Parallel generation of pseudo-random sequences

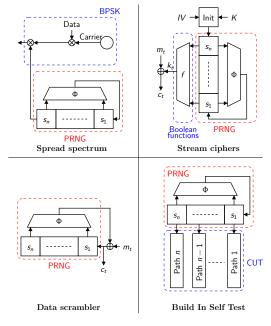
Who?

(Cedric Lauradoux) $_{10}$

1993524591318275015328041611344215036460140087963

When? 14/10/2008 (simply today)

Applications of sequences



Outline

Is it interesting to study shift register theory ?

History of the parallel generation of *m*-sequences

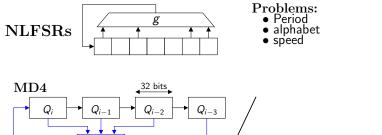
- *m-sequences*
- Decimation
- Shift register transformations
- The windmill generator
- The extended windmill generator
 - PFB transformation and windmill generator
 - NLFSRs
 - Wind to water: the case of ℓ -sequences
 - *l*-sequences
 - the watermill

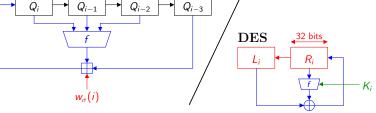
Conclusions

Introduction

Is it interesting to study shift register theory ?

Sequences the backbone of symmetric cryptography: more precisely Non-Linear Feedback Shift Registers.





Introduction

Is it interesting to study shift register theory ?

Remembering some discussion:

[Student] How to choose the parameters for a PRNG ?

[Advisor] Well, there exist security parameters like a proven period, the size or the number of taps in the feedback...

[Student] Okay, but there is still many candidates that meet the criteria. So what is the next step ?

[Advisor] Do you know how to roll a dice ?

History of the parallel generation of *m*-sequences *m*-sequences ?

Example

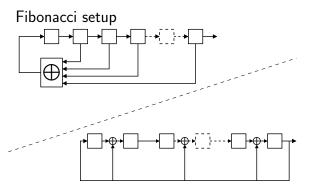
Г

$$\frac{1+x}{1+x+x^2} = 11011011011\cdots$$
$$\frac{1+x+x^2}{1+x+x^4} = 01111010110\cdots$$
$$\frac{1+x+x^2+x^3+x^4+x^5+x^6+x^7+x^8}{1+x^6+x^8} = 11111111000000110000\cdots$$

If we have
$$a(x) = \sum_{i=0}^{\infty} a_i X^i = \frac{p(x)}{q^*(x)}$$
:
 $a_i = Tr(p(x)\alpha^i)$.

History of the parallel generation of *m*-sequences Definitions Theorem Let $S = (s_i)$ an infinite sequence. S is periodic iff $\exists p \text{ and } q, q^{*}(0) \neq 0, \deg(p) \leq \deg(q^{*}) \text{ such that}$ $s(x) = p(x)/q^{\star}(x).$ Theorem If p and q^* are relatively prime, the period T of $s(X) = p(x)/q^{\star}(x)$ is the order of q(x). Result If $q^{*}(x)$ is primitive, i.e. irreductible and $ord(q(x)) = 2^{m} - 1$, then $T = 2^m - 1$ with $m = deg(q^*(x))$. Comment $q^{\star}(x)$ is the characteristic polynomial of S defined as the reciprocical of the connection/feedback polynomial q(x): $q^{\star}(x) = x^n q(\frac{1}{y}).$

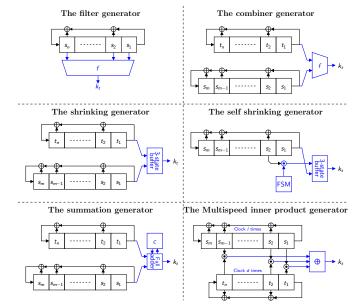
History of the parallel generation of *m*-sequences Linear Feedback Shift Registers (LFSRs)



