A virtual tour of free viewpoint rendering

Cédric Verleysen

ICTEAM institute, Université catholique de Louvain, Belgium cedric.verleysen@uclouvain.be

Organization of the presentation

- Context
- Acquisition setups
- Rendering virtual views from images
- Rendering virtual views from 3D model
- Image-based rendering vs model-based rendering

Organization of the presentation

- Context
- Acquisition setups
- Rendering virtual views from images
- Rendering virtual views from 3D model
- Image-based rendering vs model-based rendering

Conventional video production fixes the viewpoint to one of the cameras that capture the scene

Weaknesses of existing solution

Main issues:

Restricted camera coverage (cameras on the same side, outside the scene)

Non-smooth transitions between fixed cameras.

What is free viewpoint rendering ?

The concept of FVR is born with the Matrix movie

It works perfectly, so what do you do at work?

The making-of : from Matrix to matrix...

- 120 precisely mounted and synchronized cameras
- Hundreds of man-hours to make the transition smoother [1]

How to automatically render a virtual view ?

Organization of the presentation

- Context
- Acquisition setups
- Rendering virtual views from images
- Rendering virtual views from 3D model
- Image-based rendering vs model-based rendering

The 3D scene must be known to render a virtual view

• A virtual view is a projection of the 3D scene onto an image

What if the 3D of the scene is not fixed ?

The 3D of the scene can be MEASURED (1)

Depth range

The 3D of the scene can be MEASURED (2)

P : converging point

C : object **C**loser projects to the outside of P

F : object Further projects to the inside of P

The 3D of the scene can be COMPUTED by mimicing the human vision

P : converging point C : object **C**loser projects to the outside of P

Organization of the presentation

- Context
- Acquisition setups
- Rendering virtual views from images
- Rendering virtual views from 3D model
- Image-based rendering vs model-based rendering

A (pin-hole) camera projects the rays of light on the image plane

The projection matrices (P1 and P2) are determined by camera calibration [2]

By determinating pixel correspondences, the 3D scene can be reconstructed by triangulation

P1 and P2 are the pseudo-inverses of P1 and P2 [3]

This reconstructed 3D scene can be projected on the virtual view

 $P_V = K_V [R_V | T_V]$ is obtained by "linear interpolation" of the parameters of the reference cameras [4]

Finding pixel correspondences is a computationally expensive process

• Reproject the image planes onto the common plane parallel to the line between the optical centers [5]

An example of epipolar lines rectification

A good tool to create panoramas

Find pixel correspondences : last step, but not least !

• Local methods (block matching : SAD, NCC, census [6], AD-census [7], etc.) : slide a window along the right scanline and compare contents with the reference window

 Non-local methods (graph-cuts [8], dynamic programming [9], belief-propagation [10], etc.) : based on uniquess, ordering and smoothness

Computing the depth from the disparity

• The difference in position between the corresponding pixels in two images is called disparity

Take part in the competition (more than 140 competitors from now) [11]!

