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Université catholique de Louvain
Information Security Group

B-1348 Louvain-La-Neuve, Belgium
{gildas.avoine, benjamin.martin, tania.martin}@uclouvain.be

Abstract. Authentication for low-cost Radio-Frequency IDentification
(RFID) is a booming research topic. The challenge is to develop secure
protocols using lightweight cryptography, yet ensuring privacy. A cur-
rent trend is to design such protocols upon the Learning Parity from
Noise (LPN) problem. The first who introduced this solution were Hop-
per and Blum in 2001. Since then, many protocols have been designed,
especially the protocol of Halevi, Saxena, and Halevi (HSH) [15] that
combines LPN and the tree-based key infrastructure suggested by Mol-
nar and Wagner [24]. In this paper, we introduce a new RFID authenti-
cation protocol that is less resource consuming than HSH, relying on the
same adversary model and security level, though. Afterwards, we show
that, if an adversary can tamper with some tags, the privacy claimed in
HSH is defeated. In other words, either tags are tamper-resistant, then
we suggest a protocol more efficient than HSH, or they are not, then we
suggest a significative attack against the untraceability property of HSH.

Key words: RFID, Security, Traceability, Authentication, HB, Tree-
based, LPN.

1 Introduction

Radio Frequency IDentification (RFID) is a wireless technology that allows to
identify/authenticate items without physical contact. An RFID interaction is
proceeded between: (i) RFID tags, or transponders jointed with an antenna,
embedded into objects such as access cards [33], books [24] or even electronic
passports [27] and, (ii) RFID readers composed of a transreceiver securely con-
nected to a back-end system.

RFID tags are divided into two categories, passive or active devices: active
tags have their own power source (a battery), whereas passive tags draw their
energy from the electromagnetic field of the reader. The latter tags so suffer
from very limited resources, especially in terms of computation and memory. In
secure applications where cryptography is required, tags (even passive) can em-
bed a microprocessor. This solution being expensive, researchers got interested
in building lightweight cryptographic building blocks that can be implemented



with wired logic only. Many such protocols have been published so far, but many
attacks have been put forward as well. For many protocols [11, 18, 28–30], ac-
tive and passive attacks were published [1, 5, 6, 10, 21, 22, 32, 34] while for other
protocols [19, 31] only active attacks were found [7, 12].

In 2000, Hopper and Blum [17, 18] took benefit of the Learning Parity from
Noise (LPN) problem to design a human-to-computer authentication protocol,
today known as HB. Juels and Weis [19] then noticed the link between the
human-to-computer and tag-to-reader authentication paradigms: the computa-
tion capabilities of the provers are quite restricted in both cases. They also stress
that HB presents the noticeable particularity that it does not identify the prover
who is involved in the protocol. This may be an interesting feature to protect the
privacy of the prover, but this becomes a drawback when considering radio fre-
quency identification. The idea of using the LPN problem to design lightweight
authentication protocols was then taken up in several papers [13, 15, 19] leading
to the HB-saga.

During RFIDSec 2009, Halevi, Saxena, and Halevi [15] presented a lightweight
privacy-friendly authentication protocol that aims to reduce the reader compu-
tational load. The protocol consists of two phases. The first phase identifies the
tag using a tree traversal, as suggested by Molnar and Wagner [24] at ACM
CCS 2004. This technique allows the reader to retrieve in the database the key
associated to the tag with a computation complexity O(log(n)) instead of O(n),
where n is the number of tags in the system. In the second phase, the tag is au-
thenticated using the HB+ protocol proposed by Juels and Weis [19] at Crypto
2005.

Our first contribution is a new LPN-based authentication protocol where the
computation complexity of the reader is lower than those implied by HSH [15].
Nevertheless, our protocol complies with the privacy threat model considered
in [15] and reaches the same security level. Another attractive property is that
our protocol also reduces the memory requirement for the tag.

Our second contribution is related to the privacy model considered in [15].
This model considers that tags are tamper-resistant, which is quite a strong
assumption. We demonstrate that if this assumption is relaxed, as it is commonly
admitted in the literature [2, 3], tampering with one or few tags threatens all
the tags belonging to the system. Our attack generalizes the one presented by
Avoine, Dysli, and Oechslin [4] at SAC 2005 against the protocol of Molnar and
Wagner [24].

The paper is organized as follows: Section 2 provides the background and
introduces HSH. Section 3 presents our protocol, and compares it with HSH.
Section 4 points out a privacy attack against HSH. Finally, Section 5 concludes.

2 From LPN to HSH

2.1 The LPN Problem

The Learn Parity with Noise problem is one of the well-known problems in
cryptography. Given that:



– x is a secret k-bit vector,
– a is a random known k-bit vector,
– ε ∈]0, 1

2 [ is a noise parameter,
– and η is a bit noise where Pr({η = 1}) = ε,

then it is hard to recover x from the result r = a · x⊕ η (the scalar product of a
and x, XORed with η).

Many attempts on identification and authentication protocols relying on the
LPN problem have been proposed so far, such as all HB-family protocols [7, 8,
13, 15–20, 23, 25, 35], or the LPN-C protocol of Gilbert, Robshaw and Seurin [14].
During the sequel, we consider that the RFID systems are composed of n tags.

