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Jean-François Aujol, (IMB, Bordeaux)

2nd October 2012



Outline

1 Recalls on CBCT and PET

2 Models

3 Methods

4 Results
CBCT : algorithms
CBCT : simulation results
CBCT : results on real data
PET : algorithms
PET : simulation results
PET : results on real data

5 Conclusion

Yannick Boursier Proximal methods for Poisson Intensity CBCT and PET 2 / 75



Outline

1 Recalls on CBCT and PET

2 Models

3 Methods

4 Results

5 Conclusion

Yannick Boursier Proximal methods for Poisson Intensity CBCT and PET 3 / 75



CBCT : X-ray absorption (or transmission) tomography

CBCT= Cone Beam Computerized Tomography

Medical imaging modality providing anatomical information.
CBCT-Scan principle : X-ray source + X-ray camera, the
imaged object is in between.
Cone-Beam geometry.
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CBCT : data

with more angles
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CBCT : data
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CBCT : X-ray absorption (or transmission) tomography

The Beer-Lambert law claims : Ij(E ) = zj exp
[
−
∫
rj
µE (n)dn

]
with

Ij(E ) the number of photons received at pixel j .

µ : n 7→ µE (n) the unknown absorption coefficient of tissue at
point n in the beam rj .

zj(E ) parameter proportional to the number of photons
emitted by the X-ray source I0(E ).
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PET : Emission Positron Tomography

Medical imaging modality providing metabolic information
(measurement of the activity of an organ, etc.).

PET-Scan principle : injection of a radiotracer and collection
of emitted gamma rays by detectors.
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PET : Emission Positron Tomography

x

y
s

t

 θ

Measurement at pixels indexed by the line of response L :

wL =

∫
L
x(n) exp (−µ511(n))dn

x is proportional to the unknown concentration of radiotracer
activity at point n.

n 7→ µ511(n) is the absorption coefficient at 511 keV at point
n.
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The developed demonstrator at CPPM : the
ClearPET/XPAD
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The developed demonstrator at CPPM : the
ClearPET/XPAD

Technology

Technological breakthrough : A 960× 560 hybrid pixels
detector.

working in photon counting mode.
↪→ no charge integration thus no dark noise.
↪→ better SNR and better contrast at low statistics.

Simultaneous CBCT and PET acquisition of the same field of
view !

Challenges :

Improvement of the quality of tomographic reconstructions.
↪→ introduction of sparse methods with non-differentiable

constraints.
↪→ introduction of Poisson noise in the models.

Dose reduction (X-ray exposure, radiotracers concentration).
Application to bimodal and simultaneous data, to spectral or
color X-ray data . . .Yannick Boursier Proximal methods for Poisson Intensity CBCT and PET 12 / 75
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Model for CBCT

Ij = zj exp

[
−
∫

rj

µ(n)dn

]
⇔ y = z exp (−Aµ)

Discretization :

y ∈ Rn the measurements,
µ ∈ Rm the unknown absorption coefficient,
A ∈M(Rm,Rn) the system matrix (n << m, ill-conditioned).
z a constant.

Noise model :

pure Poisson noise : yj ∼ P (zj exp (−[Aµ]j)).
no charge integration noise (dark noise, additive gaussien
noise).
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Model for CBCT

Ij = P(zj exp

[
−
∫

rj

µ(n)dn

]
)⇔ y = P(z exp (−Aµ) )

Discretization :

y ∈ Rn the measurements,
µ ∈ Rm the unknown absorption coefficient,
A ∈M(Rm,Rn) the system matrix (n << m, ill-conditioned).
z a constant.

Noise model :
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Model for CBCT

y = P(z exp (−Aµ))

Reconstruction problem : trade-off between the minimization
of

the negative log-likelihood or data-fidelity :

LCBCT (µ) =
∑

j

yj [Aµ]j + zj exp (−[Aµ]j)

and the regularization (priors on objects, for instance sparsity
priors),
under the constraint : µ ≥ 0.

