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Introduction

Why is it useful to develop simulators ?

to study nonlinear system dynamics
to optimize operating conditions (simulation + optimization)

to estimate unknown parameters (simulation+ off-line
experimental data + optimization)

to design software sensors (simulation + on-line
experimental data)

to test control structures
to design model-based controllers (e.g. NMPC)
to train operators



Introduction

Many systems from science and engineering are
described by mixed sets of:

Ordinary Differential Equations (ODEs) representing lumped
parameter systems X, =T(X,1)

Partial Differential Equations (PDESs) representing distributed

parameter systems X, =f(X,X,,X,,,...,Z, 1)
Algebraic Equations (AEs) representing constraints on the
system states 0=1f(x,z,1)
or PDAEs



Introduction

Many systems are distributed in time and space:

time-varying temperature profiles in a heat exchanger

time-varying temperature and concentration profiles in a tubular reactor,
time-varying car density along a highway,

time-varying deflection profile of a beam subject to external forces,
time-varying shape and velocity of a water wave,

or other independent variable such as “age” or “size” in

population models (crystallization, polymerization, grinding,
etc.)
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Simulation environments

There are two main classes of simulation environments:

Graphical environments (block-oriented):

= Simulink (Matlab)
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Simulation environments

Graphical environments are easy-to-use, user-friendly, visual
and intuitive, but get cumbersome when handling complex
systems

Programming environments are more complex (when using
low-level languages), but provides more efficient codes

Graphical environments and high-level programming
environments provide many useful algorithms, which
however appear often as “black-boxes”

= |n early developments, these algorithms were sometimes “outdated”,
whereas more powerful algorithms were available in public-domain
libraries

= Black-box algorithms can be very powerful when used in an informed way
(i.e. making them less black-box ...)



Simulation environments

Simulation environments can include:

Mathematical libraries:

= Matrix algebra (Blas, LINPACK, LAPACK, etc)

= ODE/DAE solvers (ODEPACK, DASSL, VODE, etc.)
= Optimization algorithms, etc.

Symbolic Manipulation

= Preprocessing tools for generating equations, or even a
programming code (based on MAPLE, Mathematica, etc.)

Dedicated environment

= SBT2: Systems Biology Toolbox (Matlab) provides a dedicated
environment for the analysis of biological models
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A brief view of ODE Integration

A ODE system:
Xy = t(ﬁi t) X(to) = Xp

Time discretization and integration

X

2+l

tia
=X+ | f(x Dt
{i

the numerical integration is performed by quadrature,

for example
t

[ £0x 00t =F(x,,t)A

t;



A brief view of ODE Integration

which leads to the explicit Euler method:
Xig =X +T(X;, ;) At
Two central considerations:
e Accuracy — error estimation and time-step control
o Stability — time step limitation
The explicit Euler method has a limited stability region

LAY < 2



A brief view of ODE Integration

A more advanced method is the 4™-order Runge-Kutta
scheme

where the several stages are computed as follows:

439 845
K,=f(x;,t.) - Kki=f(X;+(—=Kk,+...4+4——Kk,),t. + At
=T 1) s =T (216 ' 4104 ) )

« Accuracy — error estimation by comparison with a 5t-
order formula

» Stability — not much better  |LAt| < 2.785



A brief view of ODE Integration

Stiffness ?

The smallest eigenvalue A, determines the problem
time scale

The largest eigenvalue A ., determines the maximum
time step size At .,

A A | < 2 Euler
Ao At | <2785  RKF4S A
Stiff problems are characterized by |~ 1000

Explicit methods are computationally inefficient for stiff
problems due to their limited stability regions



A brief view of ODE Integration

Implicit methods (a simple example: implicit Euler)
1:i+

f(x,t)dt =F(X..,,t. )AL

i+17

L
‘ Xig = X; +1(Xi,1, tisg)
Unconditionally stable !
More complicated to implement (Newton’s iteration)
Less efficient on non-stiff problems
More advanced methods: implicit RK methods
Backward dlfferentlatlon formulas (BDF)

_|+1 Zak I— k+B0f(X|+1’ |+1)At
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A brief view of ODE Integration

A ODE system:
Xy = i(li t) X(to) = Xp

Jacobian matrix
J=|of 1ox; | =3(x1)

The spectrum of eigenvalues of J is determinant for
stability considerations

The structure of J (full or dense, banded, sparse), is
determinant for the computational efficiency



A brief view of ODE Integration

Avalilable ODE/DAE solvers:

ODEPACK

DASSL

VODE

MATLAB ODE suite
SUNDIALS

Etc...



