Lecture I Introduction to complex networks

Santo Fortunato

References

- * Evolution of networks
 S.N. Dorogovtsev, J.F.F. Mendes, Adv. Phys. 51, 1079 (2002), cond-mat/0106144
- * Statistical mechanics of complex networks R. Albert, A-L Barabasi Reviews of Modern Physics 74, 47 (2002), cond-mat/0106096
- * The structure and function of complex networks M. E. J. Newman, SIAM Review 45, 167-256 (2003), cond-mat/0303516
- * Complex networks: structure and dynamics S. Boccaletti, V. Latora, Y. Moreno, M. Chavez, D.-U. Hwang Physics Reports 424, 175-308 (2006)
- * Community detection in graphs
 S. Fortunato
 arXiv: 0906.0612

Plan of the course

- Networks: definitions, characteristics, basic concepts in graph theory
- II. Real world networks: basic properties. Models I
- III. Models II
- IV. Community structure I
- V. Community structure II
- VI. Dynamic processes in networks

What is a network?

Network or graph=set of vertices joined by edges

very abstract representation

convenient to describe many different systems

Some examples

	Nodes	Links	
Social networks	Individuals	Social relations	
Internet	Routers AS	Cables Commercial agreements	
WWW	Webpages	Hyperlinks	
Protein interaction networks	Proteins	Chemical reactions	

and many more (email, P2P, foodwebs, transport....)

Interdisciplinary science

Science of complex networks:

- -graph theory
- -sociology
- -communication science
- -biology
- -physics
- -computer science

Interdisciplinary science

Science of complex networks:

- * Empirics
- * Characterization
- * Modeling
- * Dynamical processes

Graph Theory

Origin: Leonhard Euler (1736)

Graph theory: basics

Graph G=(V,E)

- * V=set of nodes/vertices i=1,...,n
- * E=set of links/edges (i,j), m

Undirected edge:

Bidirectional communication/interaction

Directed edge:

Graph theory: basics

Maximum number of edges

* Undirected: n(n-1)/2

* Directed: n(n-1)

Complete graph:

(all to all interaction/communication)

Adjacency matrix

n vertices i=1,...,n

$$a_{ij} = \begin{cases} 1 & \text{if } (i,j) \in E \\ 0 & \text{if } (i,j) \notin E \end{cases}$$

	0	1	2	3
0	0	1	1	1
1	1	0	1	1
2	1	1	0	1
3	1	1	1	0

Adjacency matrix

n vertices i=1,...,n

$$a_{ij} = \begin{cases} 1 & \text{if } (i,j) \in E \\ 0 & \text{if } (i,j) \notin E \end{cases}$$

0 1 2 3 0 0 1 0 0 1 1 0 1 1 2 0 1 0 1 3 0 1 1 0

Symmetric for undirected networks

Adjacency matrix

n vertices i=1,...,n

$$a_{ij} = \begin{cases} 1 & \text{if } (i,j) \in E \\ 0 & \text{if } (i,j) \notin E \end{cases}$$

Non symmetric for directed networks

Sparse graphs

Density of a graph D = |E|/(n(n-1)/2)

V(i)=neighbourhood of i

Paths

$$G=(V,E)$$

Path of length I = ordered collection of

- * I+1 vertices $i_0, i_1, \dots, i_l \in V$
- * Ledges $(i_0, i_1), (i_1, i_2), (i_{l-1}, i_l) \in E$

Cycle/loop = closed path $(i_0=i_1)$ with all other vertices and edges distinct

Paths and connectedness

G=(V,E) is connected if and only if there exists a path connecting any two nodes in G

is connected

- is not connected
- is formed by two components

Trees

A tree is a connected graph without loops/cycles

- * n nodes, n-1 links
- * Maximal loopless graph
- * Minimal connected graph

Paths and connectedness

G=(V,E)=> distribution of components' sizes

Giant component = component whose size scales with the number of vertices n

Existence of a giant component

Macroscopic fraction of the graph is connected

Paths and connectedness: directed graphs

Paths are directed

Giant IN **Component Connected Component**

Giant SCC: Strongly

Giant OUT Component

Disconnected components

Shortest paths

Shortest path between i and j: minimum number of traversed edges

distance I(i,j)=minimum number of edges traversed on a path between i and j

Diameter of the graph= max[l(i,j)] Average shortest path= $\sum_{ij} l(i,j)/(n(n-1)/2)$