Galois setup

History of the parallel generation of *m*-sequences

The stream ciphers of our grandfathers



History of the parallel generation of *m*-sequences Decimation

Let S be an infinite sequence over an alphabet \mathcal{A} :

$$S = s_0, s_1, s_2 \cdots$$

For an integer v, a v-decimation of S is the set of sub-sequences defined by:

$$S_{\nu}^{0} = (s_{0}, s_{\nu}, \cdots)$$

$$S_{\nu}^{1} = (s_{1}, s_{1+\nu}, \cdots)$$

$$\vdots \vdots \qquad \vdots$$

$$S_{\nu}^{\nu-2} = (s_{\nu-2}, s_{2\nu-2}, \cdots)$$

$$S_{\nu}^{\nu-1} = (s_{\nu-1}, s_{2\nu-1}, \cdots)$$

History of the parallel generation of *m*-sequences ⁴ solutions

Strict decimation

Parallel feedforward transformation (PFF)

Parallel feedback transformation (PFB)

Windmill generator

History of the parallel generation of *m*-sequences Strict decimation

Theorem

[Zierler1959, Rueppel1986]. Let *S* be a sequence produced by an LFSR whose feedback polynomial q(x) is irreducible in \mathbf{F}_2 of degree n. Let α be a root of q(x) and let *T* be the period of q(x). Let S_v^i be a sub-sequence resulting from the v-decimation of *S*. Then, S_v^i can be generated by an LFSR with the following properties:

- The minimum polynomial of α^{v} in $\mathbf{F}_{2^{m}}$ is the connection polynomial q'(x) of the resulting LFSR.
- The period T' of q'(x) is equal to $\frac{T}{gcd(v,T)}$.
- The degree n' of q'(x) is equal to the multiplicative order of q(x) in $\mathbf{Z}_{T'}$.

	History of the parallel generation of <i>m</i> -sequences PFB transformation				
lotation					
			Memory cell	Content	
		One register	m _i	$(m_i)_t$	
		Many registers	m_i^k of R_k	$(m_i^k)_t$	

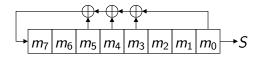
Example

Ν

Let consider the LFSR defined by the following relations:

$$(m_7)_{t+1} = (m_3)_t \oplus (m_4)_t \oplus (m_5)_t \oplus (m_0)_t$$

 $(m_i)_{t+1} = (m_{i+1}) \text{ if } i \neq 7.$



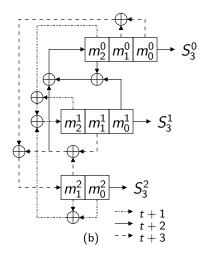
History of the parallel generation of *m*-sequences PFB transformation

The PFB transformation virtually clocks an LFSR v-times.

Thus, we need to implements the previous equations for the successive states $(m_7)_{t+j}$ for $1 \le j \le v$ (v = 3):

$$\begin{array}{rcl} (m_7)_{t+1} &=& (m_3)_t \oplus (m_4)_t \oplus (m_5)_t \oplus (m_0)_t \\ (m_7)_{t+2} &=& (m_4)_t \oplus (m_5)_t \oplus (m_6)_t \oplus (m_1)_t \\ (m_7)_{t+3} &=& (m_5)_t \oplus (m_6)_t \oplus (m_7)_t \oplus (m_2)_t \\ (m_i)_{t+3} &=& (m_{i+3})_t \text{ if } i < 5. \end{array}$$

History of the parallel generation of *m*-sequences PFB transformation



Well, it is a bloody mess !

History of the parallel generation of *m*-sequences The windmill generator

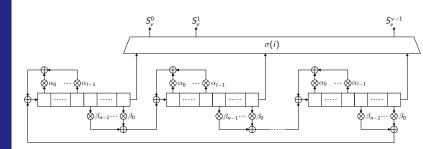
Theorem

[Smeets1988] Let n and v be integers such that $1 \le v < n$. Let $\alpha(x) = \sum \alpha_i x^i$ and $\beta(x^{-1}) = \sum \beta_i x^{-i}$ be two polynomials over \mathbf{F}_k such that $\alpha(0) = 1$ and $\beta(0) \ne 1$. There exist a permutation σ of $1, 2 \cdots v - 1$ and a length parameters $\ell(i)$ such that the polynomial defined by:

$$q(x) = \alpha(x^{\nu}) - \beta(x^{-\nu}x^n)$$

is the primitive feedback polynomial of the sequence S associated to the generator shown on the next slide!