2.2 The HB+ Protocol

The HB+ protocol has been proposed by Juels and Weis in 2005 [19] to improve
the original HB protocol [18] against active attacks.

At the system setup, each tag T has a unique pair of secret keys (xT , yT )
known by every reader R, where |xT | = |yT | = k. T is also given a random noise
parameter ε ∈]0, 1

2 [.
Then s rounds of challenge/response are required by the reader to authenti-

cate the tag T (see Fig. 1), where s is a security parameter. For each round, R se-
lects a random k-bit vector a and sends it to T . The latter also chooses a random
k-bit vector b and noise bit η, and sends to R its answer r = (a ·xT )⊕(b ·yT )⊕η.
R accepts the round if (a · xT ) ⊕ (b · yT ) = r. Finally, the reader authenticates
the tag T after s rounds if T ’s answers are correct in more than sε rounds.

Reader R Tag T
xT , yT , ε xT , yT , ε

a ∈ {0, 1}k b ∈ {0, 1}k
η ∈ {0, 1|Pr(η = 1) = ε}

a−−−−−→
r = (a · xT )⊕ (b · yT )⊕ η

b, r←−−−−−
Accepts if (a · xT )⊕ (b · yT ) = r

Fig. 1. A single round of the HB+ protocol.

2.3 The HSH Protocol

In this section, we present the authentication protocol proposed by Halevi, Sax-
ena, and Halevi at RFIDSec 2009 [15] designed for radio-frequency applications.



During the rest of the paper, it will be denoted by HSH. It is claimed to be light
and fast, and to preserve tag privacy under the model provided below.

The heart of HSH is that all its design relies on the HB-family protocols
combined with the tree-based key infrastructure proposed by Molnar and Wagner
in [24] (called here MW). HSH is divided in two stages: the tree traversal and
the authentication. The following table gives the notations and recommended
values for HSH:

Notation Meaning Recommended Values [15]
d depth of the tree d ∈ {2, 3}
β tree branching factor β ∈ {100, 1000}
kx length of the key xT kx = 80
ky length of the key yT ky ∈ [224, 512]
s size of T ’s answer s ∈ [80, 212]
ε noise level ε ∈ [ 18 ,

1
4 ]

The choice of HB-family comes from the fact that these kinds of protocols fit
perfectly in low-cost RFID tags. Here we present HSH using HB+ (this choice
is given by the HSH authors). Then the idea of MW is to consider the n tags
of the system as leaves in a tree of branching factor β. Thus MW associates
each edge in the tree with a secret key. The readers are assumed to know all
the keys. Each tag stores the dlog ne keys corresponding to its path from the
root to the leaf. HSH builds the key infrastructure of the tree traversal stage
on MW because it reduces significantly the complexity of the reader during the
identification process: βdlogβ ne operations in the worst case, instead of n. Thus
the use of MW makes the protocol lighter on the reader side.

The HSH privacy threat model. Since all HB-like protocols are not resistant
against active adversaries, [15] considers adversaries who can eavesdrop all the
communications and who can interact with both R and T , but disregarding man-
in-the-middle attacks. Also, since the MW key infrastructure does not resist to
privacy traceability when several tags are compromised, [15] considers that the
tags are tamper-resistant.

Initialization. Given a system with n tags, the parameters β and d are chosen
at the system setup, such that they define a tree with βd ≥ n leaves. Each leaf
is associated randomly to a tag of the system. During the setup of the system,
each tag T is assigned to a unique pair of secret keys (xT , yT ), known by every
reader R involved in the system.

Let p0, p1, p2, . . . , pd be the path in the tree from the root (denoted p0) to
the leaf that is associated to the tag T (denoted pd). For each node pi (except
the root), T knows a corresponding ky-bit key ypi

. R knows the entire tree
arrangement, and thus all the keys associated to the nodes.

Tree traversal stage. First of all, R must recover the right pair of secret keys
to authenticate correctly the tag T . To do so, T chooses an s×ky random binary



matrix B and a s-bit random noise vector νi for every level i in the tree. Then
T computes zi = B · ypi

⊕ νi; and it sends B and zi for every level i of the tree
to R.

Upon reception of these data, R goes down into the tree, node by node, using
the zi’s. Clearly, R computes for every child c of the root: zc = B · yc, where yc
is a child key. And R goes down to the child whose answer is the closest to the
data z1 sent by T . The same procedure is iterated for every level i in the tree.

At the end, R reaches one of the leaves of the tree, and uses the pair of
corresponding secret keys (x, y) for the authentication stage.

Authentication. At the end of the tree traversal stage, R is convinced that
the pair of keys found is the correct pair for the tag T .

Then R processes the HB+ protocol on this pair to confirm this result and
to authenticate definitely T . Thus, the reader sends an s × kx challenge binary
matrix A to the tag T . The latter then chooses a s-bit random noise vector ν,
and sends back the result z = A·xT⊕B ·yT⊕ν. R computes z′ = A·x⊕B ·y with
the pair found at the end of the tree traversal stage, and computes the Hamming
distance between z′ and T ’s answer z. If this value is under the threshold τ = sε,
then R accepts T ; otherwise it rejects it.

3 Our Protocol

In this section, we present an authentication protocol relying on the LPN prob-
lem. The goal of this protocol is to be as secure as HSH in the same threat model
(see Section 2.3 for its definition). In such a case, we want to prove that, in the
same weak threat model, it is possible to create a protocol with less needed tag
memory and less computational complexity, especially on the reader side.