Complete graph: I(i,j)=1 for all i,j

"Small-world" → "small" diameter

Graph spectra

Spectrum of a graph: set of eigenvalues of adjacency matrix A

If A is symmetric (undirected graph), n real eigenvalues with real orthogonal eigenvectors

If A is asymmetric, some eigenvalues may be complex

Perron-Frobenius theorem: any graph has (at least) one real eigenvalue μ_n with one non-negative eigenvector, such that $|\mu| \le \mu_n$ for any eigenvalue μ . If the graph is connected, the multiplicity of μ_n is one.

Consequence: on an undirected graph there is only one eigenvector with positive components, the others have mixed-signed components

Graph spectra

Spectral density

$$\rho(\mu) = \frac{1}{n} \sum_{i=1}^{n} \delta(\mu - \mu_i)$$

Continuous function in the limit $n o \infty$

k-th moment of spectral density

$$M_k = \frac{1}{n} \sum_{j=1}^n (\lambda_j)^k = \frac{1}{n} Tr(A^k) = \frac{1}{n} \sum_{i_1, i_2, \dots, i_k} A_{i_1, i_2} A_{i_2, i_3} \cdots A_{i_k, i_1}$$

Wigner's semicircle law

For real symmetric uncorrelated random matrices whose elements have finite moments in the limit $n o\infty$

$$\langle A_{ij} \rangle \equiv 0$$
 and $\langle A_{ij}^2 \rangle = \sigma^2$

$$\rho(\lambda) = \begin{cases} (2\pi\sigma^2)^{-1} \sqrt{4\sigma^2 - \lambda^2} & \text{if } |\lambda| < 2\sigma \\ 0 & \text{otherwise.} \end{cases}$$

Centrality measures

How to quantify the importance of a node?

* Degree=number of neighbours= $\sum_{j} a_{ij}$

For directed graphs: k_{in}, k_{out}

Closeness centrality

$$g_i = 1 / \sum_j I(i,j)$$

Betweenness centrality

for each pair of nodes (I,m) in the graph, there are s^{lm} shortest paths between I and m s_i^{lm} shortest paths going through i

 b_i is the sum of s_i^{lm} / s^{lm} over all pairs (I,m)

Path-based quantity

b_i is large b_i is small

NB: similar quantity= $load l_i = \sum \sigma_i^{lm}$

NB: generalization to edge betweenness centrality

Eigenvector centrality

Basic principle = the importance of a vertex is proportional to the sum of the importances of its neighbors

$$\lambda x_i = \sum_j A_{ij} x_j \quad o \quad \mathbf{A} \mathbf{x} = \lambda \mathbf{x}$$

Solution: eigenvectors of adjacency matrix!

Eigenvector centrality

Not all eigenvectors are good solutions!

Requirement: the values of the centrality measure have to be positive

Because of Perron-Frobenius theorem only the eigenvector with largest eigenvalue (principal eigenvector) is a good solution!

The principal eigenvector can be quickly computed with the power method!

Structure of neighborhoods

Clustering coefficient of a node

$$C(i) = \frac{\text{# of links between 1,2,...n neighbors}}{k(k-1)/2}$$

$$C(i) = \frac{1}{k_i(k_i - 1)} \sum_{j \neq k} a_{ij} a_{jk} a_{ik}$$

Clustering: My friends will know each other with high probability! (typical example: social networks)

Structure of neighborhoods

Average clustering coefficient of a graph

$$C = \sum_{i} C(i)/n$$

Degree distribution

- List of degrees k₁,k₂,...,k_n
- **←**

Not very useful!

