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A biological process is...
• The development (= growth) 
  of micro-organisms (= biomass)

• By the consumption of a nutrient (= substrate)

• Under favourable environmental conditions : temperature,
pH, stirring, aeration,...

Objectives :
1. Biomass production (e.g. baker’s yeast)
2. Product synthesis (e.g. ethanol, biodegradable polymer,

antibiotics, methane,...)
3. Waste-water treatment



R&D in biotechnology is aimed
at improving productivity
3 approaches :

1. Microbiological/biochemical approach
- selection of micro-organisms, nutrients,...
- genetic modifications

2. Process engineering approach
- operating modes/conditions
- efficient techniques/processes

3. Process control/system theory approach
productivity maximisation via an on-line optimizing
operation of the bioprocess
(on the basis of a dynamical model of the process)



There are two main obstacles
for controlling bioprocesses

1. Modelling difficulties
- How to account for the numerous factors that influence 

the biochemical reactions (including the growth)?
- Nonlinear and non stationary models

2. Measuring difficulties
- Absence of cheap and reliable sensors for the key

process variables



Outline
• Introduction
• Bioprocess models and model properties
• Parameter identification (including optimal

experiment design)
• State estimation
• Some typical bioprocesses
• Numerical simulation and PDE’s
• Control

- optimal & adaptive extremum seeking control
- specific issues in bioprocesses



Bioprocess models

• The basic mathematical model
• The general dynamical model
• The reaction rates
• Extensions

- link with metabolic engineering
- population balance
- microbial ecology

• Model properties



The basic mathematical model

• Autocatalytic reaction : S --> X
• Operating modes :

- batch : Fin = Fout = 0
- fed-batch : Fin ≠ 0, Fout = 0
- continuous : Fin = Fout, V constant



Notion of mass balance

Component A (substrate, product, biomass)
---> dynamical mass balance :

time variation          mass inflow     mass outflow     mass of A  
 of the mass      =      of A into     -   of A from       -  produced/
       of A the reactor       the reactor       consumed

     via reactions



Recall that :

Therefore :



• batch : Fin = Fout = 0 --> V constant and

--> 

• fed-batch : Fout = 0 and

-->

• continuous : Fin = Fout ≠ 0 and V constant 

-->



• Biomass growth :

• Substrate consumption :

• growth rate : µX
with µ : specific growth rate

• yield coefficient : k1

• dilution rate : 



The dynamics of other components

• Liquid product (growth associated)

  P : liquid product concentration

• Gaseous product

Q : gaseous product mass flowrate



• Aerobic cultures ---> (dissolved) oxygen

C : dissolved oxygen concentration
QO2,in, QO2,out : gaseous oxygen inlet and outlet 

flowrates

  If the gas-liquid transfer is limiting : 

kLa : gas-liquid transfer coefficient
Cs : oxygen saturation concentration



The general dynamical model

x  : vector of the concentrations 
K : matrix of the stiochiometric coefficients 
r(x) : vector of the reaction rates
F : vector of feeding rates
Q : vector of the produced gas flow rates

conversion transport dynamics



Example #1 : simple microbial growth
S ---> X r = µX

General dynamical model



Example #2 : two parallel reactions
Autocatalytic reaction : S ---> X r1 = µX
Catalytic reaction : S + X ---> X + P r2 = νX
 (P in gaseous form)

Dynamical model :



Matrix form of the dynamical model :

 x        K    r         F    Q

Matrix K :
Column #1 = growth reaction
Column #2 = enzyme catalyzed reaction

+ standardisation of the yield coefficients



Example #3 : intracellular production of PHB

PHB = Poly-β-hydroxybutyric acid (biodegradable polymer)

Aerobic culture of Alcaligenes eutrophus in fedbatch reactor

• 2 limiting substrates :
  Source of carbone (fructose, glucose, ...)
  Source of nitrogen (NH+

4)

• Intracellular production : 2 metabolic pathways :
  1) associated to the growth (low yield)
  2) X catalysed by an enzyme (completely inhibited by N)

• Bioreactor operation : 2 steps :
  1) growth “without” production →  fed with both 2 substrates
  2) production without growth →  fed only with carbon



Dynamical model (mass balance)

Step #1 : growth “without” production

biomass

carbon source

nitrogen

PHB

oxygen

with 
Sin, Nin : inlet concentration of S and N
Qin : gaseous oxygen flowrate



Dynamical model (mass balance)(continued)