The Method Of Lines (MOL)

A two-step procedure:
1. spatial derivatives are first approximated

2. the resulting system of semi-discrete (discrete In
space — continuous in time) equations is integrated in
time using available ODE solvers

The popularity of the MOL arises from the large
collection of readily available ODE solvers



MOL

Xt :f(t!Z’X’Xz’Xzz)
0=Db(t,z=0,X,X,)

0=Db(t,z=L,x,X,)

X(t5,2) = X0 (2)

l Spatial discretization

PDE problem

0= D(t, %) DAE problem

Xt — f(LX)

X(to) — Xo



Finite Differences

Finite difference approximations can be obtained
from Taylor series expansions A7 7

|
[
Zi—1 Z; Zin

OX _ X(Z;,1) —X(Z,4) + O(AZZ)

Ezi 2AZ

ox| —-3X(z,) +4x(z,) —x(z,) +O(AZ?)
oz|, 2AZ

% _ 3X(ZN)_4X(ZN—1)+X(ZN_2) +O(AZZ)
oz|, 2AZ
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Finite differences
These formulas can be summarized in a compact way

using differentiation matrices (easy to implement in
Matlab) @ 0 ol %,

-1 0 1 O 0 %,
. | ;
X,=DX=—— 0 ..(-1 0 1) .. 0| X

2AZ
0 0 -1 0 1%
0 0 1 -4 3| %, |

(e.g., three-point centered FDs)




Differentiation matrices

Differentiation matrices: a simple and powerful
tool within MATLAB
Direct differentiation: X,=D;X X,=D,X
Stagewise differentiation: X, =D, X,=DX,

X,,,, = D;(D;(D, (D, X)))

—7777



MATMOL: a Matlab MOL Library

Code template (matrix/vector form)




MATMOL: a Matlab MOL Library

-
Available Methods:
n
L] - L]
Finite differences MatMOL
E@e=
= Main Menu
= Many physical and chemical processes are distributed parameter systems, i.e.,
: systems in which state variables depend on several independent variables (such as
= = » Acknowledgements AR E!
F I I I I te e e I I l e I ltS » Comments . . The method of lines (MOL) is probably the most widely used approach to the solution of
i il 1 evolutionary PDEs, and the objective of this web site is to report on the development of

» Contact ‘a3 MATLAB based MOL toolbox.

time and space), and which are described by sets of nonlinear partial differential
» Home A

Ay Y ',\"\\', I\l, equations (PDEs).

v Download

- L]
m » Links Basically, the MOL proceeds in two separate steps:
O p e I I e rS Logi = approximation of the spatial operators, using finite difference, finite element, finite volume methods
e e + time integration of the resulting semi-discrete (discrete in space and continuous in time) equations using a ODE

» References or DAE solver.

- - - » Terms and conditions
MATMOL contains a set of linear spatial approximation techniques, eg finite
A apt I Ve g rI I n g difference methods, implemented using the concept of differentiation matrices, as *
well as a set of nonlinear spatial approximations, e.g. flux limiters. 5N

In addition, several time integrators, including basic explicit methods and some
advanced linearly implicit methods, are included.

- - - W
I’ r I The underlying philosophy of these developments is to provide the user with a variety T T
Statl C a-n d dy n a- I C) of easily understood methods, and a collection of application examples that can be ‘“Mm]lmmmmmm‘”

used as MATLAB templates for the rapid prototyping of new dynamic simulation
codes.

