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CBCT : X-ray absorption (or transmission) tomography

CBCT= Cone Beam Computerized Tomography

@ Medical imaging modality providing anatomical information.

@ CBCT-Scan principle : X-ray source + X-ray camera, the
imaged object is in between.

o Cone-Beam geometry.
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CBCT : data
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CBCT : data
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CBCT : data
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CBCT : X-ray absorption (or transmission) tomography

I;(E)at
Pixel j

Planar detector

The Beer-Lambert law claims : [;(E) = zjexp [— frj ,uE(n)dn} with
o /;(E) the number of photons received at pixel ;.

@ 1 : n+— pge(n) the unknown absorption coefficient of tissue at
point n in the beam r;.

@ zj(E) parameter proportional to the number of photons
emitted by the X-ray source Ip(E).
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PET : Emission Positron Tomography

@ Medical imaging modality providing metabolic information
(measurement of the activity of an organ, etc.).

@ PET-Scan principle : injection of a radiotracer and collection
of emitted gamma rays by detectors.
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PET : Emission Positron Tomography

Measurement at pixels indexed by the line of response L :

wp = /Lx(n) exp (—ps11(n))dn

@ x is proportional to the unknown concentration of radiotracer
activity at point n.

@ n— us11(n) is the absorption coefficient at 511 keV at point
n.
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The developed demonstrator at CPPM : the
ClearPET /XPAD
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The developed demonstrator at CPPM : the

ClearPET /XPAD

Technology

@ Technological breakthrough : A 960 x 560 hybrid pixels
detector.
working in photon counting mode.
< no charge integration thus no dark noise.
— better SNR and better contrast at low statistics.
@ Simultaneous CBCT and PET acquisition of the same field of
view !

Challenges :

@ Improvement of the quality of tomographic reconstructions.
— introduction of sparse methods with non-differentiable
constraints.
— introduction of Poisson noise in the models.
@ Dose reduction (X-ray exposure, radiotracers concentration).
@ Application to bimodal and simultaneous data, to spectral or
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© Models
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Model for CBCT

li = zjexp [—/ u(n)dn] <y =zexp(—Au)

j
@ Discretization :

y € R" the measurements,

1 € R™ the unknown absorption coefficient,

A e M(R™,R") the system matrix (n << m, ill-conditioned).
Z a constant.

@ Noise model :

o pure Poisson noise : y; ~ P (zj exp (—[Ap]}))-
e no charge integration noise (dark noise, additive gaussien
noise).
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Model for CBCT
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Model for CBCT

i = zjexp [— / u(n)dn] &y =zexp(—Au)

]

@ Discretization :

y € R" the measurements,

1 € R™ the unknown absorption coefficient,

A e M(R™,R") the system matrix (n << m, ill-conditioned).
Z a constant.

@ Noise model :

o pure Poisson noise : y; ~ P (zj exp (—[Ap]}))-
e no charge integration noise (dark noise, additive gaussien
noise).
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Model for CBCT

li = P(zjexp [—/ u(n)dn] )<y =P(zexp(—Au))

i
@ Discretization :

y € R" the measurements,

1 € R™ the unknown absorption coefficient,

A e M(R™,R") the system matrix (n << m, ill-conditioned).
Z a constant.

@ Noise model :

o pure Poisson noise : y; ~ P (zj exp (—[Ap]}))-
e no charge integration noise (dark noise, additive gaussien
noise).
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Model for CBCT

y =P(zexp(—Ap))
@ Reconstruction problem : trade-off between the minimization
of
e the negative log-likelihood or data-fidelity :
Leser(pw) =Y yilAuli + z exp (—[Apl))
j

e and the regularization (priors on objects, for instance sparsity
priors),
e under the constraint : u > 0.

We consider the problem :

fi = arg min ECBCT(M) + )‘Jreg(ﬂ)
u>0

@ Challenge : constraint + non-differentiability.

Yannick Boursier Proximal methods for Poisson Intensity CBCT and PET 18/75



Model for PET

wp = /Lx(n) exp (—ps11(n))dn < y = Bx

@ Discretization :

e y € R"” the measurements,
e x € R™ the unknown concentration of activity.
o B e M(R™ R") the system matrix (n << m, ill-conditioned).