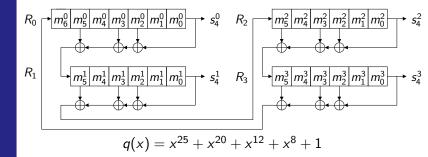
History of the parallel generation of *m*-sequences The windmill generator



History of the parallel generation of *m*-sequences The windmill generator

The windmill generator has been used in the E0 stream cipher (Bluetooth):

Four LFSRs \Rightarrow Four 4-vane windmills



History of the parallel generation of *m*-sequences The windmill generator

V	4		8		16	
n	<i></i> #pri	#irr	<i></i> #pri	#irr	<i>⋕</i> pri	#irr
9	1	1				
15	2	4				
17	28	28	0	0		
23	82	86	1	1	0	0
25	314	318	6	6	0	0
31	1063	1063	3	3	0	0
33	3285	4092	15	18	0	0
39	11482	13566	10	12	0	0
41	51144	51148	54	54	0	0
47	178253	178368	40	40	1	1
49	678916	684122	170	172	0	0
55	2229834	2439982	137	161	1	3

How to compute this table ? Irreducibility test

Definition

A polynomial $q \in \mathbf{F}_k[X]$ is irreducible, if deg(q) > 0 and if all the divisor of q is a constant or a multiple of q by a constant.

Algorithm	Worst case		
Ben-Or	$nM(n)\log kn$		
Rabin	$nM(n)\log k\log n$		

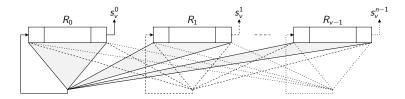
• $M(n) = n \log n \log \log n$ (assuming FFT-based multiplication)

Comment

However, in practice we can expect to have $\log n M(n) \log kn$ with Ben-Or because a random polynomial is expected to have a factor of small degree.

The extended windmill generator PFB transformation and windmill generator

The feedback function F_i in the PFB transformation can be decomposed as the sum modulo two of v sub-functions $f_{i,j}$ which depends only of a given register R_i :



The extended windmill generator PFB transformation and windmill generator

Prop. A v-vane windmill polynomial of degree n corresponds to a shift-registers network issue from a PFB transformation with at most 2 functions $f_{i,j}$ associated to the feedback function F_i , $0 \le i < v$.

Proof The feedback function can be written:

$$(m_{n-1}^k)_{t+1} = \bigoplus_{i=0}^{\lfloor n/\nu \rfloor} \alpha_{\nu i+j-1} (m_{\nu i+j-1}^{\sigma_1(k)})_t \oplus \bigoplus_{j=0}^{\lfloor n/\nu \rfloor} \beta_{m-i\nu+j-1} (m_{m-\nu i+j-1}^{\sigma_2(k)})$$

with k > n - v and σ_1 and σ_2 are two permutation of $1, 2 \cdots v - 1$ defined by:

$$\begin{aligned} \sigma_1(k) &= \lfloor \frac{n}{v} \rfloor + k - 1 \bmod v \\ \sigma_2(k) &= n + k \bmod v. \end{aligned}$$

The extended windmill generator PFB transformation and windmill generator

Result

The windmill generator is only a subset of the PFB transformation with only $2 f_{i,j}$ per F_i .

How to find the others ?

modify σ_1 ? not possible because $\alpha(0) \neq 0$. so modify σ_2 :

$$\sigma_2'(k) = n + k - \phi \bmod v.$$

if $\phi = 0 \leftarrow$ the orginal windmill setup

- if $n + k \phi = 0 \mod v \leftarrow$ the original setup with $\beta(x) = 1$
- otherwise new setup !

The extended windmill generator New definition

Definition

The primitive polynomial

$$q(x) = \alpha(x^{\nu}) - x^{n-\phi}\beta(x^{-\nu}) - x^n$$

with $\alpha(0) \neq 0$, $\beta(x) \neq 0$ if $\phi = 0$ and $\beta(0) = 0$ otherwise and $0 \leq \phi < v$ defines the set of all PFB transformation with at most 2 functions $f_{i,j}$ associated to F_i , $0 \leq i < v$ and generating *m*-sequences.

Is it a good news ? Yes, we can find good polynomials of degree $d = 3 \mod 8$.