Operator splitting P UMONS
www.matmaol.org



A catalytic fixed-bed reactor
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A catalytic fixed-bed reactor

%... temporal derivatives
%...
cB1t = -v*cB1z + DB*cB1zz;
cT1lt=-v*cT1lz + DT*cT1zz,
T1t = -((eps*v*rhog*cpg)/rhocp)*T1z + (leff/rhocp)*T1zz + 2*alpha*(Tw - T1)/(Rr*rhocp);

%...
CThoc'rTieps; >

C_Hhocpythoce; >

>

%...
cB3t = -v*cB3z + DB*cB3zz;
CcT3t=-v*cT3z + DT*cT3zz;
T3t = -((eps*v*rhog*cpg)/rhocp)*T3z + (leff/rhocp)*T3zz + 2*alpha*(Tw - T3)/(Rr*rhocp);



A catalytic fixed-bed reactor

Algebraic BCs

%... %...
%... boundary conditions at z = z01 %... boundary conditions at z = zL2 = z03
cB1t(1) = - (cB1(1)-cBin);
cT1t(1) = - (cT1(1)-cTin);
T1t(1) = - (T1(1)-Tin);
%... %...
%... boundary conditions at z = zL1 = z02 cB3t(1) = cB2(n2) - cB3(1);
cT3t(1) = cT2(n2) - cT3(1);
, T3t(1) = T2(n2) - T3(1);
%...

%... %... boundary conditions at z = zL
cB2t(1) = cB1(nl) - cB2(1); cB3t(n3) = - cB3z(n3);
cT2t(1) = cT1(nl) - cT2(1); cT3t(n3) = - cT3z(n3);

T2t(1) = T1(nl) - T2(2); T3t(n3) = - T3z(n3);



A catalytic fixed-bed reactor

Temperature profiles inside the reactor
180
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A catalytic fixed-bed reactor

Temperature profiles inside the reactor
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A catalytic fixed-bed reactor

Catalyst activity

5-point biased-
upwind FDs for ag L
first derivatives

N1 =71 Rl
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N3 =21 04k
02F
1l
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Weighted residual methods

Weighted residual methods use (usually orthonormal)
basis functions to represent the solution:

X(t.2)~ Y2, (00,2

The weighting coefficients are found by solving
residual equations, i.e., the PDE residuals are made
orthogonal to some (also orthonormal) test functions

R(t,z) =X, (t,z)-f(X,X,,X,,,2Z,1)

jR(t,z)ni(z)dz:o i=1--- N

29
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Weighted residual methods

If the basis functions are global (i.e. cover the whole
spatial domain), the methods are usually called
spectral methods

If the basis functions are local (i.e. have a compact
support, e.g. hat functions), the methods are called
finite element methods P, Dy P

\ \

a o _ O, @3 @5 _
he finite difference method can be considered as a

particular case of finite element method where the
pasis functions are rectangular pulses

Université de Mons
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Weighted residual methods

Depending on the choice of the test functions, several
particular methods arise:

e N(2)=0(z) i=1---,N :Galerkin method
* 1n,(z)=38(z-z) i=1---,N : Collocation method

The rate of convergence of the collocation method can
be accelerated by considering  nonuniform
distributions, in which more grid points are clustered
near the boundaries

31

Université de Mons



Weighted residual methods

Three main types of basis functions are considered:

 The eigenfunctions of the corresponding linearized,
homogeneous, IBVP, when these functions exist and
can be computed

« "Empirical” basis functions (Karhuenen-Loeve or proper
orthogonal decomposition — construction of solution
« shapshots » and solution of an eigenvalue problem )

e Polynomials (As stated in Welertrass theorem, any
continuous function can be represented in terms of
polynomials)

32
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Application example (1)

very compact differentiation matrices, e.g. using
spectral collocation

2
o 62 K

p(0,t) =p(L,1)=0



Application example (1)
p(0,t) =p(L,t)=0

0.08

0.06

)

20.04

0.02
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Application example (2)

... and larger ones on more challenging problems,

e.g. an extended equal-width wave equation
[Hamdi, Enright, Schiesser, Gottlieb, 2003

u +auu, —pu,_ =0

Zzt

and an extended equal-width-Burgers equation

u +au’u,-dou,—pu_ =0

Zzt



Application Example (2)

u +2u’u,—4u_ =0

120

100

0.8
1;'?0.6
=04

02
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Application Example (2)

u +2u’u,—4u_ =0
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Application example (2)

u +2u’u,—4u_ =0

Invariants of Motion

Mass 1
Ilzjudz
Energy
|, :j(u2 +uu,u,)dz
« Whitham »

|4:ju4dz :