@ Noise model :

e pure Poisson noise : x; ~ P ([Bx];).
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Model for PET
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Model for PET

wp = /ix(n) exp (—ps11(n))dn < y = Bx
JL

@ Discretization :

e y € R"” the measurements,
e x € R™ the unknown concentration of activity.
o B e M(R™ R") the system matrix (n << m, ill-conditioned).

@ Noise model :

e pure Poisson noise : x; ~ P ([Bx];).

Yannick Boursier Proximal methods for Poisson Intensity CBCT and PET 21/75



Model for PET

wp =P </x(n) exp(—,u511(n))dn> <y =P(Bx)

L

@ Discretization :

o y € R" the measurements,
e x € R™ the unknown concentration of activity.
o B e M(R™ R") the system matrix (n << m, ill-conditioned).

@ Noise model :

o pure Poisson noise : x; ~ P ([Bx];).
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PET model

y =P(Bx)

@ Reconstruction problem : trade-off between the minimization
of
o the negative log-likelihood or data-fidelity :
Leer(x) =Y —y;In([Bx];) + [BX];

J
o and the regularization (priors on objects, for instance sparsity
priors),
e under the constraint : x > 0.

We consider the problem :

X =arg m>i|3 L1ep(x) + Adreg(x)

o Challenge : constraint + non-differentiability + In.
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Regularization choice




Regularization

@ Total variation

Jrv()= > (V)i

1<ij<N

e sharp edges + homogeneous areas (cartoon).
e non-differentiable.

@ Sparse representation

Jpo(u) =) | <u¢xr>|

AEA

e sparsity in the dictionnary of ® = {¢,} (redundant).
o non-differentiable.

@ Regularized Total Variation

=Y a2 +I(Vu)l
1<ij<N

Yannick Boursier Proximal methods for Poisson Intensity CBCT and PET 25/75



We consider the both following problems :

e CBCT
o = arg min Leper (1) + )‘Jreg(ﬂ)
pn=0
e TEP
X =arg m>ig L1ep(X) + Areg(x)
o Difficulties
+ Convexity;

- Non-differentiability, constraints;
- logarithmic function for PET (similar to Kullback-Leibler
divergence).
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We consider the both following problems :

e CBCT
fi = arg Tzlg Zyj[A/L]j + zjexp (—[Aulj) | + Adreg(n)
J
e TEP

X = arg szlg Z —y;iIn([Bx];) + [Bx]j| + AJreg(x)
J
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We consider the both following problems :

o CBCT
fi=argmin | 3 y[Aul; + 2j exp (= [Aplj) | +XJreg (1) +xc(1)
F
o TEP

X =arg mXin Z —yiIn([Bx];) + [Bx]j | + AJreg(x) + xc (1)

J

o Difficulties

+ Convexity ;

- Non-differentiability, constraints;

- logarithmic function for PET (similar to Kullback-Leibler
divergence).
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We consider the both following problems :

o CBCT

fi=argmin | 3 y[Aul; + 2j exp (= [Aplj) | +XJreg (1) +xc(1)
;

e TEP

X =arg mXin Z —yjIn([Bx]j + €) + [Bx]j | +AJreg(x)+xc (1)
J
o Difficulties

+ Convexity ;

- Non-differentiability, constraints;

- logarithmic function for PET (similar to Kullback-Leibler
divergence).
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© Methods
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Proximal operator

Let F be a convex proper function to minimize.

@ We recall that the subgradient of F, denoted by OF, is
defined by :

0F(x) ={p € X such that F(y) > F(x)+ (p,y — x) Vy}
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Proximal operator

Let F be a convex proper function to minimize.

