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November 29, 2012



Acknowledgements

Ministere de la Recherche

European Research Council

Willow team

Sierra team
TSI Telecom ParisTech



Acknowledgements II

Host institutions :

Interuniversity Attraction Pole

Pole INMA

Current collaborators :

Pierre-Antoine Absil

François Glineur

Nicolas Gillis



From raw signals to intelligible information

(a) Transcription of polyphonic
signals

Susie kchrr
I'm in the
subway
pffrrrrt
Meet me at
?x%r square
at 9 in front
of pfffrrt

(b) Speech recognition in complex
environments



What is source separation ?

(c) Overdetermined (d) Underdetermined

How do we define a source ?

Different sources may sound similar.

How do sources interact ?
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Time-frequency representations

x ∈ RT → X ∈ CF×N → Vfn = |Xfn|2 ,
s(g) → S (g) → V

(g)
fn = |S (g)

fn |2 .
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(e) Power spectrogram

Each column of spectrogram V is a time window or time frame (' 30
ms).
Short-time Fourier transform yields a sparse representation.
Discarding phase yields a translation-invariant model “for free”.



Nonnegative Matrix Factorization

Reduce the number of unknowns to explain redundancy in the data :

V = (W (1)H(1))︸ ︷︷ ︸
V̂ (2)

+ (W (2)H(2))︸ ︷︷ ︸
V̂ (1)

.

W ∈ RF×K
+ is a dictionary with K basis elements (K < F ).

H ∈ RK×N
+ is a matrix of activation coefficients.

Enforce (pointwise) nonnegativity of the input :

W (g) ≥ 0,H(g) ≥ 0⇒ V̂ (g) ≥ 0 .

1) W fixed, H unknown : nonnegative linear model.

2) (W ,H) unknown : nonnegative matrix factorization.

(Paatero & Tapper, 1994; Smaragdis & Brown, 2003)



Itakura-Saito NMF

minW ,H

∑
fn dIS(Vfn, (WH)fn)

s.t. W ≥ 0,H ≥ 0

dIS(x , y) = x
y − log( x

y )− 1.

dIS(x , y) ≥ 0.
dIS(x , y) = 0⇒ x = y .
dIS(λx , λy) = dIS(x , y)
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Figure: Plot of dIS(1, x) alongside Kullback-Leibler and Euclidean distance.



Probabilistic interpretation of Itakura-Saito NMF

V·n ∈ RF
+ observed power spectrum at time n.

Vfn =

∣∣∣∣∣∑
g

S
(g)
fn

∣∣∣∣∣
2

S
(g)
fn ∼ Nc(0, diag(

∑
k

W
(g)
fk H

(g)
kn )) .

(Févotte et al., 2009)

I Phase of spectrograms is assumed uninformative.

I Reconstruct S (g) from V̂ (g) and X in a principled way.

S
(1)
fn =

V̂
(1)
fn

V̂
(1)
fn + V̂

(2)
fn

Xfn keep the same phase as the mixture

I Select the number of components, cheaper than cross-validation.

(Tan & Févotte, 2009; Hoffmann et al., 2010; Lefèvre et al., 2011)



Finding a dictionary

What dictionary should we use ?

1) Ask a physicist to design the dictionary for you.

2) Use a large collection of samples from source 1 and source 2.

Storing all samples from source 1 and source 2 into memory is
inconvenient and violates the assumption K < F .



Supervised dictionary learning

NMF W1

W
NMF W2

NMF

V

Having at hand a collection of true source signals decouples learning in
two separate problems.

Find (W ,H)
s.t. V (g) = W (g)H(g)

W ≥ 0,H ≥ 0

I Combine dictionaries at test time to compute activation coefficients.



Structure

minH

∑
fn ‖Vfn − (WH)fn‖2 + λΨ(H) .

Few fewer basis elements are used at the same time :
Ψ(H) = {number of nonzero coordinates of H}.
Choice of Ψ reflects assumed structure : temporal continuity at
200ms scale, phonems in speech, etc.

This thesis : Ψ models independence between sources as a group of
basis elements.

Assuming simple interactions, we can make weaker assumptions on
the dictionary.

(Hoyer, 2004; Virtanen, 2007; Mysore et al., 2010)



Overview
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Unsupervised learning

NMF

V

If no training data is available to learn W (g) separately, then

Find (W ,H)
s.t. W (1)H(1) + W (2)H(2) = WH = V .

Not ill-posed any more, but there are still several global optima
(nonconvex problem).

Trial and error : find a dictionary that reconstructs the input while
enforcing specified structure.