We consider the problem :

µ̂ = arg min
µ≥0
LCBCT (µ) + λJreg (µ)

Challenge : constraint + non-differentiability.
Yannick Boursier Proximal methods for Poisson Intensity CBCT and PET 18 / 75



Model for PET

wL =

∫
L
x(n) exp (−µ511(n))dn⇔ y = Bx

Discretization :

y ∈ Rn the measurements,
x ∈ Rm the unknown concentration of activity.
B ∈M(Rm,Rn) the system matrix (n << m, ill-conditioned).

Noise model :

pure Poisson noise : xj ∼ P ([Bx ]j).
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Model for PET

wL = P
(∫

L
x(n) exp (−µ511(n))dn

)
⇔ y = P (Bx)

Discretization :

y ∈ Rn the measurements,
x ∈ Rm the unknown concentration of activity.
B ∈M(Rm,Rn) the system matrix (n << m, ill-conditioned).

Noise model :

pure Poisson noise : xj ∼ P ([Bx ]j).
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PET model

y = P(Bx)

Reconstruction problem : trade-off between the minimization
of

the negative log-likelihood or data-fidelity :

LPET (x) =
∑

j

−yj ln([Bx ]j) + [Bx ]j

and the regularization (priors on objects, for instance sparsity
priors),
under the constraint : x ≥ 0.

We consider the problem :

x̂ = arg min
x≥0
LTEP(x) + λJreg (x)

Challenge : constraint + non-differentiability + ln.
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Regularization choice
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Regularization

Total variation

JTV (u) =
∑

1≤i ,j≤N

|(∇u)i ,j |

sharp edges + homogeneous areas (cartoon).
non-differentiable.

Sparse representation

J`1,Φ(u) =
∑
λ∈Λ

| < u, φλ > |

sparsity in the dictionnary of Φ = {φλ} (redundant).
non-differentiable.

Regularized Total Variation

J reg
TV =

∑
1≤i ,j≤N

√
α2 + |(∇u)i ,j |2
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Summing up ...

We consider the both following problems :

CBCT
µ̂ = arg min

µ≥0
LCBCT (µ) + λJreg (µ)

TEP
x̂ = arg min

x≥0
LTEP(x) + λJreg (x)

Difficulties

+ Convexity ;
- Non-differentiability, constraints ;
- logarithmic function for PET (similar to Kullback-Leibler

divergence).
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Summing up ...

We consider the both following problems :

CBCT

µ̂ = arg min
µ

∑
j

yj [Aµ]j + zj exp (−[Aµ]j)

+λJreg (µ)+χC(µ)

TEP

x̂ = arg min
x

∑
j

−yj ln([Bx ]j) + [Bx ]j

+ λJreg (x) + χC(µ)

Difficulties

+ Convexity ;
- Non-differentiability, constraints ;
- logarithmic function for PET (similar to Kullback-Leibler

divergence).
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µ

∑
j

yj [Aµ]j + zj exp (−[Aµ]j)

+λJreg (µ)+χC(µ)

TEP

x̂ = arg min
x

∑
j

−yj ln([Bx ]j + ε) + [Bx ]j

+λJreg (x)+χC(µ)

Difficulties

+ Convexity ;
- Non-differentiability, constraints ;
- logarithmic function for PET (similar to Kullback-Leibler
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Proximal operator

Let F be a convex proper function to minimize.

We recall that the subgradient of F , denoted by ∂F , is
defined by :

∂F(x) = {p ∈ X such that F(y) ≥ F(x) + 〈p, y − x〉 ∀y}

For any h > 0 the following problem always has a unique
solution :

arg min
y

1

2
‖x − y‖2 + hF(y)

This solution is given by :

y = (I + h∂F )−1(x) = proxhF (x)

The mapping (I + h∂F )−1 is called the proximal operator.
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Examples

proxhF (x) = arg min
y

1

2
‖x − y‖2 + hF(y)

When F is the indicator function of some closed convex set C,
i.e. :

F(x) = χC(x) =

{
0 if x ∈ C
+∞ otherwise

↪→ then proxhF (x) is the orthogonal projection of x onto C.