@ We recall that the subgradient of F, denoted by OF, is
defined by :

0F(x) ={p € X such that F(y) > F(x)+ (p,y — x) Vy}

@ For any h > 0 the following problem always has a unique
solution :

1
arg min || x — y[[* + hF(y)
y

@ This solution is given by :

y = (I + hdF) 7 (x) = prox;,£(x) J

The mapping (/ + hdF)~! is called the proximal operator.
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1
proxy-(x) = axgmin > x — y|* + hF(y) J
y

@ When F is the indicator function of some closed convex set C,

ie.:
OifxecC

+00 otherwise

£ = xe) = {

< then prox,z(x) is the orthogonal projection of x onto C.
e Wh = :
en F(x) = [l

< then prox,z(x) is the soft wavelet shrinkage of x with
parameter h.
e When F(x) = Jrv(x)
— then prox,(x) = x — hPui(x), with Phk orthogonal
projection onto hK, and K = {divg / |gi ;| <1Vi,j}.
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Proximal algorithms : Forward-Backward splitting

@ Let F and G be two convex functions

—~—
gradient L-Lipschitz simple

arg min F(x) = arg min F(x) + G(x)
X X ~—~—

Forward-backward splitting

Init. xg € X.

Loop k41 = proxpe(xk — hVF(x))

e Convergence ensured provided h < 1/L.

@ For objective functions, convergence speed of order 1/k.
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Proximal algorithms : Forward-Backward splitting

@ Let F and G be two convex functions

arg min F(x) = arg min F(x) + G(x)
X X —— ——
gradient L-Lipschitz simple

Forward-backward splitting

Init. xg € X.

Loop Xk41 = prox,g(xxk — hVF(x))
—_——

gradient descentt

e Convergence ensured provided h < 1/L.
@ For objective functions, convergence speed of order 1/k.
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Proximal algorithms : Forward-Backward splitting

@ Let F and G be two convex functions

argmin F(x) = arg min F(x) + G(x)
X X — ——
gradient L-Lipschitz simple

Forward-backward splitting

Init. xp € X.

Loop Xkt1 = prox,g(xk — hVF(x«))
N ——

gradient descent

proximal descent

e Convergence ensured provided h < 1/L.
@ For objective functions, convergence speed of order 1/k.
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Proximal algorithms : accelerated Forward-Backward

@ Let F and G be two convex functions

argmin F(x) = arg min F(x) + G(x)
X X —— ~—~—
gradient L-Lipschitz  simple
@ Nesterov (2005) and Beck-Teboule (2009) showed that
convergence could be accelerated.

FISTA algorithm

Init. X € X; y1 =xp; t1 = 1.

X = proxe(yk — hVF(yx))
Loop tes1 = %ﬂ
Ykt1 = Xk + trkk;l (Xk — Xk—1)

e Convergence ensured provided h < 1/L.
o For objective functions, convergence speed of order 1/k.
Yannick Boursier
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Primal-dual proximal algorithm : Chambolle-Pock

@ Let F and G be two convex functions, X and Y two
finite-dimensional real vector spaces, K : X — Y continuous
linear operator.

argmin F(x) =argmin  F(Kx) 4+ G(x)
X X —— ——
F simple, K linear  simple

@ We remind the definition of the Legendre-Fenchel conjugate
of F:

F(y) = max((x,y) — F(x)) ey

@ The associated saddle point problem is :

)r;nei)rg Tea\);«KX’W + G(x) — F*(y)) J

— Arrow-Urwicz method (ascent in y, descent inx).
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Primal-dual proximal algorithm : Chambolle-Pock

@ Notice that F and G can be non smooth.

Chambolle-Pock algorithm

Init. 7,0 >0, (x0,)0) € (X X Y), X0 = Xo.

Yn+1 = ProXgp« (Yo + 0 Kxn)
Loop Xp41 = Prox, ¢ (xn — TK*ypi1)
)_<n+1 - 2Xn—t—l — Xn

e Convergence is provided if 70| K|? < 1.

@ In terms of objective functions, the convergence speed is of
order 1/k if both F and G are non smooth functions, and of
order 1/k? if at least one has smoothness properties.
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Dealing with non-simple functions

How to compute the prox. of G = J1v + x¢ with C a closed non
empty convex set ? The FISTA algorithm can solve this problem.