Step #2 : production without growth

biomass

carbon source

nitrogen

PHB

oxygen

with ν : specific production rate



PHB model : matrix form
Step #1

Step #2



Example #4 : anaerobic digestion
(sequential reactions)

• Wastewater treatment with CH4 production

• Complex process →    simplified reaction scheme

1) acidogenesis :  S1 →   X1 + S2 + P1

           organic   acidogenic CO2
           matter      bacteria

2) methanisation : S2 →   X2 + P1 + P2

      fatty methanogenic  CH4
  volatile     bacteria
     acids



Dynamical model (mass balance)

acidogenesis

methanisation

   CO2



Anaerobic digestion model : matrix form



The reaction rates
The specific growth rate may depend on

• the substrate concentration S
• the biomass concentration X
• the product concentration P
• the temperature T
• the pH pH
• the dissolved oxygen concentration C
• inhibitors’ concentration I
• the light intensity L
• genetic modifications, ...



• Reaction rates : (nonlinear) functions of the process variables

  A simple example : Monod microbial growth model

• But :
   - Choice of an appropriate model 

(more than 60 models for µ!)

   - Calibration of the model parameters on the basis of the
available experimental data
(identifiability issues)



µ depends on S, X, T, pH, …
µ depends on S µ depends on S

µ depends on P µ depends on T



Example : yeast growth

• 7 parameters : µ1,max, µ2,max, KS , KP , KC , K1 , K2

• If S = 0, C = K2/K1, P ≠ 0 , X ≠ 0, D = 0 :

physically absurd !
      (S < 0 !)



The models of biosystems are often not
identifiable

7 (± 12)0.3 (± 0.2)25

12.90.718.2

6.81.011.6

1.81.17

KSµmaxS(0)

Example : Monod model



Example : plant growth

Main reactions : photosynthesis, (photo)respiration



How to better account for the cell
complexity and its interactions
with the medium?

• Metabolic engineering (and “system biology”)

• Population balance

• Microbial ecology



Link betwen reaction networks and
metabolic engineering

• Metabolic engineering : complex reaction networks
including the cell metabolism 

• Challenge : can we validate metabolic pathways on the basis
of a limited number of measured components while
preserving the orientation (sign) of the reactions?

• Solution : convex basis

• One (simple) example : animal cells (CHO)

• One challenge : link between the wine quality and the reaction 
   network of the production of organoleptic components
   (European project CAFE)
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Reaction  scheme of the CHO cells

• Metabolism : utilization of 2 main energetic nutrients
(metabolism of the amino-acids provided by the culture
 medium : neglected)

• 2 initial substrates : glucose and glutamine
• 4 final extracellular products : lactate, alanine, NH4, CO2
• 2 final intracellular metabolites : 

purine and pyrimidine nucleotides
• 12 internal metabolites

• 4 fundamental pathways : glycolysis, glutaminolysis, TCA cycle,
 synthesis of the nucleotides



Metabolic flux analysis

• QSS approximation : Kr = 0 (dim(r) = 18)
• reaction rates of the extracellular species (measured) : Pr = rm 

• Convex bases (--> values of positive fluxes) :
here : 7

---> 7 macroscopic reactions :
1) Glucose ---> 2 Lactate
2) Glucose ---> 6 CO2
3) Glutamine ---> Alanine + 2 CO2 + NH4
4) Glutamine ---> Lactate + 2 CO2 + NH4
5) Glutamine ---> 5 CO2 + 2 NH4
6) Glucose + 3 Glutamine ---> Purine + 2 CO2 + NH4
7) Glucose + 2 Glutamine ---> Pyrimidine + 2 CO2 + NH4
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Flux mode #1
• 1st vector of the convex basis : e1 = [1 1 0 1 2 2 0 …. 0]T

• In other words :
v1 : Glucose ---> Glucose6P
v2 : Glucose6P ---> DihydroxyacetoneP + Glyceraldehyde3P
v4 : DihydroxyacetoneP ---> Glyceraldehyde3P
v5 : Glyceraldehyde3P ---> 2 Pyruvate
v6 : 2 Pyruvate ---> 2 Lactate

• Associated macroscopic reaction : 
Glucose ---> 2 Lactate



A more complex application : wine
production

Challenge : how to transfer in simple models the synthesis
of the indicators of the wine quality (amino-acids, 
sulfur compounds,...)



