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Introduction
✴ Torrents of scientific data:

  images, signals, volumes, ADN, graphs, ...
✴ Sensors under “hard constraints”:

✴ few detected photons (gamma, rayon X, ...)
✴ low transmission, limited longevity, ... 

✴ Consequences:
✴ noisy or missing observations, saturation, blur, ...
✴ compressed and digitized data, ...

✴ Problem of interest here: Image Denoising

3

(one data restoration method)
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“Noising” an image:
✴ Simple Model: 

✴ Noisy image f of N pixels:

4

f = fpure + ε, ε(m) ∼ N (0, σ2)

= +

f fpure ε

structured not structured

(or other distribution)
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“Noising” an image:
✴ Simple Model: 

✴ Noisy image f of N pixels:

⇒	 	 Structure  =  “Sparsity”
5

f = fpure + ε, ε(m) ∼ N (0, σ2)

= +

f fpure ε
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What’s sparsity?
✴ Hypothesis: an image (or any signal) can be decomposed 

in a “sparsity basis” Ψ with few non-zero elements α :

✴ Ψ can be an ONB (e.g. Fourier, Wavelets) or a dictionary

6

f(n) =
d�

k=1

αk ψk(n), n = (n, m), Ψ = {ψj : 1 � j � d}

115×147 
≈ 16k pixels 10 sparse 25 sparse 50 sparse 250 sparse 1000 sparse

16k pixels ➪ 1k values  f  is sparsely approximable 

f
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DeNoising: Principle
✴ Signal is sparse (or compressible) in Ψ, noise is not!

✴ For additive Gaussian Noise model,

✴ For a ONB:

‣ Shrinkage, or 
thresholding:

[Donoho, Johnstone, 98]

7

f = fpure + ε, ε(m) ∼ N (0, σ2)

αj = �f, ψj� = �fpure, ψj� + �ε, ψj�

with �u, v� =
�

m u(m)v(m)

(m = (m, n))

bounded amplitude:

αj → T
�
αj , T (σ)

�

Ψ = {ψj : 1 � j � N}
|�ε, ψj�| ∝ σ

√
N

u

Th(u, T ) Ts(u, T )

u

hard soft

and reconstruct!
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✴ Sparsity basis = directional wavelets 

‣ But most sparsity bases are local (in space)                                             

Denoising Example:
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Original Noisy image, SNR: 22.13 dB Reconstructed, SNR: 32.02 dB

(or curvelets,             or bandlets,   or “∗ lets”)
[Antoine, Vandergheynst, Jacques]

[Candes, Donoho, Starck, Demanet] [Mallat, Peyré] [ask L. Duval, WITS]
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Towards non-locality ...
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Towards non-locality ...
Non-local Means [Buades, Coll, Morel, 05]

✴ Given an image f of N pixels, define patches of M pixels 
located on x :

10

px ∈ RM

f
x
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Towards non-locality ...
Non-local Means [Buades, Coll, Morel, 05]

✴ Given an image f of N pixels, define patches of M pixels 
located on x :

✴ Define similarity (for r > 0):

✴ NL Means:

11

px ∈ RM

f
x

w(x, y) = Gr(px − py)

Gr(v) := exp− 1
2 r2

�
i |vi|2

[Mrf ](x) = 1P
y w(x,y)

�
y w(x, y)f(y)
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Towards non-locality ...
✴ Example: Non-local Diffusion [Source: G. Peyré, 08]

12

Original image:
computing similarity 

w(x,y)
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Towards non-locality ...
✴ Example: Non-local Diffusion [Source: G. Peyré, 08]

13

Original image:
computing similarity 

w(x,y)

g = δ(x− c)
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Towards non-locality ...
✴ Example: Non-local Diffusion [Source: G. Peyré, 08]

14

Original image:
computing similarity 

w(x,y)

g = δ(x− c) M4 g M8 g
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Towards non-locality ...
✴ Example: Non-local Diffusion [Source: G. Peyré, 08]

15

Original image:
computing similarity 

w(x,y)

g = δ(x− c) M4 g M8 g

Same for Local diffusion:
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Non-local Graph
✴ Behind NL Means, a graph G = (V, E, w) with:

16

V = {x ∈ im. dom.}, E ⊂ V × V, w : E → R

w(x, y)

x

y
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Non-local Graph
✴ Behind NL Means, a graph G = (V, E, w) with:

✴ Similarity is linked to the connectivity matrix W:

17

V = {x ∈ im. dom.}, E ⊂ V × V, w : E → R

Wxy =

�
w(x, y) if (x, y) ∈ E

0 else.

where: E is defined generally by thresholding w, and
Mrf = D−1Wf, Dxy = δxy

�
y Wxy

w(x, y)

x

y
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Non-local Spectral Decomposition
✴ Connectivity induces a Laplacian: (with                           ) 

✴ Eigenvectors of L, i.e. the set 

 with                     , form an ONB for functions on V, i.e. 