3.1 Problem Statement

As explained before, HSH is tree-based which leads to a O(log n) reader com-
plexity, nevertheless better than a classical challenge/response protocol whose
reader complexity is in O(n). Since tags are tamper-resistant, we decide to put
a unique pair of symmetric keys (x, y) shared between all readers and tags, in
order to decrease R’s complexity. Thus, having a common pair of keys for the
whole system is better for R’s computation search, rather than n pairs (one
unique per tag in classical cryptography): R’s complexity search will be in O(1).

In a classical HB-family protocol, each tag T has a unique symmetric secret
key (or pair of keys) to authenticate itself to the reader R. During the protocol
execution, T adds some noise to its answer (with some probability). Then R
tries every tags’ secret key and, when it finds a result enough close to T ’s answer
(with respect to the noise probability), the authentication succeeds. Basically,
we consider that R scans its database of all tags’ secret keys and stops when
it finds such a match: it is a problem since R does not try all the secret keys
to find the one whose computation will be the closest to T ’s answer, but the



first one which is close to T ’s answer under the probability parameter ε. So the
HB-family protocols provide tag authentication, but R will not be sure of the
real tag’s identity. That is the reason we associate a unique secret identifier IdT
per tag, which is sent into the tag’s answer to be identified by R. The latter
knows all the tags’ identifiers.

Thus, in order to merge all these properties, we present a variant of the LPN-
C protocol proposed by Gilbert, Robshaw and Seurin in [14]. Actually, since the
latter is vulnerable to replay attacks, our authentication protocol has to thwart
such attacks. In our proposal, the tag’s answer is built in the same way as for
HB+ [19] (see Section 2.2). In comparison with LPN-C, we first decide to add
a challenge sent by the reader to the tag: this is to avoid the problem of replay
attacks that are inherent in LPN-C. Then in our protocol, the challenges are
matrix whereas the secrets are vectors, and these latters are defined as in HB+,
i.e. two secret keys instead of one: this choice is to store less information on the
tag, to reduce the tag memory needed by the protocol and thus to reduce the
potential price of the tag (i.e. less memory means lower costly tag). The final
achievement of our protocol is to allow a reader to authenticate and identify a
tag correctly, based on the following hypothesis :

– all tags and readers share a common pair of keys,
– every tag has a unique secret identifier.

3.2 The Protocol Description

Initialization. When the system is set up, every reader and tag share a pair
(x, y) of secret keys. Each tag T is assigned with a unique secret identifier IdT
known by R. The notations and values that will be used in the protocol are given
below:

Notation Meaning Usual choices
kx length of the key x kx = 80
ky length of the key y ky ∈ [224, 512]
s length of T ’s identifier IdT s ∈ [80, 212]
ε noise level ε ∈ [ 18 ,

1
4 ]

We define C as the code of all the tags’ identifiers of our system. For a
given codeword IdT ∈ C, we consider the ball BIdT

of radius t = dsεe around
IdT . Each ball represents all the codewords c such that dH(IdT , c) ≤ t, where
dH denotes the Hamming distance. The volume of BIdT

is the number of all

these codewords c, defined as: Vol(BIdT
) =

t∑
i=0

(
s

i

)
. To make viable the tag

identification, we distribute the identifiers such that all the balls are pairwise
disjoint.

Authentication. The authentication protocol consists of three steps (see Fig. 2):

(1) The reader sends a random binary s× kx matrix A.



(2) The tag chooses a random binary s × ky matrix B, a s-bit random noise
vector ν = (ν1, ν2, . . . , νs).
∀i ∈ {1, . . . , s} : νi ∈ {0, 1|Pr({νi = 1}) = ε}.
Then it computes r = (A · x)⊕ (B · y)⊕ IdT ⊕ ν, where |r| = s.
Finally, it sends B and r to R.

(3) The reader computes r′ = (A · x) ⊕ (B · y), and recovers instantaneously
D = r ⊕ r′ = IdT ⊕ ν.
Then for each tag identifier I, R computes the Hamming distance between
D and I. Since all the tags identifiers are well-distributed, when this distance
is lower than t, that means D only belongs to BI . Thus R retrieves the real
identifier I = IdT .

Reader R Tag T
x, y, IdT , ε x, y, IdT , ε

(1) A−−−−−→
B, r←−−−−− (2)

(3)

Fig. 2. Authentication protocol.

Remark 1. The step (3) of the authentication process can be improved. R must
recover T ’s identifier from D. Clearly, D is the tag’s identifier XORed with some
noise vector ν, i.e. IdT containing at most t error bits (t being the Hamming
weight of ν). Instead of computing naively the Hamming distance between D
and I, R can use an appropriate error-correcting code to recover IdT without
the t errors. This extension is out of the scope of this paper, though.

3.3 Analysis

Besides the assumption that all the balls BIdT
are pairwise disjoint, we assume

that (i) the identifiers space is large enough and, (ii) the tags’ identifiers are
uniformly distributed for security reasons. First, the distance between two iden-
tifiers must be at least two times the radius of a ball, i.e. 2t. This will allow the
reader to identify without mistakes every tag, since every D result will belong
to a unique ball. But if the identifiers space is too small and if all the balls cover
exactly the space, the security is nonexistent: an adversary can send a value at
random and be sure to be identified by the reader. We thus want that the success
probability of an adversary to send a random value that could match a result
into a ball is negligible. That is why we choose an identifiers space large enough.