--> Age distribution of the micro-organisms

Example : yeast

Budding (mother - daughter)

Population balance



• N(m,t) : number of cells of mass m at time t per unit volume 
(cell density)

• Total number :

• Total concentration :

• Balance equation : 
growth rate    rate of cellular division



Microbial ecology

• Coexistence/competition are not just limited to ecology…
• The knowledge of the dynamical mechanisms of
   coexistence/competition of microbial species can be
   helpful for improving the running of industrial biological
   processes, e.g. :
    - Invasion of a culture by a contaminant
      (Can we avoid systematic re-inoculation?)
   - Mixed cultures, e.g. :

* Lactic fermentation (L. bulgaricus vs S. thermophilus)
* Anaerobic digestion (thermophilic vs mesophilic

bacteria)

Issues and challenges



Competitive exclusion principle

Consider a continuous reactor
(« chemostat ») 
with 2 species X1 and X2 
sharing only one resource  S :
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• At equilibrium :
(only valid for specific values of D)

• In general, only one species «will win the competition and will
survive» : --> growth curve that first intersects D
(«best affinity» or «lowest break-even concentration»)

• Here :

  (Hardin, 1960; Butler 
   & Wolkowicz, 1985)

(Extension to n species and other growth curves)
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Competitive exclusion principle :
experimental validation

S. R. Hansen  S. P. Hubell, Single nutrient microbial competition, Science, 207(28), 1980, pp. 1491-1493

XA1 : E. coli (1)
XA2 : E. coli (2)
XB : P. aeroginosa

XA
1

XA
1

XA2

XA1

XB



The coexistence of different species is
often observed

Schmidt, J. K., B. König et U. Reichl Characterization of a three bacteria mixed culture in a chemostat: Evaluation andapplication of a quantitative Terminal-Restriction Fragment Polymorphism (T-RFLP) analysis for absolute and species specificcell enumeration. Biotechnology and Bioengineering.

experimental 
evidence :

X1
X2
X3

X1X2

X3



Dynamical persistence



Model Properties

• Basic structural property
        reaction invariant

• Model reduction 
        singular perturbations

• Stability
        BIBS stability
        unstable equilibrium points

• Observability & Controllability

• Non minimum phase (inverse response)



Basic Structural Property

Definition : p = rank(K)

         Ka : a (pxM) full rank arbitrary matrix of K
         Kb : the remaining submatrix of K
         (xa,xb), (Qa, Qb) and (Fa, Fb) the partitions of x, Q and F

induced by (Ka, Kb)

{



Property

There exists a state transformation :

Z = A0 xa + xb

where A0 is the unique solution of the matrix equation :

A0Ka + Kb = 0            dim(A0) = (N-p)xp

such that the general dynamical model is equivalent to :

Remark : dynamics of Z independent of r



Example : PHB
• «Global» model with CO2 (P2) as a product in both reactions

• One possible state partition





Usually any partition is OK, but ...

Usually
  • dim(K) = M

(OK if the reactions are independent)

  • the process components are “independent”

     any choice of state partition is OK

  • but not always : e.g. PHB (RQ = 1  
--> C and P2 are dependent))

                                     IWA model (activated sludge model)



IWA model (reaction network)

1. Aerobic growth of heterotrophs :    SS + SO + SNH        XB,H

2. Anoxic growth of heterotrophs :     SS + SNO + SNH        XB,H

3. Aerobic growth of autotrophs :      SO + SNH        XB,A + SNO

4. Decay of heterotrophs :      XB,H          XP+ XS + XND

5. Decay of autotrophs :      XB,A          XP + XS + XND
6. Ammonification of soluble 
         organic nitrogen :      SND         SNH

7. Hydrolysis of entrapped organics : XS         SS 
8. Hydrolysis of entrapped 
         organic nitrogen :       XND         SND



There is a loop in the reaction network

• 8 reactions, 10 components

• Loop with reactions 1, 4 and 7

           if xa = [Ss, Xs, XB,H, XB,A, XP, S0, SNO, SNH]T

   
               then Ka is not full rank

• OK if SND or XND are included in xa

homework : check it!



