Time Measurement Threatens Privacy-Friendly RFID Authentication Protocols

Gildas Avoine¹, Iwen Coisel² and Tania Martin¹

1: Information Security Group - Université Catholique de Louvain 2: Crypto Group - Université Catholique de Louvain

RFIDSec 2010

UCL Crypto Group

The Privacy of an RFID Authentication Scheme

- Interest relative to the application
 - not really necessary in inventory management
 - essential in passport context to protect user's identity and also to prevent anybody to trace him
- Lots of sensitive applications
 - medical supplies
 - transport cards
 - Iuxury items
 - ▶ ...

 \Rightarrow Real necessity of a privacy analysis We here focus on traceability

Privacy vs Time Measurement

Several privacy models exist [A05, JW07, LBM07, V07, CCG10]

- ► Juels and Weis : possible to know the result of a protocol
- ► Vaudenay : tags are not necessary in the adversary's field

How long it takes to a reader to identify a tag? None of them It's not (only) an implementation issue

Privacy vs Time Measurement

Several privacy models exist [A05, JW07, LBM07, V07, CCG10]

- ► Juels and Weis : possible to know the result of a protocol
- Vaudenay : tags are not necessary in the adversary's field

How long it takes to a reader to identify a tag? None of them It's not (only) an implementation issue

Contributions :

- Point out this threatens
- Formalize it
- Attacks some protocols
- Present some countermeasures

- 1 Modelling Privacy
- 2
 Time-Attack on Some Existing Schemes
- **3** Countermeasures
- **4** Conclusion

1 Modelling Privacy

2 Time-Attack on Some Existing Schemes

3 Countermeasures

4 Conclusion

Vaudenay's Model [Vau07]

List of oracles given to an adversary ${\cal A}$

- ► CREATETAG : adds a new legitimate tag.
- \blacktriangleright $D{\rm RAWTAG}$: tag enters in the adversary's field
- $\blacktriangleright~{\rm FREE}$: tags goes out of the adversary's field
- EXECUTE : returns transcripts.
 - ► LAUNCH
 - SendTag
 - SENDREADER
 - ► Result
- ► CORRUPT : returns tag's key set.

Vaudenay's Model [Vau07]

Considering the $\operatorname{CORRUPT}$ oracle, 3 adversary's ability :

- ▶ WEAK : no CORRUPT allowed
- ► FORWARD : CORRUPT "stops" the system
- ► **STRONG** : CORRUPT has no effect

Considering the $\operatorname{Result}\,$ oracle, 2 adversary's ability :

► NARROW : no RESULT allowed

Adversary classes ordered by power P

$$\begin{array}{cccc} \mathsf{STRONG} & \Rightarrow & \mathsf{FORWARD} & \Rightarrow & \mathsf{WEAK} \\ & \downarrow & & \downarrow & & \downarrow \\ \mathsf{N}\text{-}\mathsf{STRONG} & \Rightarrow & \mathsf{N}\text{-}\mathsf{FORWARD} & \Rightarrow & \mathsf{N}\text{-}\mathsf{WEAK} \end{array}$$

Vaudenay's Model [Vau07]

Experiment of \mathcal{A}

- $1.\ \mathcal{A}$ interacts with the whole system
- 2. \mathcal{A} submits an hypothesis
- 3. \mathcal{A} obtains Tab and returns 0/1

The protocol is said P-private if \mathcal{A}^{sim} has the same success probability as \mathcal{A} :

$$|\Pr[\mathcal{A}
ightarrow 1] - \Pr[\mathcal{A}^{sim}
ightarrow 1]| < \epsilon(k)$$

$$\begin{array}{cccc} \mathsf{STRONG} & \Rightarrow & \mathsf{FORWARD} & \Rightarrow & \mathsf{WEAK} \\ & \downarrow & & \downarrow \\ \mathsf{N}\text{-}\mathsf{STRONG} & \Rightarrow & \mathsf{N}\text{-}\mathsf{FORWARD} & \Rightarrow & \mathsf{N}\text{-}\mathsf{WEAK} \end{array}$$

Time-Privacy

To capture the time notion in an authentication protocol

• TIMER : outputs the time δ taken by the reader for its overall computations during a given protocol instance

Possible to define the TIMEFUL-Privacy

- Adds a new ability \Rightarrow more powerful
- At each level $X \in \{\text{STRONG}, \text{FORWARD}, \text{WEAK}\}$:

$$\begin{array}{ccc} \mathsf{TIMEFUL-}X & \Rightarrow & X \\ \downarrow & & \downarrow \\ \mathsf{TIMEFUL-NARROW-}X & \Rightarrow & \mathsf{NARROW-}X \end{array}$$

1 Modelling Privacy

2 Time-Attack on Some Existing Schemes

3 Countermeasures

4 Conclusion

Context of the Study

Several key infrastructures possible

	secret-key	public-key
master	Х	Yes
particular	Yes	Yes

Considering Vaudenay's generic scheme [Vau07]

- Authentication : encryption of $\mathcal{ID}||K||a$
- Verification : decryption of the message + authenticity of K

 \Rightarrow constant-time authentication

Particular secret-key infrastructure

- Each tag owns a particular secret-key
- The reader does not know which key to use

⇒ SEARCHID *procedure*

Protocol proposed by Weis, Sarma, Rivest and Engels [WSRE03]