Constrained Total Variation

. 1 )
min Jrv(u) + ﬁllf — u (2)

Proposition :
Let us set :

h(v) = —||He(f — Mdivv)|? + ||f — Adiv v||?

with He(u) = u — Pe(u) and Pe(u) is the orthogonal projection of
u onto C. Let us define :

¥ = argmin h(v).
Ivii<i

Then the solution of problem (2) is given by :
u= Po(f — Adiv )
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Dealing with non-simple functions (2)

For some general /! constrained regularization G = J;1 ¢ + ¢ with
C a closed non empty convex set, K a continuous linear operator.

Constrained sparse representation

Proposition :
Let us define

hic(v) = I He(f + AK*V)|? + [If + AK*v]|?

with He(u) = u — Pe(u) and Pe(u) is the orthogonal projection of
u onto C. Let us define :

V = argmin hx(v)
Ivii<1

The solution of problem (3) is given by :
u= Pe(f +AK*V)
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O Results
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CBCT : algorithms

@ Problem

~~

fi=argmin > yi[Aulj + zj exp (~[Aul)) + Mreg (1) + xe(12)
J G : simple

F : L-Lipschitz gradient

@ Forward-backward splitting

@ Xki1 = proxh(;(xk — hVF(Xk))
o Prox. computation (constraint + regularization) : FISTA.
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Simulated data

@ Phantoms, i.e objects to reconstruct :

Zubal Contrast Resolution

@ Quantitative criteria

o SNR(I,T) = 10logyg  rmeent s

mean(|/—T|?)

_ (2mean(l, )mean( T, )+a)(2 cov(ly, Tw)+b)
° SSIM(/7 T) = meany, (mean(lw)2+mean( T2+a)(var(hy)+var( TW)+b))
CNR(]) = Imean(fn)—mean(fou)l
° ( ) \/var(/in)+Var(lout)
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TVreg FBE-Wav FE-TV

Snr = 14.95 ssim = 0.810 Snr = 13.87 ssim = 0.849 Snr = 14.98 ssim = 0.852

MLEM MLEM-Huber

Snr = 9.07 ssim=0.129 Snr = 11.84 ssim = 0.458 Snr = 14.38 ssim = 0.678
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TVreg FE-Wav FE-TV

Snr = 11.42 ssim = 0.659 Snr = 10.63 ssim = 0.741 Snr = 11.40 ssim = 0.737

FEP MLEM-Huber

Snr = 7.97 ssim = 0.207 Snr = 10.88 ssim = 0.507
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CBCT Zubal : z=1e3 and z = 1e2

Photon | Algorithm | SNR  SSIM A nb.iter. time (s)
count
TVreg 15.06 0.808 200 300 36
FB-Wav | 14.06 0.826 25 300 110
1e3 FB-TV | 1510 0.845 200 300 85
FBP 9.08 0.201 - - 0.09
MLEM 11.86 0.462 - 43 14
MLEM-H | 1452 0.680 7eb 752
TVreg 11.34 0.625 80 300 32
FB-Wav | 10.62 0.695 10 300 110
1e2 FB-TV | 1135 0.690 80 300 78
FBP 0.44 0.076 - - 0.07
MLEM 7.90 0.200 - 17 5.67
MLEM-H | 10.78 0.489 3.5e4 605
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CBCT Contrast

with 60 projections

MLEM

Photon count = 10000

anr = 14.71, 23im = 0,333
cnr = 269

Photon count = 1000

snr = 11,36, ssim=0.253
enr = 1.77

Photon count = 100

. =nr =8.13, ssim = 0.170
Yannick Boursierenr - 1.08

MLEM-Huber FE-TV

=nr = 17.50, 2sim - 0.521 =nr = 21.57, 2sim - 0914
cnr = 3.23 cnr =533

snr = 13.33, ssim = 0.351 snr = 17.42, ssim= 0.817
enr = 211 enr - 350

=nr = 10.28, esim = 0.294

Proximal methetlssfor Poisson Intensity CBCTeamdzRET

=nr = 13.90, ssim = 0.779

50/75



CBCT Contrast with 60 projections

photon count || Algorithm | CNR  SSIM  SNR
led FB-Wav | 4.18 0.911 20.09
FB-TV | 533 0.914 2157
MLEM-H | 3.23 0.521 17.50
le3 FB-Wav | 296 0.839 17.01
FB-TV | 350 0.817 17.42
MLEM-H | 2.11 0.351 13.33
le2 FB-Wav | 2.08 0.779 12.93
FB-TV |234 0.779 13.90
MLEM-H | 1.46 0.294 10.28
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CBCT Contrast : influence of number of projections