NMF with time-frequency annotations

Figure: Example of user annotations in a ten seconds’ audio track:
green voice. red accompaniment.



NMF with time-frequency annotations
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Figure: Semi-supervised NMF consists in solving G matrix completion
problems, coupled by a matrix factorization problem.

Robustness to error via relaxation of the constraints (tuning parameter)

Allow “soft” annotations : M
(g)
fn ∈ [0, 1].

Discard M
(g)
fn = 0.5.



Towards automatic annotations
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Figure: Time-frequency patches
(green) voice (red) accompaniment

Nearest neighbour.

Quantized nearest-neighbour.

Random Forest.



Experimental results

% annotated % correct
track 1 0.23 0.91
track 2 0.10 0.89
track 3 0.29 0.91
track 4 0.17 0.81
track 5 0.22 0.95

Table: Evaluation of user annotations on the SISEC database.



Experimental results

Track1
true accomp voice

ideal(20%) 15.65 10.34
user(20%) 8.74 3.18

auto 2.44 2.35
baseline 8.20 0.86

lazy 5.07 -5.11

Table: Time-frequency annotations : listening tests

ideal : annotations computed from ground truth (upper-bound).
baseline : NMF with optimally permuted components1.
auto : automatic annotations.
user : user annotations.
lazy : use 1

2 x as estimate of each source.

1Supposing expert correctly finds best permutation among 1018 possibilites ...



New : a convex re-formulation

min ‖V̄ −
∑G

g=1 V (g)‖2
F + λ

∑G
g=1 ‖V (g)‖?

subject to M
(g)
fn V

(g)
fn = M

(g)
fn V̄

(g)
fn

V (1) ≥ 0,V (2) ≥ 0 .

(1)

Convex ! So not dependent on initial guess.

Tune the number of components with a continuous parameter λ.

Low-rank (+ nonnegative) solutions of linear underdetermined
system of equations.

Nonnegativity constraints are weaker : only source estimates, not
dictionary.



New : a convex re-formulation

SDR SIR SAR
nmf 5.9706 13.1744 7.2764
lownuc 7.5785 13.609 9.1102

Table: Average results on 5 audio tracks using 20% of annotations.
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Figure: Source separation quality vs allowed cpu time. (Blue) our method.
(Red) NMF.

Convex ! So not dependent on initial guess.
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Bottlenecks in NMF

Batch algorithm requires computing and storing matrix-matrix
products of the same size as the data set.

Online learning : can’t afford to store past data and re-compute
activation coefficients.

Large scale learning : N → +∞, train set is too large to store into
memory.

1) Divide-and-conquer strategies (Cao et al., 2007; Mackey et al.,
2011).

2) Stochastic updates (Robbins & Monro, 1951).

3) Incremental updates (Neal & Hinton, 1998; Mairal et al., 2010).



On-the-fly updates of the auxiliary function

Batch algorithm works on majorization-minimization∑
fn

dIS(Vfn, (WH)fn) ≤
∑
fk

Afk

Wfk
+ BfkWfk .

H optimized using current estimate W .

Afk ← W 2
fk

∑N
n=1 Vfn(W H)−2

fn Hkn ,

Bfk ←
∑N

n=1 (W H)−1
fn Hkn, ,

Matrix products in O(FKN) in time and memory.



On-the-fly updates of the auxiliary function

Batch algorithm works on majorization-minimization∑
fn

dIS(Vfn, (WH)fn) ≤
∑
fk

Afk

Wfk
+ BfkWfk .

Draw v at random from V . h optimized using W .

Afk ← Afk + W 2
fkvf (W h)−2

f hk ,

Bfk ← Bfk + (W h)−1
f hk ,

Matrix-vector products in O(FK ) in time and memory.

After N draws, same overall number of operations O(FKN).

Memory requirements reduced to O(FK ).



How much faster ?
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Figure: N ' 103 (30 seconds’ excerpt)



How much faster ?
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Figure: N ' 104 (4 minutes’ audio track)



How much faster ?
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Figure: N ' 105 (1 hour 20 minutes’ album)



Conclusion

Machine learning

“Sensible” solutions to an otherwise underdetermined problem.

User input gives ideas to design structure.

Structured decompositions enhance user input.

Stochastic optimization opens the door to large scale data analysis.

Audio source separation

Dictionary learning does not replace expert knowledge, it enhances
it.

Audio analysis on larger units : CD, audio collections, and beyond.



Perpectives

Nonnegative decoding in a finite number of iterations.

Automatic annotations using harmonic structure of sound signals
(multipitch).

Find other ways to exploit sparsity of time-frequency images.

Audio collections are naturally structured in graphs : we should use
that !
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