- Each tag owns a secret key sk_{ID};
- f is a pseudo-random function;

 $\operatorname{SEARCHID}$ procedure : brute-force search

UCL Crypto Group

Protocol proposed by Weis, Sarma, Rivest and Engels [WSRE03]

- Each tag owns a secret key sk_{ID};
- f is a pseudo-random function;

 ${\rm SearchID} \ {\rm procedure}: {\rm brute-force} \ {\rm search}$

- Best case : 1 computation
- ► Average : *n*/2 computations
- Worst case : *n* computations

A time-attack on WSRE

- \blacktriangleright ${\cal A}$ creates 2 legitimate tags and affects them : t_1 and t_2
- \mathcal{A} calls EXECUTE(t₁) and EXECUTE(t₂) : (π_1 , tr₁), (π_2 , tr₂)
- \mathcal{A} calls $\operatorname{TIMER}(\pi_1)$ and $\operatorname{TIMER}(\pi_2)$: δ_1 and δ_2
- \blacktriangleright ${\cal A}$ frees both tags, and reaffects only one of them : t_3
- ▶ A calls EXECUTE(t₃) : (π₃, tr₃)
- \mathcal{A} calls TIMER (π_3) : δ_3

► If
$$\delta_3 = \delta_1$$
, then $t_1 = t_3$, else $t_2 = t_3$
 $\Rightarrow \Pr[\mathcal{A} \to 1] =$

A time-attack on WSRE

- \blacktriangleright ${\cal A}$ creates 2 legitimate tags and affects them : t_1 and t_2
- \mathcal{A} calls EXECUTE(t₁) and EXECUTE(t₂) : (π_1 , tr₁), (π_2 , tr₂)
- \mathcal{A} calls $\operatorname{TIMER}(\pi_1)$ and $\operatorname{TIMER}(\pi_2)$: δ_1 and δ_2
- \blacktriangleright ${\cal A}$ frees both tags, and reaffects only one of them : t_3
- \mathcal{A} calls EXECUTE(t₃) : (π_3 , tr₃)
- \mathcal{A} calls TIMER (π_3) : δ_3

▶ If
$$\delta_3 = \delta_1$$
, then $t_1 = t_3$, else $t_2 = t_3$
⇒ $Pr[\mathcal{A} \to 1] = 1$

For the simulation, the output of $\mathrm{TIMER}(\pi_3)$ is guessed

$$\Rightarrow \Pr[\mathcal{A}^{Sim} \rightarrow 1] = 1/2$$

WSRE is NOT TIMEFUL-WEAK-private.

UCL Crypto Group

Several Attacks

Ohkubo, Suzuki and Kinoshita [OSK03]

- NARROW-FORWARD private
- Not TIMEFUL-WEAK private
- Desynchronisation helps to distinguish two tags

Undesynchronizable schemes [D05, LBM07, CC08, ...]

- Only one possible desynchronization
- WEAK private
- Not TIMEFUL-WEAK private

1 Modelling Privacy

2 Time-Attack on Some Existing Schemes

3 Countermeasures

4 Conclusion

UCL Crypto Group

Presentation

 $\mathsf{Major}\ \mathsf{concern} = \mathrm{SearchID}\ \mathsf{procedure}$

Example for WSRE

- Always waiting until the worst case (n computations)
 - "Always" applicable
 - Not efficient
- ► Random SEARCHID instead of a linear one
 - More efficient : n/2 computations in average for each tag

Countermeasures

- Not possible to link a time length to a tag
- Optimally : time length independent of n

Undesynchronizable Schemes

Tags can be desynchronized once \Rightarrow 2 possible keys per legitimate tag

- ▶ Worst case : 2*n* computations (instead of *n*)
- Random Search
 - Synchronized tag : n/2 computations
 - Desynchronized tag : 3n/2 computations
 - $\Rightarrow \mathcal{A} \text{ can distinguish } 2 \text{ tags}$
- New Random Search
 - Random among the whole set of keys (current and old/next ones)
 - Average time for all tags : n computations

Precomputation Solution

No random values in OSK

 \Rightarrow Precomputation of "all" answers possible : *n.m* answers

- Balanced Binary Search
 - SEARCHID efficient : O(log n)
 - really dynamic : tags can be added infinitely
- Rainbow Table [AO05,ADO05]
 - Database size reduced
 - \blacktriangleright Efficiency of ${\rm SearcHID}$ depends on the time-memory trade-off
 - But not dynamic
 - But requires database update (instead of tag update)

1 Modelling Privacy

2 Time-Attack on Some Existing Schemes

3 Countermeasures

4 Conclusion

UCL Crypto Group

Conclusion

- ▶ Point a new threaten : computation time of the reader
- Model a new TIMEFUL adversary
- Lots of protocols are not TIMEFUL private
- Hopefully counter-measures are possible
 - Should not (only) be an implementation consideration
 - Constant-Time authentication exists
 - Still some progress to do to comply efficiency and small database

Conclusion

- ▶ Point a new threaten : computation time of the reader
- Model a new TIMEFUL adversary
- Lots of protocols are not TIMEFUL private
- Hopefully counter-measures are possible
 - Should not (only) be an implementation consideration
 - Constant-Time authentication exists
 - Still some progress to do to comply efficiency and small database

Thank You

