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Small is big : Jeff Immelt is seen here unveiling the new Vscan technology (i.e portable Ultrasound) to

the audience at Web 2.0 Summit in San Francisco (see http ://www.gereports.com).
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However, a recent study on mice from Yale University
[Ang 06] showed that exposure to ultrasound while
pregnant may affect brain development in the fetus.

Too soon to extrapolate the findings to humans.

It may be that the ultrasound waves somehow disrupt
the connections formed between cells as they move
into their proper location

As a conclusion, beautifull modality...Whose effects
still need to be studied
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The basic principle of ultrasound imaging is simple.

A propagating wave partially reflects at the interface
between tissues.

If these reflections are measured as a function of time,
information is obtained on the position of the tissue
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The main instrumentation in US imaging consist of a
transducer.

This tranducer acts both as a transmitter and signal
receiver

The transmission mode converts an oscillating voltage
into mechanical vibrations transmitted as pressure
waves

Total pressure at position x is then given by
pT (x, t) = p0 + p(x, t) [Hill 04]
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Developping and simplifying, we found the following
wave equation.

∇2p− 1

C2

∂2p

∂2t
= 0 [Hill 04]

Where C ≡ 1√
ρ0β0

is the speed of sound (SOS)

With ρ and β the values of the density and
compressibility resp.
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(TOF) of these echoes is then used to establish the distance

from the transducer to the reflecting medium. The TOF

depends on the speed of sound (SOS) in the tissues traversed

by the beam; sound travels at different speeds in different

media. The range of sound speed in average soft human tis-

sues at body temperature (37 �C) is 1450 m/s in fat to 1613

m/s in connective tissue.18,19 Standard practice in US imag-

ing is to assume a fixed value for the SOS of 1540 m/s (Ref.

20) which can lead to errors in SOS of up to 6% and, there-

fore, errors in distances estimated using the US. The assump-

tion of constant SOS has been made because real time

correction of SOS aberrations for individual tissue types was

not practical and because, until recently, US techniques were

mainly used in qualitative diagnostic imaging20 rather than

quantitative distance and volume measurements. For quanti-

tative measurements, this assumption may lead to errors in

measurements of organ boundary positions of several milli-

meters, especially in cases where the organ is deeply seated

and where the path of US waves is through tissues with a

SOS significantly different from 1540 m/s. For example, for

a region of interest situated at 10 cm depth in tissue with

SOS in the range of 1450–1613 m/s, SOS aberration could

result in a maximum error of 6 mm in the measured position.

For tissues with SOS outside this range the error is larger.

The deeper the region of interest, the longer the path and,

therefore, the larger the aberration. If along the US path tis-

sues are present with SOS that are both higher and lower

than 1540 m/s, their effect might partially cancel out and the

final error may not be evident. An example of this situation

is prostate imaging in which both fat and muscle tissues may

overlay the prostate, which are on the opposite sides of the

SOS range. Several cases of small measured differences

between organ positions in the prostate determined by US

and CT imaging were reported in the literature.21–24 These

differences may be partially explained by the SOS aberration

in US imaging.

The effect of the SOS aberration is expected to be more

evident in cases like gynaecological or breast cancer

patients, where in some cases mostly fat tissue is overlying

the region of interest and therefore the aberration is only in

one direction. SOS in fat tissue was reported to be 1475 m/s

(Ref. 19), which is 4% lower than the standard 1540 m/s, so

distances in a US scan will appear longer by a few milli-

meters (Table I). Also, for liver applications (where the SOS

was reported to be 1595 m/s (Ref. 19), but depends on the

fat content of the liver) small but significant distance errors

may occur.

In this work, a method was proposed to implement a SOS

aberration correction in 3D US scans in those cases where a

spatially registered CT scan is also available. A CT scanner

calibrated in terms of Hounsfield units (HU) versus physical

density by means of a standard density calibration phantom

was used to establish a HU-density relationship. This rela-

tionship was used to create a SOS map of every pixel in US

images of ultrasound phantoms which had been coregistered

with CT images. The map was then used to rescale voxels’

axial dimensions along each line of view of the US volume,

thus correcting SOS induced image distortions. This method

was applied to two patient image datasets to demonstrate its

clinical application.