We compare our results to the ones given by the HSH protocol. If we take
n = 106 tags, we have the following results when ε, d, β, kx and ky are fixed:



FAR s Tag mem Comm CT CR
HSH 2−41.3 86 1400 44978 216.9 226.2

Our protocol 2−41.5 128 648 66688 216

– n = βd = 106 = total number of tags in the system,
– d = 2 = tree depth for the HSH protocol,
– β = 1000 = tree branching factor for the HSH protocol,
– ε = 0.125 = noise level,
– kx = 80 = length of the key x,
– ky = 440 = length of the key y,
– s = length of T ’s identifier/response,
– FAR = False Accept Rate = probability of guessing a tag authentication

reply at random,

• FAR = n
Vol(B(0, t))

2s
for our protocol,

• FAR =
Vol(B(0, t))

2s
for HSH,

– Tag mem = the memory needed on the tag,
• kx + ky + s bits for our protocol,
• kx + ky(d+ 1) bits for HSH,

– Comm = total number of bits sent during the whole protocol,
• s(kx + ky + 1) bits for our protocol,
• s(kx + ky + d+ 1) bits for HSH,

– CT = tag computation complexity,
• s(kx + ky) bit operations for our protocol,
• sdky + s(kx + ky) bit operations for HSH,

– CR = reader computation complexity,
• s(kx + ky) bit operations for our protocol (+ decoding D = IdT ⊕ ν),
• βsdky + s(kx + ky) bit operations for HSH.

Here, we augment s to reach the same security level of HSH for our protocol
(i.e. FAR ≈ 2−41). Thus we notice that our protocol needs less memory in the
tag to achieve the same security level (around half less). The complexity for
the reader and for the tag to process the protocol is also much lower than for
HSH. This conclusion is further observable at the reader side: the tree traversal
stage of HSH done by the reader to find the right pair of secret keys increases
consequently the reader’s time search.

4 Attack on HSH

In this section, we introduce an attack conducted on the HSH protocol to damage
the tag privacy. First, let remind that HSH is a combination of HB+ and the
tree-based key infrastructure of Molnar and Wagner (MW). Several attacks have
already demonstrated that MW does not provide tag privacy: Avoine, Dysli, and
Oechslin in [4] (called here ADO), then Buttyán, Holczer and Vajda in [9], and
finally Nohl and Evans in [26]. HSH naturally inherits from MW’s weaknesses.



In what follows, we consider ADO being the first published attack on MW, and
show that it can be adapted to break the untraceability of HSH.

In Section 3, we assumed that tags are tamper-resistant, and we provided a
protocol better than HSH under this assumption. In this section, we consider
that tags are not tamper-resistant, and we show that compromising a few tags
smashes the whole system when based on HSH. The details of all the probabilities
computations done in this section are given in the appendix.

4.1 Adversary game

We explain here how the tree technique chosen in HSH is predisposed for tag
tracing when the adversary A can tamper with one tag. We then show that the
situation is still worse when A can tamper with several tags. Following ADO [4],
we consider a Challenger that supplies two tags to the adversary, one of them
being the target tag. The attack is done as follows:

1. A requests the Challenger and receives one tag T0 (respectively several tags)
that she can tamper with. Thus A can obtain all T0 (respectively the tam-
pered tags) keys. Since the number of tags in the system is large enough, we
consider for the sake of simplicity that A is allowed to put T0 (respectively
all the tampered tags) back into circulation.

2. Then A requests the Challenger and receives a target tag T that she can
query as much as she wants, but cannot tamper with it. Next A puts T back
into circulation.

3. A requests the Challenger and receives two tags T1 and T2 such that T ∈
{T1, T2}. She can query T1 and T2 as much as she wants, without tampering
with them.

4. Finally, A outputs T = T1 or T2.

A succeeds if she can guess correctly which one of T1 and T2 is the target tag T .
Notice that in our attack, A always provides an answer. The goal of our study

is to compute A’s advantage.

4.2 Tampering with one tag

The purpose of this section is to evaluate the probability that the attack de-
scribed above succeeds. To formalize the analysis, we denote the keys of T , T0,
T1 and T2 by [y1, . . . , yd], [y0

1 , . . . , y
0
d], [y1

1 , . . . , y
1
d] and [y2

1 , . . . , y
2
d] respectively. At

a given level i in the tree (1 ≤ i ≤ d), the ADO attack considers four possibilities:

– C1
i = {y0

i = y1
i } ∧ {y0

i 6= y2
i },

– C2
i = {y0

i 6= y1
i } ∧ {y0

i = y2
i },

– C3
i = {y0

i 6= y1
i } ∧ {y0

i 6= y2
i },

– C4
i = {y0

i = y1
i = y2

i }.



MW is based on a classical challenge/response protocol using pseudo-random
functions. But HSH is based on a challenge/response protocol using HB+. The
noise inherent to HB+ does not allow to apply the ADO attack directly.