H Nb. angles ‘ 90 60
Photon | Algorithm | CNR  SSIM SNR | CNR  SSIM SNR
count
TVreg 317 0.793 17.15 | 3.00 0.743 16.95
FB-Wav | 3.18 0.851 17.68 | 296 0.839 17.01
le3 FB-TV 393 0831 17.65 | 3.50 0.817 17.42
FBP 0.82 0.046 3,57 | 0.65 0.033 2.09
MLEM 195 0274 1187 | 1.77 0.253 11.36
MLEM-H | 2.27 0337 13.49 | 2.11 0.351 13.33
Nb. angles 30
TVreg 2.78 0.728 15.46
FB-Wav | 2.61 0.802 15.39
le3 FB-TV 3.36 0.756 15.25
FBP 0.44 0.017 -0.79
MLEM 153 0.218 10.33
MLEM-H | 2.04 0.393 13.47
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CBCT Resolution with 60 projections

MLEM-Huber

Photon count = 10000

cnr = 3.27 cnr = 4.69 cnr = 566

Photon count = 1000

=nr = 14.26. ssim = 0615 snr = 1584, ssim = 0.766
enr - 2.07 enr - 2.50 enr - 298

Photon count = 100

. enr = 8.94 ssim = 0.143 snr = 10.71, ssim= 0418 = =11.52, ssim = 0.508
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10000 photons per pixel, 60 projections (A = 15; 25; 40)
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1000 photons per pixel, 60 projections (A = 15; 25; 40)
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PET : algorithms

@ Problem

X =arg mXin Z —yiIn([Bx]j + €) + [Bx]j + Adreg(x) + xc (1)

J G : simple

F : L-Lipschitz gradient

o Forward-backward splitting
o xyi1 = proxpc(xxk — hV F(xx)).
e Prox. computation (constraint + regularization) : FISTA.
e c>01N
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PET : algorithms

@ Problem

X =arg mXin Z —y; In([Bx]}) + [Bx]j + Adreg(x) + xc(x)

< rewritten as :
% = argmin F(Kx) + G(x)

@ Assumptions : F and G proper, convex, |l.s.c, F and G
non-differentiable, K linear and continuous.

e Chambolle-Pock algorithm (primal-dual) :

Yn+1l = prOchF*(}/n + UK)_(n)
Xn+1 = prOXTG(Xn - TK*Yn—l-l)
Xnt1 = 2Xp41 — Xn
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PET algorithm : Chambolle-Pock version 1

@ Problem

X =arg min

Z In [BX]J + [BX]J + >\Jreg( ) + XC(X)
J 6(x)

F(Kx), K=B

@ Assumptions : F and G proper, convex, l.s.c, F and G non
differentiable, K linear and continuous.

e Algorithme de Chambolle-Pock (primal-dual) :

Yn+1 = prOXaF*(Yn + UK)?n)
Xnt1 = prox;G(xn — TK*Ynt1)
Xnt1 = 2Xp41 — Xn
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PET algorithm : Chambolle-Pock version 2

@ Problem

X =arg min

> —yin((Bx]j) + [BX)j + xc(Bx) + Areg(x) + xe(x)
J N’

F(Kx)
G(x) F=|ll, K=V

@ Assumptions : F and G proper, convex, l.s.c, F and G non
differentiable, K linear and continuous.

@ Chambolle-Pock algorithm (primal-dual) :

Yn+1 = prOXaF*(Yn + UK)?n)
Xnt1 = prox;G(xn — TK*Ynt1)
Xnt1 = 2Xp41 — Xn
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Simulated data

@ Phantoms, i.e objects to reconstruct :

».