II. MATERIALS AND METHODS

II.A. ClarityTM 3DUS System

All US scans were performed using a Clarity 3DUS Sys-

tem (Resonant Medical Inc., Montreal, Quebec, Canada).

The system consists of a set of diagnostic US probes, each

for a different anatomical region. Probes are fitted with an

array of infrared reflectors and a ceiling-mounted optical

tracking system and software components are used to ac-

quire and rebuild 3DUS images data for patient positioning

and soft tissue anatomy assessment. The ClarityTM system

consists of two 3DUS devices: one located in the CT simula-

tion room and the other located in the treatment room. A

registration algorithm is used to compare the 3DUS images

acquired in the simulation room with those acquired in the

treatment room prior to every treatment session. Both US

image datasets are referenced to the same coordinate system.

In this way, the patients position before every treatment can

be compared to their position at simulation to determine

whether shifts or replanning are required to irradiate the

radiotherapy target volume accurately while at the same

time sparing organs at risk. CT images are also acquired at

simulation therefore enabling calculation of the true deliv-

ered fractional dose in conjunction with a treatment planning

system.7 In this work two probes were used to acquire US

image data. All phantom data were acquired using a linear

US probe provided with the system (linear probe: type L14–

5/38, center frequency 7.2 MHz, Sonix Series, Ultrasonix

Medical Corporation, Richmond, BC, Canada) and patient

TABLE I. SOS values for different human soft tissues at 37 �C: the data were

taken from: Mast T.D., “Empirical relationship between acoustic parameters

in human soft tissues” (Ref. 19).

Tissue type Density (g=cm3) Speed of sound (m=s)

Connective 1.120 1613

Muscle 1.050 1547

Fat 0.950 1478

Adipose 0.950 1450

Blood 1.060 1584

Brain 1.040 1560

Breast 1.020 1510

Kidney 1.050 1560

Liver 1.060 1595

Muscle, cardiac 1.060 1576

Muscle, skeletal 1.050 1580

Skin 1.090 1615

Average soft tissue: Fatty 0.985 1465

Average soft tissue: Non-fatty 1.055 1575

Blood cells 1.093 1627

Blood plasma 1.027 1543

Spinal cord 1.038 1542

Spleen 1.054 1567

Testis 1.044 1595

Mean 1.042 1557

Standard deviation 0.043 50

2666 Fontanarosa et al.: Speed of sound aberration correction in IGRT 2666

Medical Physics, Vol. 38, No. 5, May 2011
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Current Ultrasound devices assume that SOS is
constant in all tissues (1540 m/s) [Fontanarosa 11]

In soft human tissues :
SOS = ((1.09) · ρ+ 0.419) · 103m/s± 3.5m/s
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Using the Hounsfield units of CT scans, it is possible
to define a density map of the body

Then using this density map, one can compute a SOS
map using the linear relation of previous slide

Briefly, penetration depth in current devices is

computed as d =
TOF

2
˜SOS with ˜SOS = 1540m/s

is the speed of sound (SOS)

Wherever actual penetration depth is given by

dcorr =
1

2

n∑
j=1

SOSj(TOFj − TOFj−1)

Institut ICTEAM December 2011 Page 9/24



Using the Hounsfield units of CT scans, it is possible
to define a density map of the body

Then using this density map, one can compute a SOS
map using the linear relation of previous slide

Briefly, penetration depth in current devices is

computed as d =
TOF

2
˜SOS with ˜SOS = 1540m/s

is the speed of sound (SOS)

Wherever actual penetration depth is given by

dcorr =
1

2

n∑
j=1

SOSj(TOFj − TOFj−1)

Institut ICTEAM December 2011 Page 9/24



Using the Hounsfield units of CT scans, it is possible
to define a density map of the body

Then using this density map, one can compute a SOS
map using the linear relation of previous slide

Briefly, penetration depth in current devices is

computed as d =
TOF

2
˜SOS with ˜SOS = 1540m/s

is the speed of sound (SOS)

Wherever actual penetration depth is given by

dcorr =
1

2

n∑
j=1

SOSj(TOFj − TOFj−1)

Institut ICTEAM December 2011 Page 9/24



Using the Hounsfield units of CT scans, it is possible
to define a density map of the body