We first define z`i = B`y`i ⊕ ν`i being the answer of the tag T` at level i of the
HSH tree traversal stage. Then, we define B`i being the ball of radius t = dsεe
(as defined in Section 3.3) around z`i . A direct consequence of HSH is that the
adversary can only evaluate the possibility that T0’s key y0

i was used to compute
z`i , i.e. B`y0

i ∈ B`i or not. With these notations, we consider for our attack four
possibilities related to the ADO ones :

– A1
i = {B1y0

i ∈ B1
i } ∧ {B2y0

i /∈ B2
i },

– A2
i = {B1y0

i /∈ B1
i } ∧ {B2y0

i ∈ B2
i },

– A3
i = {B1y0

i /∈ B1
i } ∧ {B2y0

i /∈ B2
i },

– A4
i = {B1y0

i ∈ B1
i } ∧ {B2y0

i ∈ B2
i }.

Clearly here, the events that are taken into account for this attack are:

– E1
i = C1

i ∧A1
i then the attack succeeds,

– E2
i = C2

i ∧A2
i then the attack succeeds,

– E3
i = C3

i ∧A3
i then the attack definitely fails,

– E4
i = C4

i ∧A4
i then the attack fails at level i but can move to level i+ 1,

where all the Eji events are pairwise disjoint. The fact that the attack succeeds
means that the adversary has been able to distinguish T1 from T2.

In order to simplify the notation in the following, we give and denote explic-
itly two probabilities to compare T0’s key y0

i and a given T`’s key y`i at level i:

– Pr({B`y0
i ∈ B`i}|{y0

i = y`i}) =
t∑

j=0

(
s

j

)
εj(1− ε)s−j = St,

– Pr({B`y0
i ∈ B`i}|{y0

i 6= y`i}) = Pr(dH(B`y0
i , z

`
i ) ≤ t) =

Vol(B(0, t))
2s

= Vt.

We compute the probabilities of the events E1
i , E

2
i , E

3
i , and E4

i . The final
results are:

Pr(E1
i ) = Pr(E2

i ) = St(1− Vt)
(
β − 1
β2

)
Pr(E3

i ) = (1− Vt)2
(
β − 1
β

)2

Pr(E4
i ) =

(
St
β

)2

Following ADO attack, the overall probability Psucc that the whole attack
succeeds when the adversary tampers with one tag is:

Psucc = 2St(1− Vt)
(
β − 1
β2

)(1− (St

β )2d

1− (St

β )2

)



4.3 Adversary probability Psucc when tampering with several tags

We now analyze the adversary success probability of tracing a tag when she
tampers with c0 tags (c0 ≥ 1). As before, we denote the keys of T , T1 and T2

by [y1, . . . , yd], [y1
1 , . . . , y

1
d] and [y2

1 , . . . , y
2
d] respectively. Then at a given level i

of the tree, we consider Ki = {ki,1, ki,2, . . . , ki,ci
} the set of keys known by the

adversary (with Card(Ki) = ci). The ADO attack considers five possibilities:

– C1
i = {y1

i ∈ Ki} ∧ {y2
i /∈ Ki},

– C2
i = {y1

i /∈ Ki} ∧ {y2
i ∈ Ki},

– C3
i = {y1

i ∈ Ki} ∧ {y2
i ∈ Ki} ∧ {y1

i 6= y2
i },

– C4
i = {y1

i /∈ Ki} ∧ {y2
i /∈ Ki},

– C5
i = {y1

i ∈ Ki} ∧ {y2
i ∈ Ki} ∧ {y1

i = y2
i }.

In the same vein as the previous section, we define five possibilities related
to ADO ones:

– A1
i = {∃ki,m ∈ Ki : B1ki,m ∈ B1

i } ∧ {∀ki,m ∈ Ki : B2ki,m /∈ B2
i },

– A2
i = {∀ki,m ∈ Ki : B1ki,m /∈ B1

i } ∧ {∃ki,m ∈ Ki : B2ki,m ∈ B2
i },

– A3
i = {∃ki,m ∈ Ki : B1ki,m ∈ B1

i } ∧ {∃ki,m′ ∈ Ki : B2ki,m′ ∈ B2
i } ∧ {ki,m 6=

ki,m′},
– A4

i = {∀ki,m ∈ Ki : B1ki,m /∈ B1
i } ∧ {∀ki,m ∈ Ki : B2ki,m /∈ B2

i },
– A5

i = {∃ki,m ∈ Ki : B1ki,m ∈ B1
i } ∧ {∃ki,m′ ∈ Ki : B2ki,m′ ∈ B2

i } ∧ {ki,m =
ki,m′}.

Then the events that are taken into account for this attack are:

– E1
i = C1

i ∧A1
i then the attack succeeds,

– E2
i = C2

i ∧A2
i then the attack succeeds,

– E3
i = C3

i ∧A3
i then the attack succeeds,

– E4
i = C4

i ∧A4
i then the attack definitely fails,

– E5
i = C5

i ∧A5
i then the attack fails at level i but can move to level i+ 1.