Zubal Contrast Resolution

@ Quantitative criteria

o SNR(I,T) = 10logyg  rmeent s

mean(|/—T|?)

_ (2mean(l, )mean(T,,)+a)(2 cov(ly, Tw)+b)
e SSIM(I, T) = mean,, (mean(lw)z+mean(Tg+a)(var(lw)+var(Tw)+b))
CNR(]) = |mean(/i) —mean(/out)|
o ( ) \/Vﬁr(lin)+var(lout)
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PET Zubal, fcount = 500 000

TVreg FB-Wav FBE-TV

Snr = 1533, ==im =0.803 Snr = 14.74, ssim = 0.885 Spr = 15.28, ssim = 0.907
CP-Wav CP-TV-BT CP-TV

Snr = 14.83, ssim = 0.B86 Snr =15.33, ssim = 0.908 Snr = 1482, ssim = 0.259
WLEM MLEM -Huber

Yannick %B[lrﬁev 08, =sim = 0.432 Proximal nﬁé‘t@lé‘% ﬁﬁirﬁ’cﬁsgo%zll\tensity C@@f §nh5P1§T55im = 0268
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PET Zubal, fcount = 500 000

Algorithm | SNR  SSIM A nb. iter. time (s)

TVreg 15.33 0.902 0.70 200 10
FB-Wav | 14.77 0.889 0.10 150 89
FB-TV 15.37 0.905 0.70 100 62
CP-Wav | 14.68 0.885 0.10 80 63
CP-TV-BT | 156.32 0.905 0.70 80 63

CP-TV 14.84 0.860 0.70 400 266
SPIRAL 15.17 0.905 0.70 100 76

FBP 11.59 0.429 - - 0.04
MLEM 13.38 0.819 - 17 2
MLEM-H | 15.22 0.866 0.9/0.25 267 46
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PET Zubal, fcount = 100 000

TVreg FB-Wav FBE-TV

Snr = 1226, ==im = 0.842 Snr =11.84, ssim = 0.837 Spr = 12.28, ssim = 0.849
CP-Wav CP-TV-BT CP-TV

Snr = 12.84, ssim = 0.850 Snr =12.30, ssim = 0.884 Snr = 12.96, ssim = 0.823
WLEM MLEM -Huber

Yannick ﬁ‘ﬂ[rs?ep'?z' ssim = 0.258 Proximal rﬁé‘tll@(?s ﬁﬁirﬁ’cﬁsgoi:@?htensity C@@f §nh:’P1E5T55im = 0237
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PET Zubal, fcount = 100 000

Algorithm | snr  ssim A nb. iterations time (s)
TVreg 12,12 0.841 0.40 200 13
FBwav 1155 0.834 0.0625 150 89
FB-TV 12.14 0.847 0.40 100 68
CPwav 11.65 0.835 0.0625 50 40

CP-TV-BT | 13.13 0.862 0.40 50 46
CP-TV 12.86 0.823 0.40 100 78

SPIRAL 11.77 0.841 0.40 100 86
FBP 6.66 0.254 - - 0.08

MLEM 11.06 0.731 - 10 2

MLEM-H | 12.92 0.837 0.8/0.25 278 58
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PET Contrast for fcount = 2e5

MLEM MLEM-Huber CPATV

90 angles

=nr = 15,92, 3sim - 0.898
cnr = 260

=nr = 15,60, 23im - 0.835
cnr =212

anr = 12.59, 33im - 0.321
cnr = 1.29

B0 angles

sir = 12,53, 55im=0.318 Snr = 15,46, ssim = 0.832 snr = 15.80, ssim = 0.897
enr - 1.31 enr - 2.18 enr - 253