10~

N

2

0 20 40 60 80 100
t

(c1=0.6-c2=0.1-spectral collocation — 100 nodes)
| Université de Mons  EEEEEEEEEEEEEEEEEEEE



Application example (2)

u +2u’u,—-0.5u, +4u_ =

VA zzt

100

B
e
e
R
ks
i

it

i )
L,
L
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Application example (2)

function xt = f(t,x)
%...
%... set global variables
global a p mu c;
global zO zL z n D1;

%...
%... spatial derivatives
%...

Xz = D1*x;
%...
%... temporal derivatives
%...

Xt = -a*(X."\p).*xz;
%...

function M = mass(t,x)
%...

%... set global variables
global a p mu c;
global zO zL z n D1;
%...
%... Assemble mass matrix
M = diag(ones(n,1),0)-mu*D1*D1;



Application example (3)

2 —_—
Lo _ Lo, D, ‘ Czb e, 3K (C, —Cpr.)
ot 0z 0z e, R, P
oC oC 1 o oc

el Ve p(Rﬁ, ar( arpn

. ac
C, =—+ P

1+ ) b.Cc.
Z:‘ P [Lazo,1999]



Application example (3)

Finite element in the bulk phase
(Galerkin method — second-order
elements)

Orthogonal collocation in the particles
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Nonlinear discretization schemes

Of course, other approximation technigues do not cast into

the differentiation matrix format, e.g. nonoscillatory schemes
such as slope/flux limiters, which are nonlinear

ox(t,z)  of (x(t,2)) R
ot 0z ok g
ri:{(l_)’zi:l \él ++/ea+” 77777777
Xin — X : 0" "
f(X) =1, (%) +o(r) (T, (%) =1, (X))



Application example

Burgers equation

Ut = _(O.5U2)Z +“UZZ

Illl"'////////"”l

0.4
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Static grid adaptation
Grid Refinement: AGEREG

equidistribution of a given monitor function subject
to constraints on the grid regularity
m;_,(X) Az, =m;(X) Az, =C
1 Az

<—1 <K
K Az,

An example: Korteweg-de-Vries equation
u,+6uu,+u,, =0

Finite differences and stagewise differentiation

Very small absolute tolerance on ODE15s
Université de Mons



Application example

Korteweg-de Yries agquation

n2sf
2}
N Oast
=X
041}

005 +

T e
Average number of nodes =154
_ Université de Mons BRI



Dynamic grid adaptation

Grid Movement: a basic version of MOVGRD
[Blom & Zegeling, 1994]

X, =f(X,X,,X,,,Z,1)  wmp X—X,2=1(X,X,,X,,,2,1)

V17212277 —77Z

Spatial smoothing
n,=1/Az, =1/(z,,, - z;)

n.=n. —«x(x+1)(n._,—-2n.+n._,)

1+1

Temporal smoothmg
A, +th. _N + T,

M

-1 i




Dynamic grid adaptation

Finite difference approximations
X—Dz=f
tBz=¢g

Time integration of the resulting DAEs with odel5s

A simple example: flame propagation
8p__8ﬁ)_
ot oz°
oT  o°T
ot 0z°

rp, p(z,00=1  r=352x10%e*"

trp,  T(z,00=02, T(Lt)=F(t)



Application example

Flame propagation
121 .
"| .............................
0.8+ .
OB}
=
0.4 F o
Bl
|:|_ el
= | 1 1 1 1 | 1 1 |
01009 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
5_
|:| P S R S G N SR W S S SR W [ T e ' S R i R S S e
0 0.1 0.z BlE 0.4 0.5 0.6 0.7

(31 moving nodes)
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Conclusions

Computational modeling is increasingly used in science (and
noteworthy, in emerging fields such as biology or human
physiology) and engineering

e commercial software packages

e public—domain libraries

e equation-oriented or block-oriented environments
* numerical algorithms and symbolic manipulations

»a vast array of readily available methods
»a gap between research and current practice