We compute the probabilities of the events E1
i , E

2
i , E

3
i , E

4
i , and E5

i at level i:

Pr(E1
i ) = Pr(E2

i ) =

(
ci(β − ci)

β2

)(
1− (1− St)ci

)
(1− Vt)ci

Pr(E3
i ) =

(
ci(ci − 1)

β2

)(
1− (1− St)ci

)2

Pr(E4
i ) =

(
β − ci
β

)2

(1− Vt)2ci

Pr(E5
i ) =

(
ci
β2

)(
1− (1− St)ci

)2

Following ADO attack, the overall probability Psucc that the whole attack
succeeds when the adversary tampers with c0 tags is:

Psucc = Pr(E1
1 ∨ E2

1 ∨ E3
1) +

d∑
i=2

(
Pr(E1

i ∨ E2
i ∨ E3

i )×
i−1∏
j=1

Pr(E5
j )

)
(1)



where ci, the number of different keys known by the adversary at level i, is given
by the ADO attack:

c1 = β

(
1−

(β − 1
β

)c0)
and ci = β

(
1−

(β − 1
β

)g(ci)
)
∀i, 2 ≤ i ≤ d

where g(ci) = c0

i−1∏
`=1

1
c`

Remark 2. When ε = 0, there is a perfect match between the ADO attack and
ours. In such a case, there is not wanted noise added in the tag’s answer, which
influences the values of St and Vt (St = 1 and Vt = 0).

Table 1 gives numerical values of Eq. 1 when the parameters s and ε are fixed
(s = 86 and ε = 0.125).

Table 1. Numerical values of the
probability Psucc of tracing tag T
according to branching factor β
when the adversary tampers with
c0 tags. The system contains 220

tags, s = 86 and ε = 0.125.

@
@@c0

β
2 20 100 500 1000

1 33.7% 5.8% 1.2% 0.2% 0.1%
20 56.1% 84.3% 32.9% 7.7% 3.9%
50 56.3% 95.8% 63.0% 18.1% 9.5%
100 56.3% 96.9% 86.0% 33.0% 18.1%
200 56.3% 98.1% 97.4% 55.0% 33.0%

4.4 Adversary probability Pluck when tampering with several tags

Contrary to MW where the adversary can always determine with probability 1
that a given key has been used to generate a tag’s answer, HSH does not provide
such a deterministic verification procedure. In other words, the adversary can
be unlucky, meaning that she checks the right key but concludes that the key is
wrong due to the noise; but she can also be lucky, meaning that the noise makes
her observe something wrong but, nevertheless, she provides the correct result.

•T1

ssggggggggggggggggggggg
T2

++g g g g g g g g g g g

WWWWWWWWWWWWWWWWWWWW

•

w
w

w
w

FFFFFFF •

xxxxxxx

FFFFFFF •

xxxxxxx

FFFFFFF

•

�
�

�
..... •

�����
,,,,, •

�����
.... •

�����
,,,,, •

�����
,,,,, •

�����
,,,,, •

�����
,,,,, •

�����
,,,,, •

�����
,,,,,

• T1 • • • • • • T2 • • • • • • • • • • • • • • • • • •

Fig. 3. An example of the event B.
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Fig. 4. An example of the event L.

Pluck reflects the fact that an adversary A is lucky and finds the right answer
even if she makes a mistake. It is divided in two events during the tree traversal:

– B = {A separates too soon T1 and T2, while this can be done later},
– L = {A separates too late T1 and T2},

which define the adversary probability of luck as:

Pluck = Pr(B) + Pr(L) where B ∧ L = ∅ (2)

Figures 3 and 4 are illustrations of the events B and L. As legend, the branches
_ _ _ represent the paths compromised; T1oo and T2oo represent the

paths supposed by A for T1 and T2, respectively.
Below are the formulas for Pr(B) and Pr(L). Notice that Pr(E5

0) = 1.

Pr(B) =
d−2∑
i=1

(
Pr(B-Separationi)×

i−1∏
j=0

Pr(E5
j )
)

Pr(L) =
d∑
i=2

(
Pr(L-Separationi)×

i−1∑
k=1

(k−1∏
j=0

Pr(E5
j )×

k∏
`=i−1
`=`−1

Pr(L-Follow`)
))

Table 2 gives numerical values of Eq. 2 when the parameters s and ε are fixed
(s = 86 and ε = 0.125). We decide to only give values for β = 2, 20 and 100,
because they are not significant for a larger β.

@
@@c0

β
2 20 100

1 13.10% 1.189% 0.238%
20 7.33% 0.023% 1.2 ∗ 10−10%
50 7.25% 0.012% 5.9 ∗ 10−11%
100 7.23% 2.7 ∗ 10−7% 3.9 ∗ 10−11%
200 7.22% 1.0 ∗ 10−7% 2.9 ∗ 10−11%

Table 2. Numerical values of the
probability Pluck of tracing tag T ac-
cording to branching factor β when
the adversary tampers with c0 tags.
The system contains 220 tags, s = 86
and ε = 0.125.



4.5 Adversary probability Pfail when tampering with several tags

This probability represents the fact that A, at some level in the tree, cannot take
any rational decision given her observations. Thus since our attack definition
forces A to give an answer, the latter will be randomly chosen.

Pfail = Pr(E4
1) +

d−1∑
i=2

(
Pr(E4

i )× Pr(Continuei−1)
)

(3)

where Continuei is the event that A continues the attack until level i.
Table 3 gives numerical values of Eq. 3 when the parameters s and ε are

fixed (s = 86 and ε = 0.125). Like with the table of Pluck, we decide to only give
values for β = 2, 20 and 100, because they are not significant for a larger β.

