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Introduction to complex networks
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VI.

Plan of the course

Networks: definitions, characteristics, basic concepts
iIn graph theory

Real world networks: basic properties. Models |
Models II

Community structure |

Community structure |l

Dynamic processes in networks



TwO main classes

Natural systems:

Biological networks: genes, proteins...
Foodwebs

Social networks

Infrastructure networks:
Virtual: web, email, P2P
Physical: Internet, power grids, transport...
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Metabolic Networks Protein Interactions

Vertices: metabolites E\éeLiqué prot?_ins
Edges: chemical reactions Edges: interactions




Scientific collaboration networks

Vertices: scientists

Edges: co-authored papers

Weights: depending on
enumber of co-authored papers

enumber of authors of each paper
enumber of citations...




Actors collaboration networks

Vertices: actors

Edges: co-starred movies




World airport network

complete IATA database
V = 3100 airports
E=17182 weighted edges ‘
w; #seats / (time scale)

> 99% of total
traffic




Meta-population networks

Each vertex: internal structure
Edges: transport/traffic

homogeneous mixing




nEnEn

eComputers (routers)
eSatellites
eModems
Phone cables
«Optic fibers
<EM waves




niEnEn

Graph representation

different
granularities

Autonomous System level



Internet mapping

econtinuously evolving and growing
eintrinsic heterogeneity
=self-organizing

L> Largely unknown topology/properties

Mapping projects:
e Multi-probe reconstruction (router-level): traceroute
eUse of BGP tables for the Autonomous System level (domains)

«CAIDA, NLANR, RIPE, l Topology and performance
measurements

IPM, PIngER, DIMES
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The World-Wide-Web

Virtual network to find and share information
eweb pages
ehyperlinks
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Sampling issues

social networks: various samplings/networks
transportation network: reliable data

biological networks: iIncomplete samplings
Internet: various (iIncomplete) mapping processes
WWW: regular crawls

, S

possibility of introducing biases in the
measured network characteristics




Networks characteristics

Networks: of very different origins

.

the abstract character of the graph representation
and graph theory allow to answer....

Do they have anything in common?
Possibility to find common properties?




Social networks:
Milgram’s experiment

“  Milgram, Psych Today 2, 60 (1967)
SO Dodds et al., Science 301, 827
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“SiIx degrees of separation”
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Small-world properties

EnE s

Distribution of distances
between two vertices




Small-world properties

Average number of vertices within a distance |
Airport network

Scientific collaborations

Internet




Small-world properties

N vertices, edges with probabillity

ok
static random graphs

o

short distances
(log N)




Clustering coefficient

Empirically: large clustering coefficients

Higher probability to be connected

Clustering: My friends will know each other with high probability
(typical example: social networks)




Topological heterogeneity

Statistical analysis of centrality measures:

P(k)=n,/n=probabllity that a randomly chosen
vertex has degree k
also: P(b), P(w)....

Two broad classes
ehomogeneous networks: light tails
eheterogeneous networks: skewed, heavy talls
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Topological heterogeneity

Statistical analysis of centrality measures

Broad degree
distributions

Power-law talls
P(k) ~ kv ,
typically 2< vy <3




Topological heterogeneity

Statistical analysis of centrality measures

r inear scale

Poisson
VS.
Power-law

L} log-scale




EXp. vs. Scale-Free

Poisson distribution Power-law distribution

arlotte®
-

Exponential Network Scale-free Network




Consequences
Power-law tails: P(k) ~ k™"

Aver k) = | kP(k)dk
Averag (k) = [ kPR

Fluctuations (k%) = /kzP(k)dk ~ k37

k.=cut-off due to finite-size
diverging degree fluctuations fory < 3

L

Level of heterogeneity: P

k




Other heterogeneity levels

Airport network
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Other heterogeneity levels

Airport network

Betweenness
centrality




Clustering and correlations
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Complex networks

Complex is not just “complicated”

Cars, airplanes...=> complicated, not complex

Complex (no unigue definition):
emany interacting units
eno centralized authority, self-organized
ecomplicated at all scales
eevolving structures

eemerging properties (heavy-taills, hierarchies...)

Examples: Internet, WWW, Social nets, etc...




Example: Internet growth
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Malin features of complex networks

Many interacting units
«Self-organization
<Small-world

eScale-free heterogeneity

Dynamical evolution Standard graph theory

Random graphs

eStatic
< Ad-hoc topology

Example: Internet topology generators
Modeling of the Internet structure with ad-hoc algorithms

taillored on the properties we consider more relevant
SR




Statistical physics approach

Microscopic processes of the
many component units

!

Macroscopic statistical and dynamical
properties of the system

Cooperative phenomena : ) Natural outcome of
Complex topology the dynamical evolution




Robustness

Complex systems maintain their basic functions
even under errors and failures
(cell > mutations; Internet — router breakdowns)

1

S: fraction of giant
component S

e

0

Fraction of removed vertices, f

."""'—F. ®

' vertex failure \ w
o/.

