Parallel generation of pseudo-random sequences

Who? 1100001010100110001001100100111010010110110001100000 0100001100101000011010101110010011101000011000100110 $111101101010111000011110 \cdots=$
$-\frac{(\text { Cedric Lauradoux })_{10}}{1993524591318275015328041611344215036460140087963}$

When? $14 / 10 / 2008$ (simply today)

Applications of sequences

Outline

- Is it interesting to study shift register theory ?
- History of the parallel generation of m-sequences
- m-sequences
- Decimation
- Shift register transformations
- The windmill generator
- The extended windmill generator
- PFB transformation and windmill generator
- NLFSRs
- Wind to water: the case of ℓ-sequences
- ℓ-sequences
- the watermill
- Conclusions

Introduction

Is it interesting to study shift register theory ?
Sequences the backbone of symmetric cryptography: more precisely Non-Linear Feedback Shift Registers.

Problems:

- Period
- alphabet
- speed

Introduction

Is it interesting to study shift register theory?

Remenbering some discussion:
[Student] How to choose the parameters for a PRNG ?
[Advisor] Well, there exist security parameters like a proven period, the size or the number of taps in the feedback. . .
[Student] Okay, but there is still many candidates that meet the criteria. So what is the next step ?
[Advisor] Do you know how to roll a dice ?

History of the parallel generation of m-sequences m-sequences ?

Example

- $\frac{1+x}{1+x+x^{2}}=11011011011 \cdots$
- $\frac{1+x+x^{2}}{1+x+x^{4}}=01111010110 \cdots$
- $\frac{1+x+x^{2}+x^{3}+x^{4}+x^{5}+x^{6}+x^{7}+x^{8}}{1+x^{6}+x^{6}}=11111111000000110000 \cdots$

If we have $a(x)=\sum_{i=0}^{\infty} a_{i} X^{i}=\frac{p(x)}{q^{*}(x)}$:

$$
a_{i}=\operatorname{Tr}\left(p(x) \alpha^{i}\right) .
$$

History of the parallel generation of m-sequences

Definitions

Theorem Let $S=\left(s_{i}\right)$ an infinite sequence. S is periodic iff $\exists p$ and $q, q^{\star}(0) \neq 0, \operatorname{deg}(p) \leq \operatorname{deg}\left(q^{\star}\right)$ such that $s(x)=p(x) / q^{\star}(x)$.

Theorem If p and q^{\star} are relatively prime, the period T of $s(X)=p(x) / q^{\star}(x)$ is the order of $q(x)$.

Result If $q^{\star}(x)$ is primitive, i.e. irreductible and $\operatorname{ord}(q(x))=2^{m}-1$, then $T=2^{m}-1$ with $m=\operatorname{deg}\left(q^{\star}(x)\right)$.

Comment
$q^{\star}(x)$ is the characteristic polynomial of S defined as the reciprocical of the connection/feedback polynomial $q(x)$:

$$
q^{\star}(x)=x^{n} q\left(\frac{1}{x}\right)
$$

History of the parallel generation of m-sequences
Linear Feedback Shift Registers (LFSRs)

Fibonacci setup

Galois setup

History of the parallel generation of m-sequences

The stream ciphers of our grandfathers

The filter generator

The shrinking generator

The summation generator

The combiner generator

The self shrinking generator

The Multispeed inner product generator

History of the parallel generation of m-sequences
Decimation

Let S be an infinite sequence over an alphabet \mathcal{A} :

$$
S=s_{0}, s_{1}, s_{2} \cdots
$$

For an integer v, a v-decimation of S is the set of sub-sequences defined by:

$$
\begin{array}{ccc}
S_{v}^{0} & = & \left(s_{0}, s_{v}, \cdots\right) \\
S_{v}^{1} & = & \left(s_{1}, s_{1+v}, \cdots\right) \\
\vdots & \vdots & \vdots \\
S_{v}^{v-2} & = & \left(s_{v-2}, s_{2 v-2}, \cdots\right) \\
S_{v}^{v-1} & = & \left(s_{v-1}, s_{2 v-1}, \cdots\right) .
\end{array}
$$