Table 3. Numerical values of the
probability Pfail of tracing tag T ac-
cording to branching factor β when
the adversary tampers with c0 tags.
The system contains 220 tags, s = 86
and ε = 0.125.

@
@@c0

β
2 20 100

1 27.57% 90.33% 98.00%
20 0.31% 15.59% 66.89%
50 0.08% 4.11% 36.60%
100 0.02% 3.02% 13.39%
200 0.01% 1.88% 2.56%

4.6 The adversary advantage when tampering with several tags

The advantage is defined as:

AdvA = 2
(
Psucc + Pluck + Pfail ·

1
2

)
− 1 (4)

Table 4 gives numerical values of Eq. 4 when the parameters s and ε are fixed
(s = 86 and ε = 0.125). The advantage AdvA is plotted in Figure 5.

When c0 is different from 1 and the branching factor β is less than 100, this
advantage grows up to reach its maximum which is greater than 0.9. Then AdvA
reduces increasingly slower when c0 augments. This outcome seams reasonable:
clearly, the more tags an adversary A opens, the more secret keys she knows,
which implies that the higher probability the attack success will be.

5 Conclusion

In this paper, we analyzed HSH which is an HB-like protocol using the MW
tree-based key infrastructure.

First, we presented a new authentication protocol based on HB+ and on
the LPN problem. We demonstrated that our proposal is as secure as HSH, in



@
@@c0

β
2 20 100 500 1000

1 0.2122 0.0434 0.0091 0.0018 0.0004
20 0.2716 0.8422 0.3274 0.0768 0.0392
50 0.2712 0.9571 0.6262 0.1810 0.0951
100 0.2711 0.9692 0.8536 0.3292 0.1811
200 0.2711 0.9811 0.9654 0.5497 0.3294

Table 4. Numerical values of
the adversary advantage of
tracing tag T according to
branching factor β when the
adversary tampers with c0 tags.
The system contains 220 tags,
s = 86 and ε = 0.125.
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Fig. 5. Adversary advantage of tracing a tag T when she tampers with c0 tags, s = 86,
and ε = 0.125.

the same privacy threat model (i.e. the tags are considered tamper-resistant,
and the adversaries are supposed active, but man-in-the-middle attacks are not
allowed). We showed that it is possible to build an authentication protocol with
better properties than HSH: tag memory, and reader computational complexity
are reduced.

Second we proved that, in a more realistic threat model where the tags are not
tamper-resistant, the HSH protocol is defeated by an attack based on the weak-
nesses of the tree-based key infrastructure. We redesigned the original attack
given by Avoine, Dysli and Oechslin to strike the Molnar and Wagner protocol:
the main difficulty of this adaptation was to take into account the LPN problem
present in HSH, since it relies on the HB-family protocols. In this real-life privacy
threat model, our results showed that the adversary has a significant advantage
to trace a tag.
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A The Details of our Probabilities Computations

During the sequel, we compute the probability of Pr(E1
i ). Then Pr(E2

i ), Pr(E3
i ),

Pr(E4
i ), Pr(E5

i ) are computed in the same way. We will also denote “∃!x” as
“there exists an unique x”.

A.1 When the adversary A tampers with one tag

The probability Pr(E1
i ) is computed as follows:

Pr(E1
i ) = Pr(C1

i ∧A1
i )

= Pr({y0
i = y1

i } ∧ {B1y0
i ∈ B1

i })× Pr({y0
i 6= y2

i } ∧ {B2y0
i /∈ B2

i })

=
1
β
× St ×

β − 1
β
× (1− Vt) (Bayes’ law)

The overall probability Psucc is:

Psucc = 2Pr(E1
1) +

d∑
i=2

(
2Pr(E1

i )×
i−1∏
j=1

Pr(E4
j )
)

= 2St(1− Vt)
(β − 1

β2

)(1− (St

β )2d

1− (St

β )2

)

A.2 When the adversary A tampers with c0 tags

Psucc computation. The probability Pr(E1
i ) is computed as follows:

Pr(E1
i ) = Pr(C1

i ∧A1
i )

= Pr({y1
i ∈ Ki} ∧ {∃ki,m ∈ Ki : B1ki,m ∈ B1

i })
× Pr({y2

i /∈ Ki} ∧ {∀ki,m ∈ Ki : B2ki,m /∈ B2
i })

=
ci
β
× (1− (1− St)ci)× β − ci

β

×(1− Pr({∃!ki,m ∈ Ki : B2ki,m ∈ B2
i }|{y2

i /∈ Ki}))ci

=
ci
β
× (1− (1− St)ci)× β − ci

β
× (1− Vt)ci



Pluck computation. The event B-Separationi divided in four cases:

• M1
i = {T1 is identified by its real key y1

i ∈ Ki} ∧ {T2 is not identified at all
(even if it should)} = Normal⊕Mi

(T1) ∧ FalseMi(T2),
• M2

i = {T1 is identified by its real key y1
i ∈ Ki}∧{T2 is identified by a wrong

known key} = Normal⊕Mi
(T1) ∧Normal	

M2
i
(T2),

• M3
i = {T1 is identified by a wrong known key} ∧ {T2 is not identified at all

(even if it should)} = Normal	Mi
(T1) ∧ FalseMi(T2),

• M4
i = {T1 is identified by a wrong known key}∧{T2 is identified by a wrong

known key} = Normal	Mi
(T1) ∧Normal	

M4
i
(T2).