30 angles

=nr = 16.33, ssim = 0.906
T 68 /75

=nr = 15.55, ssim = 0.628
Proximal methe#ls2for Poisson Intensity CBCTeamdzRE

. =nr = 12.59, ssim = 0,323
Yannick Boursierenr - 1.29



PET Contrast

fcount = 2eb

N. angles 30 60 90

Algo CNR  SSIM SNR CNR  SSIM SNR CNR  SSIM SNR
CP-TV-BT | 2.60 0.898 1592 | 253 0.897 15.80 | 2.97 0.906 16.33
MLEM 1.29 0321 1259 | 1.31 0.318 1253 | 1.29 0.323 12.59
MLEM-H 212 0.835 15.60 | 2.18 0.832 15.46 | 2.12 0.828 15.55

fcount = 1eb

N. angles 30 60 90

Algo CNR  SSIM SNR CNR  SSIM SNR CNR  SSIM SNR
CP-TV-BT | 2.64 0.900 16.11 | 255 0.897 15.84 | 2.72 0.901 15.92
MLEM 1.62 0.405 14.00 | 1.59 0.418 1391 | 1.67 0.428 14.14
MLEM-H 267 0.842 1750 | 2.42 0837 17.24 | 259 0.842 17.39
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2eb

ET Resolution for fcount

MLEM MLEM-Huber

a0 angles

3Nr =7.89,23im=0.194

enr = 0.68 cnr = 1.29 enr =130

80 argles

=nr = 959, ==im= 0378

=9.35 zzim = 0.331
cnr = 134

=nr =7.85, s=im=0.128 =nr
onr = 1.27

onr = 0.84

30 angles

. snr =7.90, ssim=0.137 s =940 ssim= 0346 . snr = 968, ssim= 0350
Yannick Boursier enr - 0.57 Proximal methodscfor Poisson Intensity CBC Teand1RET 70/75
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PET : real data

80 projections, FBP then FB-TV X = 0.5;1;5; 10; 50)
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© Conclusion
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Conclusion

e Demonstrator of simultaneous PET and CBCT (based on
hybrid pixel technology) have been developed.

@ Proposed algorithm are adapted to the physics of acquisition
(photon-couting mode) and also to the pure Poisson noise.

o Efficiency and robustness of the algorithms have been proved
on synthetic data and for a low number of projection angles.

@ Results obtained on real data are very encouraging and
confirm this trend.

@ Perspectives : 3D implementation on GPU (work in progress),
simultaneous acquisitions.
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Thank you for your attention !

Questions ?
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PET

@ radiotracer attached to a molecule that will be absorbed by
some organs, depending of their function
— radioactive decay emits a positron, which annihilates with an
electron after a very short time, and this yields... two gamma
rays radiation of 511 keV and opposite direction.
Rings of detectors are supposed to detect them.
parallel-beam geometry

@ Possible absorption of photons when crossing the body

Yannick Boursier Proximal methods for Poisson Intensity CBCT and PET 76 /75



State of the art : quick non exhaustive review

@ some algorithms to recover CBCT and PET images viewed as
Poisson noisy data

o Filtered backprojection for Cone Beam geometry : FDK
algorithm (Feldkamp and all 1984...)

e EM algorithm and variants (Shepp and Vardi 1982, Lange and
Carson 1984, Hudson and Larkin 1994...)

e Regularization of EM type algorithms : quadratic surrogate
functions (De Pierro 1994, Fessler and all 1998...), Huber
(Chlewicki and all 2004...), TV (Harmany and all 2011...)

— technics closed to the ones used in convex optimization
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State of the art : quick non exhaustive review

e Forward backward splitting (Combettes-Wajs 2005) after
using an Anscombe transform to go back to Gaussian noise
applied in the setting of Deconvolution problems with Poisson
noisy data (Dupé et al 2009)

@ Alternative Direction Method of Multipliers in the context of
poissonian image reconstruction (Figueiredo 2010)

@ PPXA algorithm applied in the context of dynamical PET
(Pustelnik et al 2010)

@ Primal dual algorithm using TV regularization in the context
of blurred Poisson noisy data (Bonettini and Ruggiero 2010)
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600 photons per pixel, 60 projections (A = 15; 25; 40)
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15000 photons per pixel, 60 projections (A = 15; 25; 40)
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Acceleration en 3D

Non accelerated

Accelerated
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