- Histogram:
 - n_k= number of nodes with degree k
- Distribution:

P(k)=n_k/n=probability that a randomly chosen node has degree k

Cumulative distribution:

P^{*}(k)=probability that a randomly chosen node has degree at least k

Cumulative degree distribution

$$P(k) \sim k^{-\gamma} \to P^{>}(k) \sim \sum_{k'=k}^{\infty} k'^{-\gamma} \sim k^{-(\gamma-1)}$$

$$P(k) \sim e^{-k/\kappa} \rightarrow P^{>}(k) \sim \sum_{k'=k}^{\infty} e^{-k'/\kappa} \sim e^{-k/\kappa}$$

Conclusion: power laws and exponentials can be easily recognized

Degree distribution

P(k)=n_k/n=probability that a randomly chosen node has degree k

Average=
$$< k > = \sum_{i} k_{i}/n = \sum_{k} k P(k) = 2 | E | /n$$

Sparse graphs: < k > << n

Fluctuations:
$$< k^2 > - < k >^2$$

 $< k^2 > = \sum_i k^2_i / n = \sum_k k^2 P(k)$
 $< k^n > = \sum_k k^n P(k)$

Multipoint degree correlations

P(k): not enough to characterize a network

Large degree nodes tend to connect to large degree nodes Ex: social networks

Large degree nodes tend to connect to small degree nodes Ex: technological networks

Multipoint degree correlations

Measure of correlations:

P(k',k'',...k⁽ⁿ⁾ | k): conditional probability that a node of degree k is connected to nodes of degree k', k'',...

Simplest case:

P(k' | k): conditional probability that a node of degree k is connected to a node of degree k'

Multipoint degree correlations

Practical measure of correlations:

Average degree of nearest neighbors

$$k_{nn,i} = \frac{1}{k_i} \sum_{j \in V(i)} k_j$$

$$k_i=4$$

 $k_{nn,i}=(3+4+4+7)/4=4.5$

Average degree of nearest neighbors

$$k_{nn,i} = \frac{1}{k_i} \sum_{j \in V(i)} k_j$$

Correlation spectrum:

putting together vertices having the same degree

$$k_{nn}(k) = \frac{1}{n_k} \sum_{i/k_i = k} k_{nn,i}$$

class of degree k

$$k_{nn}(k) = \sum_{k'} k' P(k'|k)$$

Statistical characterization

Case of random uncorrelated networks

P(K' | k)

- independent of k
- prob. that an edge points to a vertex of degree k'

number of edges from nodes of degree k' number of edges from nodes of any degree

$$=rac{k'n_{k'}}{\sum_{k''}k''n_{k''}}$$

$$P^{unc}(k'/k) = k'P(k')/< k >$$

proportional to k' itself

$$k_{nn}^{unc}(k) = \frac{\langle k^2 \rangle}{\langle k \rangle}$$

Typical correlations

* Assortative behaviour: growing k_{nn}(k)

Example: social networks

Large sites are connected with large sites

* Disassortative behaviour: decreasing knn(k)

Example: internet

Large sites connected with small sites, hierarchical structure

Correlations: Clustering spectrum

- P(k',k'' | k): cumbersome, difficult to estimate from data
- Average clustering coefficient C=average over nodes with very different characteristics

Clustering spectrum:

putting together nodes which have the same degree

$$C(k) = \frac{1}{n_k} \sum_{i/k_i = k} C(i)$$

class of degree k

(link with hierarchical structures)

Motifs

Motifs: subgraphs occurring more often than on random versions of the graph

Significance of motifs: Z-score!

$$Z_M = \frac{n_M - \langle n_M^{\text{rand}} \rangle}{\sigma_{n_M}^{\text{rand}}}$$

Weighted networks

Real world networks: links

- * carry traffic (transport networks, Internet...)
- * have different intensities (social networks...)