Then using this density map, one can compute a SOS
map using the linear relation of previous slide

Briefly, penetration depth in current devices is

computed as d =
TOF

2
˜SOS with ˜SOS = 1540m/s

is the speed of sound (SOS)

Wherever actual penetration depth is given by

dcorr =
1

2

n∑
j=1

SOSj(TOFj − TOFj−1)

Institut ICTEAM December 2011 Page 9/24



And every voxel has to be resized in the axial direction

from di =
1

2
˜SOS · (TOFi − TOFi−1) to

di,corr =
1

2
SOSi · (TOFi − TOFi−1)

We then use an axial scaling factor given by

∆ =
SOSi

˜SOS
di
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Complicated… 

Complicated…�
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Gabor Filtering and Classification

Once US Images have been corrected for SOS
aberrations, We propose to consider the approach of
[Zhan 06]

The approach consists of 2 steps :

� Training

� Application
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Gabor Filtering and Classification

� During training, shape and tecture priors are
extracted from training images

� Then an anisotropic median filtering is applied to
reduce the speckle noise from the test images

� Finally Support vector machines are used to label
voxels based on their texture features

Once the texture classification has been completed,
the organ shape is moved at the boundary between
voxels classified as organ and non-organ
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Those 2 steps (texture classification + shape
deformation) are repeated untill convergence

Gabor filtering and SVM Classification are performed
on subsurfaces

I.e. Let us define our shape as a set of vertices
S = {Pi, i = 1, ..., I}.

Let us note T a set of triangles where

T = {Tri, i = 1, ..., I} and Trj =
{
P j1 , P

j
2 , P

j
3

}
Then the entire surface is decomposed into N
subsurfaces Sk =

{
Trkl , l = 1, ..., Nk

}
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To save computation time, two gabor filter banks
located at 2 orthogonal planes (axial and coronal) are
used

gγ,ω(x, y) = aγg(aγ(x cos(ωψ) + y sin(ωψ)),

aγ(−x sin(ωψ) + y cos(ωψ))) (1)

hγ,ω(y, z) = aγh(aγ(y cos(ωψ) + z sin(ωψ)),

aγ(−y sin(ωψ) + z cos(ωψ))) (2)

(γ = 0, . . . ,Γ− 1 ω = 0, . . . ,Ω− 1)
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Application of GF on each voxel gives 4 sets of texture
features

{
Ĝrealγ,ω (~v)

}
,
{
Ĝimgγ,ω (~v)

}
,
{
Ĥreal
γ,ω (~v)

}
,
{
Ĥ img
γ,ω (~v)

}

Gabor features are then compiled into a vector T (~v)

This vector is then used to classify the voxels as organ
and non organ using KSVM

Institut ICTEAM December 2011 Page 17/24



Application of GF on each voxel gives 4 sets of texture
features

{
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Kernel Support Vector Machines

Given m samples, KSVM gives a decision plane which
separates positive samples from negative ones

KSVM are first trained using the texture vectors
coming from organ and non organ tissue

Then during application step, KSVM are used to
classify voxels based on their texture properties ~T (~v)

KSVM gives the signed distance from ~T (~v) to the
separation hyperplane
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Kernel Support Vector Machines

The value returned by the KSVM is then mapped to
the interval [0, 1] to denote the probability of voxel v
to belong to the organ

L(~v) = s
(
f
(
~T (~v)

))
= s

(
m∑
i=1

αiliK
(
~Ti, ~T (~v)

)
+ b

)

Where s(.) is a sigmoid function.
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Since texture varies greatly along prostate boundaries

Instead of using a single G-SVM, one G-SVM is
associated to each subsurface Sk in the deformable
model

Number of subsurfaces should be limited (essentially
because of time) for use in clinical applications
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Once results of the G-SVM have been computed for
the whole surface, an external energy term is
computed

Eext(~Pi) = wSumESum(~Pi) + wDistEDist(~Pi)

ESum(~Pi) =

((∑
∀~v∈N(~Pi)

L(~v;j))∑
∀~v∈N(~Pi)

1

)
− 0.5

)2

EDist(~Pi) =

(
d(~CP , ~Pi)− d(~CNP , ~Pi)

)2
R2
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