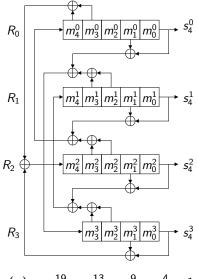
The extended windmill generator

New result

V	4		8		16	
n	<i>⋕</i> pri	#irr	<i>⋕pri</i>	#irr	<i>⋕p</i> ri	#irr
9	1	1	0	0	0	0
11	1	1	0	0	0	0
13	6	6	0	0	0	0
15	9	12	0	0	0	0
17	38	38	2	2	0	0
19	31	31	3	3	0	0
21	39	41	2	2	0	0
23	172	179	4	4	0	0
25	479	491	19	19	0	0
27	238	281	4	5	0	0
29	571	573	2	2	0	0
31	2133	2133	16	16	0	0
33	4901	6100	34	46	3	3
35	3473	3702	18	18	4	4

The extended windmill generator

New result



 $q(x) = x^{19} + x^{13} + x^9 + x^4 + 1$

The extended windmill generator Non Linear Feedback Shift registers

Definition The feedback functions of a non-linear non-singular extended windmill generator are defined by:

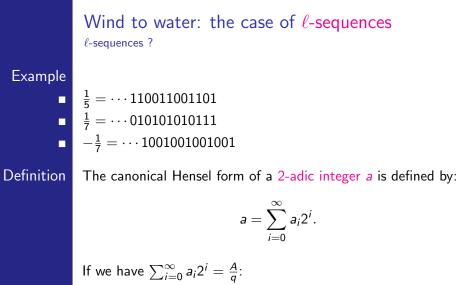
$$F_{k} = m_{0}^{\sigma_{1}(k)} \oplus g(m_{\alpha_{i_{1}}}^{\sigma_{1}(k)}, m_{\alpha_{i_{2}}}^{\sigma_{1}(k)}, \cdots, m_{\beta_{j_{1}}}^{\sigma_{2}(k)}, m_{\beta_{j_{2}}}^{\sigma_{2}(k)}, \cdots)$$

with g a Boolean function and:

$$\sigma_1(k) = \lfloor \frac{n}{v} \rfloor + k - 1 \mod v$$

$$\sigma_2(k) = n + k - \phi \mod v.$$

Is it a good news? Tt is an empty definition (choice for $g: 2^{2^m}$) but at least it is a research direction...



 $a_i = 2^{-i}A \mod q \mod 2.$

Wind to water: the case of ℓ -sequences Definitions

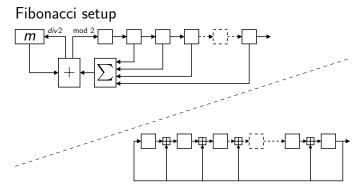
Theorem $S = (s_i)$ an infinite sequence. S is periodic iff $\exists p$ and q, relatively prime, q odd such that $p/q = \sum_{i=0}^{\infty} s_i 2^i$ with $q < 0 \le p, p \le -q$.

Theorem If p and q are relatively prime, q odd, the period T of p/q is the order of 2 modulo q.

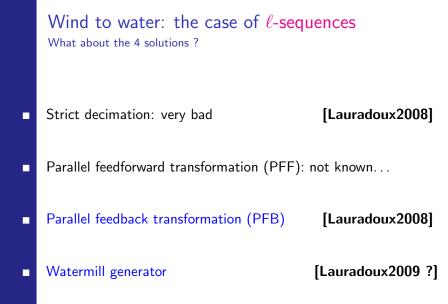
Result

If q is well chosen, then T = q - 1.

Wind to water: the case of *l*-sequences Feedback with Carry Shift Registers (FCSRs)



Galois setup



Wind to water: the case of ℓ -sequences The watermill generator

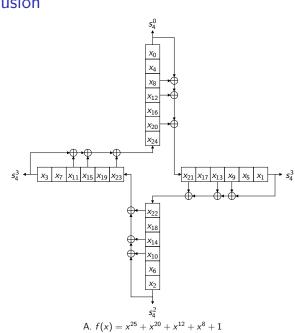
Let q be a prime number of maximal order such that:

$$q = \alpha + 2^{n-\phi}\beta + 2^n$$

with $\alpha = \sum \alpha_i 2^{i\nu}$, $\alpha_0 = 1$ and $\beta = \sum \beta_i 2^{-i\nu} \cdots$

Conclusion

Why is it called the windmill generator ?



Conclusion

Conclusion

