A very short introduction to Digital Topology

Sébastien Lugan

Communications and Remote Sensing Laboratory Université catholique de Louvain

June 1, 2011

Definition

Analysis and filtering of 2D / 2.5D / 3D / n-D digital images

Applications:

- connectedness and connected components;
- classification of points in a digital set;
- thinning;
- skeletization;
- ...

Key authors

A. Rosenfeld	1970
S. Yokoi	1975
T. Pavlidis	1979
T.Y. Kong	1985
G. Bertrand	1994

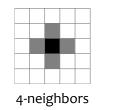
Adjacency

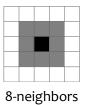
Two points (i_1, j_1) and (i_2, j_2) are said 4-adjacents iff

$$(i_1 - i_2)^2 + (j_1 - j_2)^2 = 1$$

Two points (i_1, j_1) and (i_2, j_2) are said 8-adjacents iff

$$1\leqslant (j_1-j_2)^2+(j_1-j_2)^2\leqslant 2$$





Connexity

Let Π be a digital picture, S a non-empty subset of Π , P and Q points of Π .

- *P* and *Q* are connected in *S* if there exists a path from *P* to *Q* consisting entirely of points of *S*.
- "Connectedness in S" is an equivalence relation.
- The equivalence classes defined by this relation are called the connected components of S.
 If S has only one component, it is called connected.
- The unique component of S that contains the border of Π is called the *background* of S; all other components, if any, are called *holes* in S.
 If S has no holes, it is called *simply connected*.

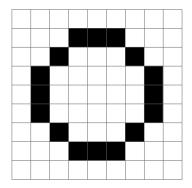
Jordan's Curve Theorem

Given a simple closed polygonal curve $\mathcal C$ in the plane $\mathbb R^2.$

Then $\mathbb{R}^2 \setminus \mathcal{C}$ consists of exactly two open connected sets (in the sense of the ordinary \mathbb{R}^2 -topology).

Exactly one of these sets is bounded and is called the *interior* with respect to C and the other one is unbounded and is called the *exterior* with respect to C.

Connectivity paradoxa



Connectivity paradoxa



Digital Jordan's Curve Theorem

Given a closed simple κ -curve \mathcal{P} in the digital plane \mathbb{Z}^2 .

Then $\mathbb{Z}^2 \setminus \mathcal{P}$ consists of exactly two $\overline{\kappa}$ -connected sets.

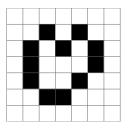
Exactly one of these sets is bounded and is called the *interior* with respect to \mathcal{P} and the other is unbounded and is called the *exterior* with respect to \mathcal{P} .

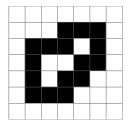
Discrete analogs of Jordan curves and arcs

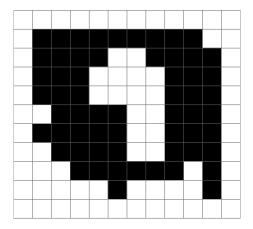
A component C is called a *curve* if it is connected, and each of its point has exactly two neighbors in C.

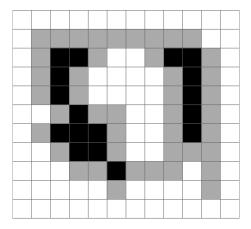
A curve has at most one hole.

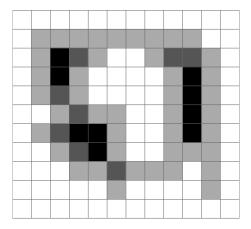
Every point of a curve C is adjacent (in the sense of \overline{C} 's connectedness) to both components of \overline{C} .

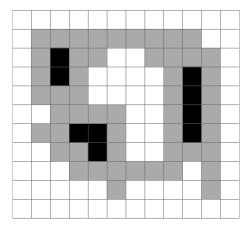


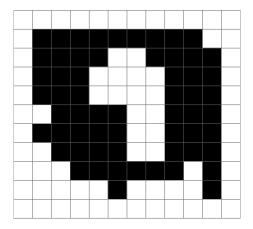


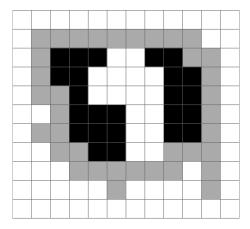












Thinning

Goal: removing points without changing the connectedness properties of either S or \overline{S}

Thinning (simple point)

The following properties of the point P of S are all equivalent (N(P) denotes the set of 8-neighbors of P):

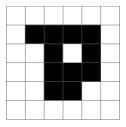
- S ∩ N(P) has the same number of components (in the S sense) as S ∩ [N(P) ∪ {P}]
- *S* ∩ *N*(*P*) has the same number of components (in the *S* sense) as [*S* ∩ *N*(*P*)] ∪ {*P*}
- S ∩ N(P) has just one component adjacent to P ("component" and "adjacent" in the S sense)
- S̄ ∩ N(P) has just one component adjacent to P ("component" and "adjacent" in the S̄ sense)
- S {P} has the same number of components (in the S sense) as S, and S ∪ {P} has the same number of components (in the S sense) as S.

Thinning (simple point)

S is an arc iff it is simply connected and has exactly two simple points

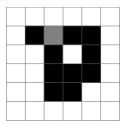
S is a curve iff it is connected, has exactly one hole, and has no simple points

Simple points

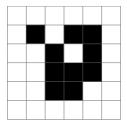


Sébastien Lugan (UCL-TELE)

Simple points

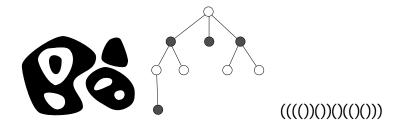


Simple points

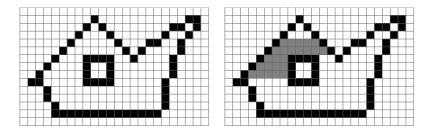


Sébastien Lugan (UCL-TELE)

Adjacency tree



Shape filling



3D Digital Topology

Sébastien Lugan (UCL-TELE)