History of the parallel generation of m-sequences
4 solutions

- Strict decimation
- Parallel feedforward transformation (PFF)
- Parallel feedback transformation (PFB)
- Windmill generator

History of the parallel generation of m-sequences

Strict decimation

[Zierler1959,Rueppel1986]. Let S be a sequence produced by an LFSR whose feedback polynomial $q(x)$ is irreducible in \mathbf{F}_{2} of degree n. Let α be a root of $q(x)$ and let T be the period of $q(x)$. Let S_{v}^{i} be a sub-sequence resulting from the v-decimation of S. Then, S_{v}^{i} can be generated by an LFSR with the following properties:
The minimum polynomial of α^{v} in $\mathbf{F}_{2^{m}}$ is the connection polynomial $q^{\prime}(x)$ of the resulting LFSR.
The period T^{\prime} of $q^{\prime}(x)$ is equal to $\frac{T}{\operatorname{gcd}(v, T)}$.
■
The degree n^{\prime} of $q^{\prime}(x)$ is equal to the multiplicative order of $q(x)$ in $\mathbf{Z}_{T^{\prime}}$.

History of the parallel generation of m-sequences

PFB transformation

Notation

	Memory cell	Content
One register	m_{i}	$\left(m_{i}\right)_{t}$
Many registers	m_{i}^{k} of R_{k}	$\left(m_{i}^{k}\right)_{t}$

Example Let consider the LFSR defined by the following relations:

$$
\begin{aligned}
&\left(m_{7}\right)_{t+1}=\left(m_{3}\right)_{t} \oplus\left(m_{4}\right)_{t} \oplus\left(m_{5}\right)_{t} \oplus\left(m_{0}\right)_{t} \\
&\left(m_{i}\right)_{t+1}=\left(m_{i+1}\right) \text { if } i \neq 7 . \\
& \quad \begin{array}{ll}
m_{7} & m_{6} \\
m_{5} & m_{4} \\
m_{3} & m_{2} \\
m_{1} & m_{0}
\end{array} S S
\end{aligned}
$$

History of the parallel generation of m-sequences

PFB transformation

The PFB transformation virtually clocks an LFSR v-times.

Thus, we need to implements the previous equations for the successive states $\left(m_{7}\right)_{t+j}$ for $1 \leq j \leq v(v=3)$:

$$
\begin{aligned}
\left(m_{7}\right)_{t+1} & =\left(m_{3}\right)_{t} \oplus\left(m_{4}\right)_{t} \oplus\left(m_{5}\right)_{t} \oplus\left(m_{0}\right)_{t} \\
\left(m_{7}\right)_{t+2} & =\left(m_{4}\right)_{t} \oplus\left(m_{5}\right)_{t} \oplus\left(m_{6}\right)_{t} \oplus\left(m_{1}\right)_{t} \\
\left(m_{7}\right)_{t+3} & =\left(m_{5}\right)_{t} \oplus\left(m_{6}\right)_{t} \oplus\left(m_{7}\right)_{t} \oplus\left(m_{2}\right)_{t} \\
\left(m_{i}\right)_{t+3} & =\left(m_{i+3}\right)_{t} \text { if } i<5 .
\end{aligned}
$$

History of the parallel generation of m-sequences
PFB transformation

Well, it is a bloody mess !

History of the parallel generation of m-sequences

The windmill generator

Theorem
[Smeets1988] Let n and v be integers such that $1 \leq v<n$. Let $\alpha(x)=\sum \alpha_{i} x^{i}$ and $\beta\left(x^{-1}\right)=\sum \beta_{i} x^{-i}$ be two polynomials over \mathbf{F}_{k} such that $\alpha(0)=1$ and $\beta(0) \neq 1$. There exist a permutation σ of $1,2 \cdots v-1$ and a length parameters $\ell(i)$ such that the polynomial defined by:

$$
q(x)=\alpha\left(x^{v}\right)-\beta\left(x^{-v} x^{n}\right)
$$

is the primitive feedback polynomial of the sequence S associated to the generator shown on the next slide!

