: many small subgraphs

< k > > 1: giant component + small subgraphs

Classical random graphs 



Classical random graphs 
Self-consistent equation for relative size of giant component 

Average cluster size



Classical random graphs 

Near the transition (<k>~1)



Generalized random graphs 
The configuration model (Molloy & Reed, 1995, 1998)

Basic idea: building random graphs with arbitrary degree 
distributions

How it works

I. Choose a degree sequence compatible with some 
given distribution

II. Assign to each vertex his degree, taken from the 
sequence, in that each vertex has as many outgoing 
stubs as its degree

III. Join the stubs in random pairs, until all stubs are 
joined



Generalized random graphs 
Simple model: easy to handle analytically 

Important point: the probability that the degree of vertex 
reached by following a  randomly chosen edge is k is not 
given by P(k)! 

Reason: vertices with large degree have more edges and 
can be reached more easily than vertices with low degree

Conclusion: distribution of degree of vertices at the end of 
randomly chosen edge is proportional to kP(k)



Generalized random graphs 
Excess degree: number of edges leaving a vertex 
reached from a randomly selected edge, other than the 
edge followed

Distribution of excess degree: 



Generalized random graphs 
Chance of finding loops within small (i.e. non-giant) 
components goes as 

Consequence: graphs of the configuration model are 
essentially loopless, tree-like, unlike real-world networks

Generating functions



Generalized random graphs 

Condition for existence of giant component:



Generalized random graphs 
probability that a randomly chosen edge is not in the 

giant component 

Self-consistent equations for the relative size S of the giant 
component



Generalized random graphs 
Example: power-law degree distribution

Critical exponent value:

For α<αc there is always a giant connected 
component!For α>αc there is no giant connected component!



Generalized random graphs 

For α< 2, u=0 and S=1  All vertices are in the giant 
component! 

W. Aiello, F. Chung, L. Lu, Proc. 32th ACM Symposium on Theory of 
Computing 171-180 (2000)
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