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Plan of the course

I. Networks: definitions, characteristics, basic concepts 
in graph theory

II. Real world networks: basic properties. Models I
III. Models II
IV. Community structure I
V. Community structure II
VI. Dynamic processes in networks



What is a network?
Network or graph=set of vertices joined by edges

very abstract representation

very general

convenient to describe
many different systems



Some examples

Nodes Links

Social networks Individuals Social relations

Internet Routers
AS

Cables
Commercial agreements

WWW Webpages Hyperlinks

Protein interaction
networks

Proteins Chemical reactions

and many more (email, P2P, foodwebs, transport….)



Interdisciplinary science

Science of complex networks:

-graph theory

-sociology

-communication science

-biology

-physics

-computer science



Interdisciplinary science

Science of complex networks:

Empirics

Characterization

Modeling

Dynamical processes



Graph Theory
Origin: Leonhard Euler (1736)



Graph theory: basics

Graph G=(V,E)

V=set of nodes/vertices i=1,…,n

E=set of links/edges (i,j), m

Undirected edge: 

Directed edge: 

i Bidirectional 
communication/
interaction

j

i j



Graph theory: basics
Maximum number of edges

Undirected: n(n-1)/2

Directed: n(n-1)

Complete graph:

(all to all interaction/communication)



Adjacency matrix

0 1 2 3
0 0 1 1 1
1 1 0 1 1
2 1 1 0 1
3 1 1 1 0

0

3

1

2

n vertices i=1,…,n

aij=
1 if (i,j) E
0 if (i,j) E



Adjacency matrix

0 1 2 3
0 0 1 0 0
1 1 0 1 1
2 0 1 0 1
3 0 1 1 0

Symmetric
for undirected networks

n vertices i=1,…,n

aij=
1 if (i,j) E
0 if (i,j) E

0

3

1

2



Adjacency matrix

0 1 2 3
0 0 1 0 1
1 0 0 0 0
2 0 1 0 0
3 0 1 1 0

0

3

1

2

Non symmetric
for directed networks

n vertices i=1,…,n

aij=
1 if (i,j) E
0 if (i,j) E



Sparse graphs

Density of a graph D=|E|/(n(n-1)/2)

Number of edges

Maximal number of edges
D =

Representation: lists of neighbours of each node

Sparse graph: D <<1 Sparse adjacency matrix

l(i, V(i))

V(i)=neighbourhood of i



Paths
G=(V,E)

Path of length l = ordered collection of

l+1 vertices i0,i1,…,il ε V

l edges (i0,i1), (i1,i2)…,(il-1,il) ε E

i2
i0 i1

i5

i4i3

Cycle/loop = closed path (i0=il) with all other vertices and 
edges distinct



Paths and connectedness
G=(V,E) is connected if and only if there exists a path
connecting any two nodes in G

is connected

•is not connected
•is formed by two components



Trees

n nodes, n-1 links

Maximal loopless
graph

Minimal connected 
graph

A tree is a connected graph without loops/cycles



Paths and connectedness

G=(V,E)=> distribution of components’ sizes

Giant component= component whose size scales
with the number of vertices n

Existence of a giant
component

Macroscopic fraction of the 
graph is connected



Paths and connectedness:
directed graphs

Tube TendrilTendrils

Giant SCC: Strongly
Connected Component

Giant OUT 
Component

Giant IN 
Component

Disconnected
components

Paths are directed



Shortest paths

i

j

Shortest path between i and j: minimum number of
traversed edges

distance l(i,j)=minimum number
of edges traversed on a path
between i and j

Diameter of the graph= max[l(i,j)]
Average shortest path= ∑ij l(i,j)/(n(n-1)/2)

Complete graph: l(i,j)=1 for all i,j
“Small-world” “small” diameter



Graph spectra
Spectrum of a graph: set of eigenvalues of adjacency
matrix A

If A is symmetric (undirected graph), n real eigenvalues
with real orthogonal eigenvectors

If A is asymmetric, some eigenvalues may be complex

Perron-Frobenius theorem: any graph has (at least) one 
real eigenvalue μn with one non-negative eigenvector, 
such that |μ|≤ μn for any eigenvalue μ. If the graph 
is connected, the multiplicity of μn is one.

Consequence: on an undirected graph there is only
one eigenvector with positive components, the others
have mixed-signed components



Graph spectra

Spectral density

Continuous function in the limit

k-th moment of spectral density  



Wigner’s semicircle law
For real symmetric uncorrelated random matrices
whose elements have finite moments in the limit



Centrality measures
How to quantify the importance of a node?

Degree=number of neighbours=∑j aij

i
ki=5

• Closeness centrality

gi= 1 / ∑j l(i,j)

For directed graphs: kin, kout



Betweenness centrality
for each pair of nodes (l,m) in the graph, there are

slm shortest paths between l and m
si

lm shortest paths going through i

bi is the sum of  si
lm / slm over all pairs (l,m)

NB: similar quantity= load li=∑ σi
lm

NB: generalization to edge betweenness centrality

Path-based quantity

j
bi is large
bj is small

i



Eigenvector centrality

i
x3

x4

x1 xi

x5

x2

Basic principle = the importance of a vertex is proportional
to the sum of the importances of its neighbors

Solution: eigenvectors of adjacency matrix!



Eigenvector centrality
Not all eigenvectors are good solutions! 