When F(x) = ‖x‖Ḃ1
1,1

,

↪→ then proxhF (x) is the soft wavelet shrinkage of x with
parameter h.

When F(x) = JTV (x)

↪→ then proxhF (x) = x − hPhK (x), with PhK orthogonal
projection onto hK , and K = {div g / |gi,j | ≤ 1 ∀i , j}.
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Proximal algorithms : Forward-Backward splitting

Let F and G be two convex functions

arg min
x
F(x) = arg min

x
F (x)︸︷︷︸

gradient L-Lipschitz

+ G (x)︸ ︷︷ ︸
simple

Forward-backward splitting

Init. x0 ∈ X .

Loop xk+1 = proxhG (xk − h∇F (xk))

Convergence ensured provided h ≤ 1/L.

For objective functions, convergence speed of order 1/k.
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Proximal algorithms : Forward-Backward splitting

Let F and G be two convex functions

arg min
x
F(x) = arg min

x
F (x)︸︷︷︸

gradient L-Lipschitz

+ G (x)︸ ︷︷ ︸
simple

Forward-backward splitting

Init. x0 ∈ X .

Loop xk+1 = proxhG (xk − h∇F (xk)︸ ︷︷ ︸
gradient descent

)

︸ ︷︷ ︸
proximal descent

Convergence ensured provided h ≤ 1/L.

For objective functions, convergence speed of order 1/k.
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Proximal algorithms : accelerated Forward-Backward

Let F and G be two convex functions

arg min
x
F(x) = arg min

x
F (x)︸︷︷︸

gradient L-Lipschitz

+ G (x)︸ ︷︷ ︸
simple

Nesterov (2005) and Beck-Teboule (2009) showed that
convergence could be accelerated.

FISTA algorithm

Init. x0 ∈ X ; y1 = x0; t1 = 1.

Loop


xk = proxhG (yk − h∇F (yk))

tk+1 =
1+
√

1+4t2
k

2

yk+1 = xk + tk−1
tk+1

(xk − xk−1)

Convergence ensured provided h ≤ 1/L.

For objective functions, convergence speed of order 1/k2.
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Primal-dual proximal algorithm : Chambolle-Pock

Let F and G be two convex functions, X and Y two
finite-dimensional real vector spaces, K : X → Y continuous
linear operator.

arg min
x
F(x) = arg min

x
F (Kx)︸ ︷︷ ︸

F simple, K linear

+ G (x)︸ ︷︷ ︸
simple

We remind the definition of the Legendre-Fenchel conjugate
of F :

F ∗(y) = max
x∈X

(〈x , y〉 − F (x)) (1)

The associated saddle point problem is :

min
x∈X

max
y∈Y

(〈Kx , y〉+ G (x)− F ∗(y))

↪→ Arrow-Urwicz method (ascent in y , descent inx).
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Primal-dual proximal algorithm : Chambolle-Pock

Notice that F and G can be non smooth.

Chambolle-Pock algorithm

Init. τ, σ > 0, (x0, y0) ∈ (X × Y ), x̄0 = x0.

Loop

 yn+1 = proxσF∗(yn + σKx̄n)
xn+1 = proxτG (xn − τK∗yn+1)
x̄n+1 = 2xn+1 − xn

Convergence is provided if τσ‖K‖2 < 1.

In terms of objective functions, the convergence speed is of
order 1/k if both F and G are non smooth functions, and of
order 1/k2 if at least one has smoothness properties.
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Dealing with non-simple functions

How to compute the prox. of G = JTV + χC with C a closed non
empty convex set ? The FISTA algorithm can solve this problem.

Constrained Total Variation

min
u∈C

JTV (u) +
1

2λ
‖f − u‖2 (2)

Proposition :
Let us set :

h(v) = −‖HC(f − λdiv v)‖2 + ‖f − λdiv v‖2

with HC(u) = u − PC(u) and PC(u) is the orthogonal projection of
u onto C. Let us define :

ṽ = arg min
‖v‖≤1

h(v).