Example: Euclidean Graph ↔ 2-D Fourier

✴ By analogy: The Fourier transform on a graph: 
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L = D −W or Lnorm = Id−D−1/2WD−1/2

Γ = {γ� ∈ RN : L γ� = λ�γ�, 0 ≤ � ≤ N − 1},

f(i) =
�

�

f̂� γ�(i), (inverse)

f̂� = �γ�, f� =
�

i

γ∗� (i) f(i) ∈ C, (forward)

λ0 = 0 � λ1 � · · · � λN−1 RN

Dij = δij
�

k Wik
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Graph Wavelets
‣ Use the Graph Wavelets 
✴ Given a kernel                , ≈ band pass
✴ Extension of g to the L operator:

✴ Wavelet? a wavelet localized on the graph node j is

✴ and the Wavelet Transform:

19

g : R+ → R+

[Hammond, Gribonval, Vandergheynst, 09]

T t
g := g(tL)

�g(tL)f := g(tλ�)f̂�

[g(tL) f ](i) =
�

�

g(tλ�)f̂� γ�(i)

(⇔ convolution by g in freq.)

(⇔ 1/t acts as a scale)

ψt,j(i) = T t
g δj(i)

Wf (t, j) = �ψt,j , f� = T t
gf

(⇔ filtering of f )
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✴ Wavelet localization: (also proved theoretically)

Graph Wavelets

20

1/t = 1/4Swiss roll
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✴ Wavelet localization: (also proved theoretically)

Graph Wavelets

21

1/t = 1/2Swiss roll
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✴ Wavelet localization: (also proved theoretically)

Graph Wavelets
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1/t = 1/2Swiss roll
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✴ Wavelet localization: (also proved theoretically)

✴ Fast computation:  g(u) ≈ Pol(u)   ⇔  Apply (Lf )n  (with L very sparse) 

Graph Wavelets

23

1/t = 1/2Swiss roll

e.g. Taylor, Chebyshev
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✴ Reconstruction possible (similar to common CWT):  

✴ For finite scales, i.e.                                ,
reconstruction possible if frame (in scale), i.e. 

Graph Wavelets

24

f(j) = �γ0, f� γ0 + 1
Cg

�
i

�∞
0 Wf (t, i)ψt,i(j) dt

t ,

Cg =
� ∞

0
g2(u)/u du

{ts : 1 � s � J, ts < ts+1}

∃A, B > O, ∃h : R+ → R+ (i.e. scaling function)
0 < A � h2(u) +

�
s g(tsu)2 � B < ∞

A

B

u
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Non-local Wavelet Basis (frame)
✴ Non-local Wavelets are ...

                   ... Graph Wavelets on Non-Local Graph

25

1/t  increasing

ψt, (i)

Interest: good adaptive sparsity basis
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Non-Local Wavelet Denoising
✴ Of course graph depends on the (pure) image
✴ But graph not too much affected by noise

‣ Denoising Method:
1. (pre-filter the image for cleaner graph)
2. Compute Gf = (V, E, w) from f = f pure + ε
3. Decompose f on the wavelet frame

5. Threshold the coefficients
6. Reconstruct f * (by frame inversion, i.e. conjugate gradient) 

26

Ψ = {φ} ∪ {ψts,j ∈ RN : ts = 2s, 1 � s � S, � j � N}

(remark: more general formulation available: e.g. Iterative Soft Thresholding)
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Non-Local Wavelet Denoising
✴ Boat Image Non-Local Denoising:

✴ More tests to be done (comparisons, parameters influence, ...)

27

Original Noisy image, PSNR: 19.62dB Reconstructed, PSNR: 25.78 dB

(preliminary result)
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Conclusion and Perspectives 
✴ Sparsity is key feature of efficient denoising techniques.
✴ Non-local Wavelets offer a good adaptive sparsity basis.

✴ Non-local Wavelet Processing is a very promising. 
✴ However:

✴ Quantifying the effect on noise on graph structure?
✴ Other noise distributions? (e.g. NL means promising for Poisson)
✴ Application to other image restorations (e.g. deconvolution, 

inpainting, texture generation, ...)?

28
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Thank you!
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