General description: weights

a_{ii}: 0 or 1

w_{ij}: continuous variable

Weights: examples

- Scientific collaborations: number of common papers
- Internet, emails: traffic, number of exchanged emails
- Airports: number of passengers
- Metabolic networks: fluxes
- Financial networks: shares

• . . .

usually w_{ii}=0 symmetric: w_{ij}=w_{ji}

Weighted networks

Weights: on the links

Strength of a vertex:

$$S_i = \sum_{j \in V(i)} W_{ij}$$

- =>Naturally generalizes the degree to weighted networks
- =>Quantifies for example the total traffic at a node

Weighted clustering coefficient I

$$C(i) = \frac{1}{k_i(k_i - 1)} \sum_{j \neq h} a_{ij} a_{jh} a_{ih}$$

$$C^{w}(i) = \frac{1}{s_i(k_i - 1)} \sum_{j \neq h} a_{ij} a_{jh} a_{ih} \frac{w_{ij} + w_{ih}}{2}$$

A. Barrat, M. Barthélemy, R. Pastor-Satorras, A. Vespignani, PNAS 101, 3747 (2004)

$$S_i = 16$$

 $C_i^W = 0.625 > C_i$

$$k_i = 4$$

 $C_i = 0.5$

$$S_i = 8$$

 $C_i^W = 0.25 < C_i$

Weighted clustering coefficient II

$$C(i) = \frac{1}{k_i(k_i - 1)} \sum_{j \neq h} a_{ij} a_{jh} a_{ih}$$

Definition based on subgraph intensity

$$ilde{C}_{i,O} = rac{1}{k_i (k_i - 1)} \sum_{j,k} \left(\hat{w}_{ij} \hat{w}_{ik} \hat{w}_{jk}
ight)^{1/3}$$

$$\hat{w}_{ij} = w_{ij}/max(w)$$

J. Saramäki, M. Kivela, J.-P. Onnela, K. Kaski, J. Kertész, Phys. Rev. E 75, 027105 (2007)

Weighted clustering coefficient

Average clustering coefficient

$$C = \sum_{i} C(i)/n$$

$$C = \sum_{i} C(i)/n$$

$$C^{W} = \sum_{i} C^{W}(i)/n$$

Random(ized) weights: $C = C_w$

C < C_w: more weights on cliques

C > C_w: less weights on cliques

Clustering spectra

$$C(k) = \frac{1}{n_k} \sum_{i/k_i = k} C(i)$$

$$C(k) = \frac{1}{n_k} \sum_{i/k_i = k} C(i) \qquad C^w(k) = \frac{1}{n_k} \sum_{i/k_i = k} C^w(i)$$

$$k_{nn,i} = \frac{1}{k_i} \sum_{j \in V(i)} k_j = \frac{1}{k_i} \sum_j a_{ij} k_j$$

$$k_i = 5; k_{nn,i} = 1.8$$

$$k_{nn,i} = \frac{1}{k_i} \sum_{j \in V(i)} k_j = \frac{1}{k_i} \sum_j a_{ij} k_j$$

$$k_i = 5; k_{nn,i} = 1.8$$

$$k_{nn,i}^w = \frac{1}{s_i} \sum_{j \in V(i)} w_{ij} k_j$$

$$k_i = 5$$
; $s_i = 21$; $k_{nn,i} = 1.8$; $k_{nn,i} = 1.2$: $k_{nn,i} > k_{nn,i} = 1.8$

$$k_{nn,i}^w = \frac{1}{s_i} \sum_{j \in V(i)} w_{ij} k_j$$

$$k_i = 5$$
; $s_i = 9$; $k_{nn,i} = 1.8$; $k_{nn,i} = 3.2$: $k_{nn,i} < k_{nn,i} = 1.8$

Participation ratio

$$Y_2(i) = \sum_{j \in V(i)} \left[\frac{w_{ij}}{s_i} \right]^2$$

 $Y_2(i) = \sum_{j \in V(i)} \left[rac{w_{ij}}{s_i}
ight]^2 \begin{cases} 1/k_i & \text{if all weights equal} \\ \text{close to 1 if few weights dominate} \end{cases}$

Plan of the course

- Networks: definitions, characteristics, basic concepts in graph theory
- II. Real world networks: basic properties. Models I
- III. Models II
- IV. Community structure I
- V. Community structure II
- VI. Dynamic processes in networks