Then the solution of problem (2) is given by :

u = PC(f − λdiv ṽ)
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Dealing with non-simple functions (2)

For some general `1 constrained regularization G = J`1,Φ + χC with
C a closed non empty convex set, K a continuous linear operator.

Constrained sparse representation

min
u∈C
‖Ku‖1 +

1

2λ
‖f − u‖2 (3)

Proposition :
Let us define

hK (v) = −‖HC(f + λK ∗v)‖2 + ‖f + λK ∗v‖2

with HC(u) = u − PC(u) and PC(u) is the orthogonal projection of
u onto C. Let us define :

ṽ = arg min
‖v‖≤1

hK (v)

The solution of problem (3) is given by :

u = PC(f + λK ∗ṽ)
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CBCT : algorithms

Problem

µ̂ = arg min
µ

∑
j

yj [Aµ]j + zj exp (−[Aµ]j)︸ ︷︷ ︸
F : L-Lipschitz gradient

+ λJreg (µ) + χC(µ)︸ ︷︷ ︸
G : simple

Forward-backward splitting

xk+1 = proxhG (xk − h∇F (xk)).
Prox. computation (constraint + regularization) : FISTA.
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Simulated data

Phantoms, i.e objects to reconstruct :

Zubal Contrast Resolution

Quantitative criteria

SNR(I ,T ) = 10 log10

(
mean(I 2)

mean(|I−T |2)

)
SSIM(I ,T ) = meanw

(
(2mean(Iw )mean(Tw )+a)(2 cov(Iw ,Tw )+b)

mean(Iw )2+mean(T 2
w +a)(var(Iw )+var(Tw )+b)

)
CNR(I ) = |mean(Iin)−mean(Iout)|√

var(Iin)+var(Iout)
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CBCT Zubal : z = 1e3 photons
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CBCT Zubal : z = 1e2 photons
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CBCT Zubal : z = 1e3 and z = 1e2

Photon
count

Algorithm snr ssim λ nb. iter. time (s)

1e3

TVreg 15.06 0.808 200 300 36
FB-Wav 14.06 0.826 25 300 110
FB-TV 15.10 0.845 200 300 85

FBP 9.08 0.201 - - 0.09
MLEM 11.86 0.462 - 43 14

MLEM-H 14.52 0.680 7e5 752

1e2

TVreg 11.34 0.625 80 300 32
FB-Wav 10.62 0.695 10 300 110
FB-TV 11.35 0.690 80 300 78

FBP 0.44 0.076 - - 0.07
MLEM 7.90 0.200 - 17 5.67

MLEM-H 10.78 0.489 3.5e4 605
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CBCT Contrast with 60 projections
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CBCT Contrast with 60 projections

photon count Algorithm cnr ssim snr

1e4 FB-Wav 4.18 0.911 20.09
FB-TV 5.33 0.914 21.57

MLEM-H 3.23 0.521 17.50

1e3 FB-Wav 2.96 0.839 17.01
FB-TV 3.50 0.817 17.42

MLEM-H 2.11 0.351 13.33

1e2 FB-Wav 2.08 0.779 12.93
FB-TV 2.34 0.779 13.90

MLEM-H 1.46 0.294 10.28
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CBCT Contrast : influence of number of projections

Nb. angles 90 60

Photon
count

Algorithm cnr ssim snr cnr ssim snr

1e3

TVreg 3.17 0.793 17.15 3.00 0.743 16.95
FB-Wav 3.18 0.851 17.68 2.96 0.839 17.01
FB-TV 3.93 0.831 17.65 3.50 0.817 17.42

FBP 0.82 0.046 3.57 0.65 0.033 2.09
MLEM 1.95 0.274 11.87 1.77 0.253 11.36

MLEM-H 2.27 0.337 13.49 2.11 0.351 13.33

Nb. angles 30

1e3

TVreg 2.78 0.728 15.46
FB-Wav 2.61 0.802 15.39
FB-TV 3.36 0.756 15.25

FBP 0.44 0.017 -0.79
MLEM 1.53 0.218 10.33

MLEM-H 2.04 0.393 13.47
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CBCT Resolution with 60 projections
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10000 photons per pixel, 60 projections (λ = 15; 25; 40)
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1000 photons per pixel, 60 projections (λ = 15; 25; 40)
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PET : algorithms