() ~

X




Case of Scale-free Networks

N

Random failure f_=1 (2<7 <3)

Attack =progressive failure of the most

Connected vertices fC <1

R. Albert, H. Jeong, A.L. Barabasi, Nature 406 378 (2000)



Failures vs. attacks

Failures

Topological
error tolerance

Attacks




Fallures = percolation

p=probability of a
vertex to be present
INn a percolation
problem

f=fraction of
vertices removed _

| p=1-f
because of fallure

Question: existence or not of a giant/percolating cluster,
l.e. of a connected cluster of nodes of size O(N)




Betweenness

measures the “centrality” of a vertex .

for each pair of vertices (I,m) in the graph, there are
'™ shortest paths between | and m
o™ shortest paths going through i

b. is the sum of '™/ ¢'™over all pairs (I,m)

i b. Is large
i b, is small



Attacks: other strategies

Most connected vertices

Vertices with largest betweenness

Removal of edges linked to vertices with large k
Removal of edges with largest betweenness

Cascades

P. Holme et al (2002); A. Motter et al. (2002);
D. Watts, PNAS (2002); Dall’ Asta et al. (2006)...



Classical random graphs

Solomonoff & Rapoport (1951), Erdds-Rényi (1959)

Gl vertices, edges with probability
P p:static random graphs

Average number of edges: <k >=pn(n-1)/2

Average degree: <k >=p(n-1)

k p=c/n to have
finite average degree

Related formulation

__nvertices, m edges: each configuration is
gn,m — equally probable




Classical random graphs

Probabillity to have a vertex of degree k
econnected to k vertices,
eNOot connected to the other n-k-1

n—1

Pi) = ("} )rta-pt

Large N, fixed pN=< k > : Poisson distribution

iy ()"
P(k) =e <k><k—>!

Exponential decay at large k




Classical random graphs

Properties

. Poisson degree distribution (on large graphs)

Il Small clustering coefficient: <C>=p=<k>/n (goes to zero in
the limit of infinite graph size for sparse graphs)

1. Short distances: diameter | ~ log (n)/log(<k>) (number of
neighbors at distance d: <k>¢



Classical random graphs

<k> < 1. many small subgraphs

<k >>1: giant component + small subgraphs




Classical random graphs

Self-consistent equation for relative size of giant component

e = = (<k>’U;)k k> (u—1)
u=ZP(k)uk=e <k>z — <k>(u—-1
|
k=0 k=0 k

S=1—-u — S=1-—e <k>5

Average cluster size

(8)

1
Cl-<k>+<k>S




Classical random graphs

Near the transition (<k>~1)
S~ (<k>—-1)
<s>~|<k>-17"
L =1




Generalized random graphs

The configuration model (Molloy & Reed, 1995, 1998)

Basic idea: building random graphs with arbitrary degree
distributions

How it works
. Choose a degree seguence compatible with some
given distribution

II. Assign to each vertex his degree, taken from the
sequence, in that each vertex has as many outgoing
stubs as its degree

Il Join the stubs in random pairs, until all stubs are
joined



Generalized random graphs

Simple model: easy to handle analytically

Important point: the probability that the degree of vertex
reached by following a randomly chosen edge is k is not
given by P(k)!

Reason: vertices with large degree have more edges and
can be reached more easily than vertices with low degree

Conclusion: distribution of degree of vertices at the end of
randomly chosen edge is proportional to kP(k)



Generalized random graphs

Excess degree: number of edges leaving a vertex
reached from a randomly selected edge, other than the

edge followed

Distribution of excess degree: Q(k)

- (k+1)P(k+1) (k+1)P(k+1)
Qlk) = S B R <k>




Generalized random graphs

Chance of finding loops within small (i.e. non-giant)
components goes as O(n_l)

Consequence: graphs of the configuration model are
essentially loopless, tree-like, unlike real-world networks

Generating functions

Go(x) = ZP(k)x"’
k=0

Gi(@) = 3 Qk)e*
k=0




Generalized random graphs

Gi(z) = Gy(z)/ < k >
<k?*>-—<k>=Gy1)G(1)

< k >2

<s>=1+

2< k> —<k?>

Condition for existence of giant component:

; k(k —2)P(k) = OBENCT (1) —




Generalized random graphs

u =probability that a randomly chosen edge is not in the
glant component

Self-consistent equations for the relative size S of the giant
component




Generalized random graphs

Example: power-law degree distribution

Critical exponent value: [(TEEERR:Yeel.

For a<a. there iIs always a giant connected

omponent! . .
ESTHS o there is no giant connected component!




Generalized random graphs

For < 2, u=0 and S=1 => All vertices are in the giant
component!

W. Aiello, F. Chung, L. Lu, Proc. 32th ACM Symposium on Theory of
Computing 171-180 (2000)



Plan of the course

Networks: definitions, characteristics, basic concepts
iIn graph theory

Real world networks: basic properties. Models |
Models Il

Community structure |

Community structure |l

Dynamic processes in networks