History of the parallel generation of m-sequences
The windmill generator

History of the parallel generation of m-sequences

The windmill generator

The windmill generator has been used in the E0 stream cipher (Bluetooth):

Four LFSRs \Rightarrow Four 4-vane windmills

History of the parallel generation of m-sequences
The windmill generator

v	4		8		16	
n	$\#_{\text {pri }}$	$\#_{\text {irr }}$	$\#_{\text {pri }}$	$\#_{\text {irr }}$	$\#_{\text {pri }}$	$\#_{\text {irr }}$
9	1	1				
15	2	4				
17	28	28	0	0		
23	82	86	1	1	0	0
25	314	318	6	6	0	0
31	1063	1063	3	3	0	0
33	3285	4092	15	18	0	0
39	11482	13566	10	12	0	0
41	51144	51148	54	54	0	0
47	178253	178368	40	40	1	1
49	678916	684122	170	172	0	0
55	2229834	2439982	137	161	1	3

How to compute this table?

Irreducibility test

Definition
A polynomial $q \in \mathbf{F}_{k}[X]$ is irreducible, if $\operatorname{deg}(q)>0$ and if all the divisor of q is a constant or a multiple of q by a constant.

Algorithm	Worst case
Ben-Or	$n M(n) \log k n$
Rabin	$n M(n) \log k \log n$

- $M(n)=n \log n \log \log n \quad$ (assuming FFT-based multiplication)

Comment

However, in practice we can expect to have $\log n M(n) \log k n$ with Ben-Or because a random polynomial is expected to have a factor of small degree.

The extended windmill generator

PFB transformation and windmill generator

The feedback function F_{i} in the PFB transformation can be decomposed as the sum modulo two of v sub-functions $f_{i, j}$ which depends only of a given register R_{j} :

$$
F_{i}=\bigoplus_{j=0}^{v-1} f_{i, j}
$$

The extended windmill generator

PFB transformation and windmill generator
Prop. A v-vane windmill polynomial of degree n corresponds to a shift-registers network issue from a PFB transformation with at most 2 functions $f_{i, j}$ associated to the feedback function $F_{i}, 0 \leq i<v$.

Proof The feedback function can be written:

$$
\left(m_{n-1}^{k}\right)_{t+1}=\bigoplus_{i=0}^{\lfloor n / v\rfloor} \alpha_{v i+j-1}\left(m_{v i+j-1}^{\sigma_{1}(k)}\right)_{t} \oplus \bigoplus_{j=0}^{\lfloor n / v\rfloor} \beta_{m-i v+j-1}\left(m_{m-v i+j-1}^{\sigma_{2}(k)}\right)
$$

with $k>n-v$ and σ_{1} and σ_{2} are two permutation of $1,2 \cdots v-1$ defined by:

$$
\begin{aligned}
\sigma_{1}(k) & =\left\lfloor\frac{n}{v}\right\rfloor+k-1 \bmod v \\
\sigma_{2}(k) & =n+k \bmod v .
\end{aligned}
$$

The extended windmill generator

PFB transformation and windmill generator

Result The windmill generator is only a subset of the PFB transformation with only $2 f_{i, j}$ per F_{i}.

How to find the others ?

- modify σ_{1} ? not possible because $\alpha(0) \neq 0$.
- so modify σ_{2} :

$$
\sigma_{2}^{\prime}(k)=n+k-\phi \bmod v .
$$

- if $\phi=0 \leftarrow$ the orginal windmill setup
- if $n+k-\phi=0 \bmod v \leftarrow$ the original setup with $\beta(x)=1$
- otherwise new setup!

The extended windmill generator

New definition

Definition
The primitive polynomial

$$
q(x)=\alpha\left(x^{v}\right)-x^{n-\phi} \beta\left(x^{-v}\right)-x^{n}
$$

with $\alpha(0) \neq 0, \beta(x) \neq 0$ if $\phi=0$ and $\beta(0)=0$ otherwise and $0 \leq \phi<v$ defines the set of all PFB transformation with at most 2 functions $f_{i, j}$ associated to $F_{i}, 0 \leq i<v$ and generating m-sequences.