Problem

x̂ = arg min
x

∑
j

−yj ln([Bx ]j + ε) + [Bx ]j︸ ︷︷ ︸
F : L-Lipschitz gradient

+ λJreg (x) + χC(µ)︸ ︷︷ ︸
G : simple

Forward-backward splitting

xk+1 = proxhG (xk − h∇F (xk)).
Prox. computation (constraint + regularization) : FISTA.
ε > 0 !!!
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PET : algorithms

Problem

x̂ = arg min
x

∑
j

−yj ln([Bx ]j) + [Bx ]j + λJreg (x) + χC(x)

↪→ rewritten as :

x̂ = arg min
x

F (Kx) + G (x)

Assumptions : F and G proper, convex, l.s.c, F and G
non-differentiable, K linear and continuous.

Chambolle-Pock algorithm (primal-dual) :
yn+1 = proxσF?(yn + σKx̄n)
xn+1 = proxτG (xn − τK ∗yn+1)
x̄n+1 = 2xn+1 − xn
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PET algorithm : Chambolle-Pock version 1

Problem

x̂ = arg min
x∑

j

−yj ln([Bx ]j) + [Bx ]j︸ ︷︷ ︸
F (Kx), K=B

+ λJreg (x) + χC(x)︸ ︷︷ ︸
G(x)

Assumptions : F and G proper, convex, l.s.c, F and G non
differentiable, K linear and continuous.

Algorithme de Chambolle-Pock (primal-dual) :
yn+1 = proxσF?(yn + σKx̄n)
xn+1 = proxτG (xn − τK ∗yn+1)
x̄n+1 = 2xn+1 − xn
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PET algorithm : Chambolle-Pock version 2

Problem

x̂ = arg min
x∑

j

−yj ln([Bx ]j) + [Bx ]j + χC(Bx)︸ ︷︷ ︸
G(x)

+ λJreg (x)︸ ︷︷ ︸
F (Kx)

F=‖.‖1, K=∇

+ χC(x)

Assumptions : F and G proper, convex, l.s.c, F and G non
differentiable, K linear and continuous.

Chambolle-Pock algorithm (primal-dual) :
yn+1 = proxσF?(yn + σKx̄n)
xn+1 = proxτG (xn − τK ∗yn+1)
x̄n+1 = 2xn+1 − xn
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Simulated data

Phantoms, i.e objects to reconstruct :

Zubal Contrast Resolution

Quantitative criteria

SNR(I ,T ) = 10 log10

(
mean(I 2)

mean(|I−T |2)

)
SSIM(I ,T ) = meanw

(
(2mean(Iw )mean(Tw )+a)(2 cov(Iw ,Tw )+b)

mean(Iw )2+mean(T 2
w +a)(var(Iw )+var(Tw )+b)

)
CNR(I ) = |mean(Iin)−mean(Iout)|√

var(Iin)+var(Iout)
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PET Zubal, fcount = 500 000
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PET Zubal, fcount = 500 000

Algorithm snr ssim λ nb. iter. time (s)

TVreg 15.33 0.902 0.70 200 10
FB-Wav 14.77 0.889 0.10 150 89
FB-TV 15.37 0.905 0.70 100 62

CP-Wav 14.68 0.885 0.10 80 63
CP-TV-BT 15.32 0.905 0.70 80 63

CP-TV 14.84 0.860 0.70 400 266

SPIRAL 15.17 0.905 0.70 100 76

FBP 11.59 0.429 - - 0.04
MLEM 13.38 0.819 - 17 2

MLEM-H 15.22 0.866 0.9/0.25 267 46
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PET Zubal, fcount = 100 000
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PET Zubal, fcount = 100 000

Algorithm snr ssim λ nb. iterations time (s)