Error Threshold = 1			Sort by	nonocc	Sort by all Sort by disc									
Error Threshold 🌲				/		▼ ▼								
Algorithm	Avg.	Tsukuba ground truth			Venus ground truth			Teddy ground truth			Cones ground truth			Average percent of bad pixels (<u>explanation</u>)
	Rank	nonocc	all	<u>disc</u>	nonocc	all	<u>disc</u>	nonocc	all	<u>disc</u>	nonocc	all	<u>disc</u>	
AdaptGCP [137]	6.8	<u>1.03</u> 13	1.29 5	5.60 15	<u>0.10</u> з	0.14 1	1.30 4	4.63 15	6.47 o	12.5 17	<u>1.81</u> 1	5.70 1	5.33 1	3.83
ADCensus [94]	9.9	<u>1.07</u> 17	1.48 14	5.73 20	<u>0.09</u> 2	0.25 a	1.15 3	<u>4.10</u> 10	6.22 4	10.9 s	<u>2.42</u> 11	7.25 9	6.95 12	3.97
AdaptingBP [17]	12.3	<u>1.11</u> 21	1.37 s	5.79 22	<u>0.10</u> 4	0.21 5	1.44 o	<u>4.22</u> 12	7.06 9	11.8 13	<u>2.48</u> 13	7.92 17	7.32 17	4.23
CoopRegion [41]	12.4	<u>0.87</u> 4	1.16 1	4.61 4	<u>0.11</u> 5	0.21 4	1.54 s	5.16 23	8.31 14	13.0 20	2.79 26	7.18 s	8.01 32	4.41
RVbased [116]	16.0	<u>0.95</u> 9	1.42 12	4.98 s	<u>0.11</u> 7	0.29 13	1.07 1	<u>5.98</u> 31	11.6 42	15.4 38	<u>2.35</u> 9	7.61 10	6.81 11	4.88
DoubleBP [35]	16.5	<u>0.88</u> o	1.29 4	4.76 7	<u>0.13</u> 9	0.45 31	1.87 15	<u>3.53</u> 7	8.30 13	9.63 6	2.90 32	8.78 42	7.79 26	4.19
RDP [102]	16.6	<u>0.97</u> 10	1.39 10	5.00 10	<u>0.21</u> 28	0.38 21	1.89 16	<u>4.84</u> 16	9.94 25	12.6 18	<u>2.53</u> 15	7.69 12	7.38 18	4.57
OutlierConf [42]	17.6	<u>0.88</u> 5	1.43 13	4.74 o	<u>0.18</u> 19	0.26 11	2.40 28	<u>5.01</u> 19	9.12 20	12.8 19	2.78 25	8.57 33	6.99 13	4.60
SurfaceStereo [79]	22.5	<u>1.28</u> 35	1.65 23	6.78 42	<u>0.19</u> 21	0.28 12	2.61 40	<u>3.12</u> 4	5.10 1	8.65 z	<u>2.89</u> 31	7.95 19	8.26 40	4.06
SubPixDoubleBP [30]	22.8	<u>1.24</u> 29	1.76 34	5.98 26	<u>0.12</u> в	0.46 33	1.74 12	<u>3.45</u> o	8.38 15	10.0 s	2.93 35	8.73 39	7.91 28	4.39
SubPixSearch [127]	22.9	<u>2.04</u> 79	2.48 68	6.40 35	<u>0.14</u> 13	0.40 25	1.74 12	<u>4.00</u> 9	6.39 5	11.0 11	<u>2.24</u> o	6.87 s	6.50 o	4.18
LLR [135]	24.2	<u>1.05</u> 14	1.65 22	5.64 10	0.29 47	0.81 62	3.07 49	<u>4.56</u> 14	9.81 24	12.2 14	<u>2.17</u> з	8.02 21	6.42 4	4.64
WarpMat [55]	26.3	<u>1.16</u> 22	1.35 7	6.04 27	<u>0.18</u> 20	0.24 7	2.44 32	<u>5.02</u> 20	9.30 z1	13.0 22	<u>3.49</u> 51	8.47 31	9.01 56	4.98
ObjectStereo [98]	27.6	<u>1.22</u> 28	1.62 18	6.36 33	0.59 75	0.69 54	4.61 76	<u>4.13</u> 11	7.59 10	11.2 12	<u>2.20</u> 4	6.99 7	6.36 3	4.46
PMF [138]	29.9	<u>1.74</u> 63	2.04 53	8.07 71	<u>0.33</u> 53	0.49 36	4.16 69	<u>2.52</u> 1	5.87 з	8.30 1	<u>2.13</u> 2	6.80 5	6.32 z	4.06
HEBF [123]	30.9	<u>1.10</u> 20	1.38 9	5.74 21	<u>0.22</u> 29	0.33 18	2.41 30	<u>6.54</u> 51	11.8 46	15.2 35	<u>2.78</u> 24	9.28 54	8.10 34	5.41
PatchMatch [112]	31.1	<u>2.09</u> 81	2.33 64	9.31 so	<u>0.21</u> 26	0.39 23	2.62 41	<u>2.99</u> з	8.16 11	9.62 5	<u>2.47</u> 12	7.80 13	7.11 14	4.59
GC+SegmBorder [57]	32.4	<u>1.47</u> 51	1.82 36	7.86 65	<u>0.19</u> 22	0.31 14	2.44 32	<u>4.25</u> 13	5.55 z	10.9 10	<u>4.99</u> 93	5.78 z	8.66 49	4.52
PMBP [131]	32.7	<u>1.96</u> 73	2.21 61	9.22 78	<u>0.30</u> 48	0.49 34	3.57 63	<u>2.88</u> 2	8.57 16	8.99 з	<u>2.22</u> 5	6.64 4	6.48 5	4.46
	22.0	3 4 6		C	0.07	0.00						7.00	C 00	E 3.3

Organization of the presentation

- Context
- Acquisition setups
- Rendering virtual views from images
- Rendering virtual views from 3D model
- Image-based rendering vs model-based rendering

Virtual view synthesis is not as simple when the cameras are far away from each others (1)

• Large occlusions make the part-to-part correspondences impossible

Virtual view synthesis is not as simple when the cameras are far away from each others (2)

• The <u>ordering constraint</u> (used in non-local methods) does not hold anymore

Virtual view synthesis is not as simple when the cameras are far away from each others (3)

• The matching with fixed-size windows fails because of foreshortening

Reconstruct explicitly the 3D model of the scene

Model-based rendering

Manually select corresponding features...