Pr(Normal⊕Mi
(T1)) = Pr({∃!ki,m ∈ Ki : B1ki,m ∈ B1

i } ∧ {y1
i = ki,m ∈ Ki}) =

St
ci

Pr(FalseMi
(T2)) = Pr({@ki,m ∈ Ki : B2ki,m ∈ B2

i } ∧ {y2
i ∈ Ki}) =

ci(1− St)ci

β

Pr(Normal	M2
i
(T2)) = Pr({∃!k′i,m ∈ Ki : B2ki,m ∈ B2

i } ∧ {y2
i ∈ Ki \ {k′i,m, y1

i }})

=
(ci − 2)Vt

ci

Pr(Normal	Mi
(T1)) = Pr({∃!ki,m ∈ Ki : B1ki,m ∈ B1

i } ∧ {y1
i ∈ Ki \ {ki,m}})

=
(ci − 1)Vt

ci

Pr(Normal	M4
i
(T2)) = Pr(Normal	Mi

(T1)) + Pr(Normal	M2
i
(T2)) =

(2ci − 3)Vt
ci

Pr(B-Separationi) = Pr(M1
i ) + Pr(M2

i ) + Pr(M3
i ) + Pr(M4

i )

The event L-Separationi is divided in four cases where T2 is no longer part
of the current sub-tree:

• N1
i = {T1 is identified by its real key y1

i ∈ Ki} ∧ {T2 is not identified at
all} = Normal⊕Ni

(T1) ∧ FalseNi(T2),
• N2

i = {T1 is identified by its real key y1
i ∈ Ki}∧ {T2 is identified by a wrong

known key k′i,m} = Normal⊕Ni
(T1) ∧Normal	Ni

(T2) ∧ {y1
i 6= k′i,m},

• N3
i = {T1 is identified by a wrong known key} ∧ {T2 is not identified at

all} = Normal	Ni
(T1) ∧ FalseNi

(T2),
• N4

i = {T1 is identified by a wrong known key ki,m} ∧ {T2 is identified by a
wrong known key k′i,m} = Normal	Ni

(T1) ∧Normal	Ni
(T2) ∧ {ki,m 6= k′i,m}.

The event L-Follow` is defined as {T1 is identified by its real key y1
` ∈ K`} ∧

{T2 follows the same branch as T1 at level ` (which is a false branch for T2)} =



Normal⊕N`
(T1) ∧ Fol`(T2) ∧ {y1

i = k′`,m}. Thus we have:

Pr(L-Separationi) = Pr(N1
i ) + Pr(N2

i ) + Pr(N3
i ) + Pr(N4

i )

Pr(Normal⊕Ni
(T1)) = Pr(Normal⊕Mi

(T1)) =
St
ci

Pr(Normal	Ni
(T2)) = Pr({∃!k′i,m ∈ Ki : B2k′i,m ∈ B2

i } ∧ {y2
i /∈ Ki}) =

(β − ci)Vt
β

Pr(Normal	Ni
(T1)) = Pr(Normal	Mi

(T1)) =
(ci − 1)Vt

ci

Pr(FalseNi
(T2)) = Pr({@ki,m ∈ Ki : B2ki,m ∈ B2

i } ∧ {y2
i /∈ Ki}) =

(β − ci)(1− Vt)ci

β

Pr(Fol`(T2)) = Pr(Normal	N`
(T1)) + Pr(Normal	N`

(T2)) = Vt

(
c` − 1
c`

+
β − c`
β

)
Pr(L-Follow`) =

St Vt
c2`

(
c` − 1
c`

+
β − c`
β

)

Pfail computation. Continuei is composed of the following three main cases:

• for the i-th levels, T1 and T2 are identified by their real key: {y1
i ∈ Ki}∧{y2

i ∈
Ki} ∧ {y1

i = y2
i } = E5

i ,
• for the i-th levels, T1 and T2 are identified by the same key, which is the real

one only for T1 = L-Followi,
• for the i-th levels, T1 and T2 are identified by the same wrong key = Qi,
Qi = Foli(T1) ∧ Foli(T2) ∧ {ki,m = k′i,m},

and of the ordered combinations of theses cases: for 1 ≤ ` < k < j ≤ i, {L-
Followk} can be only preceded by {E5

` }, and {Qj} can be preceded by {L-
Followk} or {E5

` } or {L-Followk and E5
` }. Thus, we have:

Pr(Continuei) =
i∏

j=1

(
Pr(E5

j ) + Pr(L-Followj) + Pr(Qj)
)

+
i−1∑
j=1

( j∏
k=1

Pr(L-Followk)×
i∏

`=j+1

Pr(Q`)
)

+
i−1∑
j=1

( j∏
k=1

Pr(E5
k)×

i∏
`=j+1

(
Pr(L-Follow`) + Pr(Q`)

))

+
i−2∑
j=1

( j∏
k=1

Pr(E5
k)×

i−1∑
`=j+1

( ∏̀
m=j+1

Pr(L-Followm)×
i∏

p=`+1

Pr(Qp)
))