TVreg 12.12 0.841 0.40 200 13
FBwav 11.55 0.834 0.0625 150 89
FB-TV 12.14 0.847 0.40 100 68
CPwav 11.65 0.835 0.0625 50 40

CP-TV-BT 13.13 0.862 0.40 50 46
CP-TV 12.86 0.823 0.40 100 78

SPIRAL 11.77 0.841 0.40 100 86

FBP 6.66 0.254 - - 0.08
MLEM 11.06 0.731 - 10 2

MLEM-H 12.92 0.837 0.8/0.25 278 58

Yannick Boursier Proximal methods for Poisson Intensity CBCT and PET 67 / 75



PET Contrast for fcount = 2e5
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PET Contrast

fcount = 2e5

N. angles 30 60 90
Algo cnr ssim snr cnr ssim snr cnr ssim snr
CP-TV-BT 2.60 0.898 15.92 2.53 0.897 15.80 2.97 0.906 16.33
MLEM 1.29 0.321 12.59 1.31 0.318 12.53 1.29 0.323 12.59
MLEM-H 2.12 0.835 15.60 2.18 0.832 15.46 2.12 0.828 15.55

fcount = 1e5

N. angles 30 60 90
Algo cnr ssim snr cnr ssim snr cnr ssim snr
CP-TV-BT 2.64 0.900 16.11 2.55 0.897 15.84 2.72 0.901 15.92
MLEM 1.62 0.405 14.00 1.59 0.418 13.91 1.67 0.428 14.14
MLEM-H 2.67 0.842 17.50 2.42 0.837 17.24 2.59 0.842 17.39
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PET Resolution for fcount = 2e5
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PET : real data

(80 projections, FBP then FB-TV λ = 0.5; 1; 5; 10; 50)
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Conclusion

Demonstrator of simultaneous PET and CBCT (based on
hybrid pixel technology) have been developed.

Proposed algorithm are adapted to the physics of acquisition
(photon-couting mode) and also to the pure Poisson noise.

Efficiency and robustness of the algorithms have been proved
on synthetic data and for a low number of projection angles.

Results obtained on real data are very encouraging and
confirm this trend.

Perspectives : 3D implementation on GPU (work in progress),
simultaneous acquisitions.
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The end ....

Thank you for your attention !

Questions ?
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PET

radiotracer attached to a molecule that will be absorbed by
some organs, depending of their function

→ radioactive decay emits a positron, which annihilates with an
electron after a very short time, and this yields... two gamma
rays radiation of 511 keV and opposite direction.
Rings of detectors are supposed to detect them.
parallel-beam geometry

Possible absorption of photons when crossing the body

Yannick Boursier Proximal methods for Poisson Intensity CBCT and PET 76 / 75



State of the art : quick non exhaustive review

some algorithms to recover CBCT and PET images viewed as
Poisson noisy data

Filtered backprojection for Cone Beam geometry : FDK
algorithm (Feldkamp and all 1984...)
EM algorithm and variants (Shepp and Vardi 1982, Lange and
Carson 1984, Hudson and Larkin 1994...)
Regularization of EM type algorithms : quadratic surrogate
functions (De Pierro 1994, Fessler and all 1998...), Huber
(Chlewicki and all 2004...), TV (Harmany and all 2011...)

→ technics closed to the ones used in convex optimization
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State of the art : quick non exhaustive review

Forward backward splitting (Combettes-Wajs 2005) after
using an Anscombe transform to go back to Gaussian noise
applied in the setting of Deconvolution problems with Poisson
noisy data (Dupé et al 2009)

Alternative Direction Method of Multipliers in the context of
poissonian image reconstruction (Figueiredo 2010)

PPXA algorithm applied in the context of dynamical PET
(Pustelnik et al 2010)

Primal dual algorithm using TV regularization in the context
of blurred Poisson noisy data (Bonettini and Ruggiero 2010)

. . .
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600 photons per pixel, 60 projections (λ = 15; 25; 40)
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15000 photons per pixel, 60 projections (λ = 15; 25; 40)
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Acceleration en 3D

Non accelerated

Accelerated
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