...and define a polygonal model [3]

Correct the 3D model thanks to the epipolar geometry (*bundle adjustment* [12])

And finally add the textures (texture wrapping)

Cross your fingers for a good model (1)

Cross your fingers for a good model (2)

Organization of the presentation

- Context
- Acquisition setups
- Rendering virtual views from images
- Rendering virtual views from 3D model
- Image-based rendering vs model-based rendering

Comparison between image-based rendering and model-based rendering

Image-based rendering	Model-based rendering					
 Slow (pixel matching) 	• Fast (precomputed 3D model)					
 Not suitable for large baseline 	 Suitable for large baseline 					
 Automatic (variable 3D model) 	• Manual (fixed 3D model)					

Any rivalry between image-based proponents and model-based proponents is non-sense, because they are COMPLEMENTARY methods

A good example

Conclusion

- Free viewpoint rendering enables to virtually navigate across a scene
- The 3D of the scene must be reconstructed, in such a way to project it onto the virtual view
- Two types of methods are used for 3D reconstruction : imagebased rendering and model-based rendering.
- The constant war between their proponents is non-sense, because they are complementary methods
- Perspective : regularization of image-based rendering with an (learnt) *a priori* of the projection of the 3D model

Some references

- (1) N. Inamoto and H. Saito, "Virtual viewpoint replay for a soccer match by view interpolation from multiple cameras" in *IEEE Trans. on Multimedia (TM07)*, vol.9(6), p.1155-1166, 2007.
- (2) Z. Zhang, "A flexible new technique for camera calibration" in *IEEE Trans. on Pattern Analysis and Machine Intelligence (PAMI'00)*, vol 22(11), p.1330-1334, 2000.
- (3) R. Hartley and A. Zisserman, "Multiple View Geometry in Computer Vision", Cambridge University Press, Cambridge, UK, 2000.
- (4) J. Park, "Quaternion-based camera calibration and 3D scene reconstruction", in *Fourth ACM/IEEE International* Conference on Computer Graphics, Imaging and Visualization (IJCV07), p. 89-92, 2007.
- (5) C. Loop and Z. Zhang, "Computing Rectifying Homographies for Stereo Vision", *in International Conference on Pattern Recognition (CVPR '99)*, vol 1, 1999.
- (6) H. Hirschmüller and D. Scharstein, "Evaluation of stereo matching costs on images with radiometric differences", in IEEE Trans. on Pattern Analysis and Machine Intelligence (PAMI'09), vol 30(2), p.1328-341, 2009.
- (7) X. Mei, X. Sun, M. Zhou, S. Jiao, H. Wang and X. Zhang, "On building an accurate stereo matching system on graphics hardware", in IEEE International Conference on Computer Vision Workshops (ICCVW'11), p.467-474, 2011.
- (8) Y. Boykov, O. Veksler, and R. Zabih, "Fast Approximate Energy Minimization via Graph Cuts", in *IEEE Trans. on Pattern Analysis and Machine Intelligence (PAMI'01)*, vol 23(11), p.1222-1239, 2001.
- (9) I.J. Cox and S.L. Hingorani and S.B. Rao and B.M. Maggs, "A maximum likelihood stereo algorithm", *in Computer Vision and Image Understanding (CVIU'96)*, vol.96, p.542-567, 1996.
- (10) A. Klaus, M. Sormann and K. Karner, "Segment-based stereo matching using belief propagation and a selfadapting dissimilarity measure", in 18th Int. Conf. on. Pattern Recognition (ICPR'06), vol 3, p.15-18, 2006.
- (11) D. Scharstein and R. Szeliski, "A taxonomy and evaluation of dense two-frame stereo correspondence algorithms", *in International Journal of Computer Vision (IJCV'02)*, vol. 47(1:3), p.7-42, 2002.
- (12) B. Triggs, P. McLauchlan, R. Hartley and A. Fitzgibbon, "Bundle adjustment a modern synthesis", Springer, in
 Vision algorithms: theory and practice, p.153-177, 2000.
 33

Some references

Richard Hartley and Andrew Zisserman

CAMPERING

Thank you very much for your attention...

Questions?