Is it a good news? Yes, we can find good polynomials of degree $d=3 \bmod 8$.

The extended windmill generator
New result

v	4		8		16	
n	$\#_{\text {pri }}$	$\#_{\text {irr }}$	$\#_{\text {pri }}$	$\#_{\text {irr }}$	$\#_{\text {pri }}$	$\#_{\text {irr }}$
9	1	1	0	0	0	0
11	1	1	0	0	0	0
13	6	6	0	0	0	0
15	9	12	0	0	0	0
17	38	38	2	2	0	0
19	31	31	3	3	0	0
21	39	41	2	2	0	0
23	172	179	4	4	0	0
25	479	491	19	19	0	0
27	238	281	4	5	0	0
29	571	573	2	2	0	0
31	2133	2133	16	16	0	0
33	4901	6100	34	46	3	3
35	3473	3702	18	18	4	4

The extended windmill generator
New result

The extended windmill generator

Non Linear Feedback Shift registers

The feedback functions of a non-linear non-singular extended windmill generator are defined by:

$$
F_{k}=m_{0}^{\sigma_{1}(k)} \oplus g\left(m_{\alpha_{i_{1}}}^{\sigma_{1}(k)}, m_{\alpha_{i_{2}}}^{\sigma_{1}(k)}, \cdots, m_{\beta_{j_{1}}}^{\sigma_{2}(k)}, m_{\beta_{j_{2}}}^{\sigma_{2}(k)}, \cdots\right)
$$

with g a Boolean function and:

$$
\begin{aligned}
& \sigma_{1}(k)=\left\lfloor\frac{n}{v}\right\rfloor+k-1 \bmod v \\
& \sigma_{2}(k)=n+k-\phi \bmod v
\end{aligned}
$$

Is it a good news? Tt is an empty definition (choice for $g: 2^{2^{m}}$) but at least it is a research direction...

Wind to water: the case of ℓ-sequences
ℓ-sequences ?
Example

- $\frac{1}{5}=\cdots 110011001101$
- $\frac{1}{7}=\cdots 010101010111$
- $-\frac{1}{7}=\cdots 1001001001001$

Definition
The canonical Hensel form of a 2-adic integer a is defined by:

$$
a=\sum_{i=0}^{\infty} a_{i} 2^{i}
$$

If we have $\sum_{i=0}^{\infty} a_{i} 2^{i}=\frac{A}{q}$:

$$
a_{i}=2^{-i} A \bmod q \bmod 2
$$

Wind to water: the case of ℓ-sequences

Definitions

Theorem $S=\left(s_{i}\right)$ an infinite sequence. S is periodic iff $\exists p$ and q, relatively prime, q odd such that $p / q=\sum_{i=0}^{\infty} s_{i} 2^{i}$ with $q<0 \leq p, p \leq-q$.
Theorem If p and q are relatively prime, q odd, the period T of p / q is the order of 2 modulo q.

Result If q is well chosen, then $T=q-1$.

Wind to water: the case of ℓ-sequences
Feedback with Carry Shift Registers (FCSRs)

Fibonacci setup

Galois setup

Wind to water: the case of ℓ-sequences

What about the 4 solutions ?

- Strict decimation: very bad
[Lauradoux2008]
- Parallel feedforward transformation (PFF): not known...
- Parallel feedback transformation (PFB)
[Lauradoux2008]
- Watermill generator
[Lauradoux2009 ?]

Wind to water: the case of ℓ-sequences

The watermill generator

Let q be a prime number of maximal order such that:

$$
q=\alpha+2^{n-\phi} \beta+2^{n}
$$

with $\alpha=\sum \alpha_{i} 2^{i v}, \alpha_{0}=1$ and $\beta=\sum \beta_{i} 2^{-i v} \ldots$

Conclusion

Why is it called the windmill generator?

Conclusion

A. $f(x)=x^{25}+x^{20}+x^{12}+x^{8}+1$

Conclusion