Requirement: the values of the centrality measure have to
be positive 

Because of Perron-Frobenius theorem only the eigenvector
with largest eigenvalue (principal eigenvector) is a good
solution!

The principal eigenvector can be quickly computed with
the power method!



Structure of neighborhoods

Clustering: My friends will know each other with high 
probability! (typical example: social networks)

k

C(i) =
# of links between 1,2,…n neighbors

k(k-1)/2

Clustering coefficient of a node

i



Structure of neighborhoods

Average clustering coefficient of a graph

C=∑i C(i)/n



Statistical characterization
Degree distribution

•List of degrees k1,k2,…,kn Not very useful!

•Histogram:
nk= number of nodes with degree k

•Distribution:
P(k)=nk/n=probability that a randomly chosen

node has degree k

•Cumulative distribution:
P>(k)=probability that a randomly chosen
node has degree at least k



Statistical characterization
Cumulative degree distribution

Conclusion: power laws and exponentials can 
be easily recognized



Statistical characterization
Degree distribution

P(k)=nk/n=probability that a randomly chosen
node has degree k

Average=< k > = ∑i ki/n = ∑k k P(k)=2|E|/n 

Fluctuations: < k2 >  - < k > 2
< k2 > = ∑i k2

i/n = ∑k k2 P(k)
< kn > = ∑k kn P(k)

Sparse graphs: < k > << n



Statistical characterization
Multipoint degree correlations

P(k): not enough to characterize a network

Large degree nodes tend to
connect to large degree nodes
Ex: social networks

Large degree nodes tend to
connect to small degree nodes
Ex: technological networks



Statistical characterization
Multipoint degree correlations

Measure of correlations:
P(k’,k’’,…k(n)|k): conditional probability that a node of
degree k is connected to nodes of degree k’, k’’,…

Simplest case:
P(k’|k): conditional probability that a node of degree
k is connected to a node of degree k’

often inconvenient (statistical fluctuations)



Statistical characterization
Multipoint degree correlations

Practical measure of correlations:

Average degree of nearest neighbors

ki=4
knn,i=(3+4+4+7)/4=4.5



Statistical characterization
Average degree of nearest neighbors

Correlation spectrum:

putting together vertices
having the same degree

class of degree k



Statistical characterization
Case of random uncorrelated networks

P(k’|k)
•independent of k
•prob. that an edge points to a vertex of degree k’

proportional
to k’ itselfPunc(k’|k)=k’P(k’)/< k >

number of edges from nodes of degree k’
number of edges from nodes of any degree



Typical correlations
Assortative behaviour: growing knn(k)

Example: social networks

Large sites are connected with large sites

Disassortative behaviour: decreasing knn(k)

Example: internet

Large sites connected with small sites, hierarchical structure





Correlations:
Clustering spectrum

•P(k’,k’’|k): cumbersome, difficult to estimate from data
•Average clustering coefficient C=average over nodes with
very different characteristics

Clustering spectrum:

putting together nodes which
have the same degree

class of degree k
(link with hierarchical structures)



Motifs
Motifs: subgraphs occurring more often than on random 
versions of the graph  

Significance of motifs:
Z-score!



Weighted networks
Real world networks: links

carry traffic (transport networks, Internet…)

have different intensities (social networks…)

General description: weights

i jwij

aij: 0 or 1
wij: continuous variable



● Scientific collaborations: number of common papers

● Internet, emails: traffic, number of exchanged emails

● Airports: number of passengers 

● Metabolic networks: fluxes 

● Financial networks: shares

● …

Weights: examples

usually wii=0
symmetric: wij=wji



Weighted networks
Weights: on the links

Strength of a vertex:

si = ∑j ε V(i) wij

=>Naturally generalizes the degree to weighted networks

=>Quantifies for example the total traffic at a node



Weighted clustering coefficient I

si=16
ci

w=0.625 > ci

ki=4
ci=0.5

si=8
ci

w=0.25 < ci

wij=1

wij=5

i i

A. Barrat, M. Barthélemy, R. Pastor-Satorras, A. Vespignani, PNAS 101, 3747 (2004)



Weighted clustering coefficient II

J. Saramäki, M. Kivela, J.-P. Onnela, K. Kaski, J. 
Kertész, Phys. Rev. E 75, 027105 (2007)

Definition based on subgraph intensity



Weighted clustering coefficient

Random(ized) weights:   C = Cw

C < Cw : more weights on cliques
C > Cw : less weights on cliques

wik

Average clustering coefficient
C=∑i C(i)/n
Cw=∑i Cw(i)/n

Clustering spectra



Weighted assortativity

ki=5; knn,i=1.8



Weighted assortativity

ki=5; knn,i=1.8

5
11

1

1
i



Weighted assortativity

ki=5; si=21; knn,i=1.8 ; knn,i
w=1.2:  knn,i > knn,i

w

1
55

5

5
i



ki=5; si=9; knn,i=1.8 ; knn,i
w=3.2: knn,i < knn,i

w

5
11

1

1
i

Weighted assortativity



Participation ratio

1/ki if all weights equal

close to 1 if few weights dominate



Plan of the course
I. Networks: definitions, characteristics, basic concepts 

in graph theory
II. Real world networks: basic properties. Models I
III. Models II
IV. Community structure I
V. Community structure II
VI. Dynamic processes in networks