IWA model (reaction network)

1. Aerobic growth of heterotrophs :    SS + SO + SNH        XB,H

2. Anoxic growth of heterotrophs :     SS + SNO + SNH        XB,H

3. Aerobic growth of autotrophs :      SO + SNH        XB,A + SNO

4. Decay of heterotrophs :      XB,H          XP+ XS + XND

5. Decay of autotrophs :      XB,A          XP + XS + XND
6. Ammonification of soluble 
         organic nitrogen :      SND         SNH

7. Hydrolysis of entrapped organics : XS         SS 
8. Hydrolysis of entrapped 
         organic nitrogen :       XND         SND



Model Reduction

• Singular perturbation : ODE -->  algebraic equation

• Low solubility product P : 

P = ΠPsat

Psat --> 0 ⇒ Q = kr



Substrates in fast reactions (only)

Example : two sequential reactions : A       B, B      C

Kinetics : r1 = γ1 A α1(A,B), r2 = γ2 B α2(B,C),          γ1 , γ2 > 0

Assumption :  reaction 2 fast and reaction 1 slow, i.e. γ1 << γ2 

Define :               and

  ε        0 : B        0



General rule for model reduction

• 

• Quasi-steady state (QSS) approximation



Stability Analysis
1. BIBS stability

• BIBS : bounded input bounded state
• Motivation : - is the model in accordance with the physical 

reality?
                       - under which conditions?

• Assumptions : 
  A1. 0 < Dmin ≤ D(t)
  A2. 0 ≤ Fi(t) ≤ Fmax
  A3. Principle of Mass Conservation : 
         ∃ γ > 0 such that γTKj =  0, for all j      (Kj : jth column of K)

• Theorem : 0 ≤ x(t) ≤ xmax



Rewriting of the Model Equations

• Reaction rates :     

   

   Example : growth rate µX with a Monod model

• Gaseous outflow rates : Qi = βixi ,  0 ≤ βi ,  0 ≤ xi ≤ xis

• Feed rates (liquid phase) : Fi = DSi,in

reactants and autocatalyst 
in reaction j



Proof :

a) xi(t) ≥ 0

b) xi(t) ≤ xmax 

Remarks : • if Fi = DSi,in (liquid substrates) : z ≤ γTSin

                   • alternative (more complex) proofs

Define z = γTx

Then :



Example : PHB

--> one possible choice for γ :



2. Asymptotic Stability

Equilibrium points 

• Definition : constant state such that : 

              these are solutions of the algebraic equation :

• Specificity of (bio)chemical process models : multiple 
steady-state :

One value of                  multiple values for



A simple example
• S         X
• Dynamical equations in steady state : 

• From (2), 2 possible solutions (equilibrium points) :

• The explicit solution of 1) requires a model for µ

(1)

(2)

(Wash-out)
(the only possible if                    )

1)
2)



• Monod model :

• Haldane model (inhibition) :

   2 possible solutions to 1) (i.e. 3 equilibrium points) :

   1)

   2) 

Equilibrium point 1) : 





Stability of the equilibrium points

• Linearized tangent model (around equilibrium points) :

   with 

  

• Lyapunov’s stability first method : eigenvalues of A (λi(A)) :
   
  If Re(λi(A)) < 0 for all i, then the equilibrium point is stable



Example : Haldane model

Eigenvalues of A : Det(λI - A) = λ2 +λ(k1Ω + D) + k1ΩD = 0
                  
                 --->  λ1= -D, λ2 = -k1Ω
                  
                 ---> stable if

unstable if

with



Observability and Controllability
• Based on the linearized tangent model (sufficient conditions)

• Observability :  p measured components
     O = observability matrix

   --> rank(O) ≤ min{N, p+M}

• Controllability : q control inputs 
                              C = controllability matrix
   --> rank(C) ≤ min{N, q+M}       (if only feedrates F)
   --> rank(C) increased by one with D as an additional input
           except at equilibrium points



Non Minimum Phase (Inverse Response)
• NMP = « unstable » zeros
• Time response : first in a direction inverse to the final response

• Already for reaction networks with two sequential reactions.
e.g. : S1 --> X1 + S2

S2 --> X2

---> transfer function of the linearized tangent model
between D and S2 :



Laplace Transform

Example : reactant in a first-order reaction

Laplace transform with respect to t :



• Solution : 

delay !steady-state

• CSTR : steady-state : 

Plug flow reactor ≈ CSTR + time delay





Challenges

• Complex reaction network
• Living organisms : their behaviour changes with time
• Kinetics badly known (mixture of complex biochemical

kinetics and (auto-)catalytic reactions (multi-phase)
-> Complex high order nonlinear models

• Few available (on-line and off-line) measurements
-> Difficult to obtain reliable models 




