Proximal methods for Poisson Intensity Cone-Beam Computerized and Positron Emission Tomography

Yannick Boursier

imXgam group, head Christian Morel Centre de Physique des Particules de Marseille, CNRS/IN2P3

Joint work with Sandrine Anthoine, Clothilde Mélot (LATP, Marseille) Jean-François Aujol, (IMB, Bordeaux)

2nd October 2012

Outline

Recalls on CBCT and PET

2 Models

3 Methods

4 Re

- Results
- CBCT : algorithms
- CBCT : simulation results
- CBCT : results on real data
- PET : algorithms
- PET : simulation results
- PET : results on real data

5 Conclusion

Outline

2 Models

CBCT : X-ray absorption (or transmission) tomography

CBCT= Cone Beam Computerized Tomography

- Medical imaging modality providing anatomical information.
- CBCT-Scan principle : X-ray source + X-ray camera, the imaged object is in between.
- Cone-Beam geometry.

CBCT : data

CBCT : data

with more angles

CBCT : X-ray absorption (or transmission) tomography

The Beer-Lambert law claims : $I_j(E) = z_j \exp \left[-\int_{r_j} \mu_E(n) dn\right]$ with

- $I_j(E)$ the number of photons received at pixel j.
- µ: n → µ_E(n) the unknown absorption coefficient of tissue at point n in the beam r_j.
- z_j(E) parameter proportional to the number of photons emitted by the X-ray source l₀(E).

PET : Emission Positron Tomography

- Medical imaging modality providing metabolic information (measurement of the activity of an organ, etc.).
- PET-Scan principle : injection of a radiotracer and collection of emitted gamma rays by detectors.

PET : Emission Positron Tomography

Measurement at pixels indexed by the line of response L:

$$w_L = \int_L x(n) \exp\left(-\mu_{511}(n)\right) dn$$

- x is proportional to the unknown concentration of radiotracer activity at point n.
- n → µ₅₁₁(n) is the absorption coefficient at 511 keV at point n.

Yannick Boursier

The developed demonstrator at CPPM : the ClearPET/XPAD

The developed demonstrator at CPPM : the ClearPET/XPAD

Technology

• Technological breakthrough : A 960×560 hybrid pixels detector.

working in photon counting mode.

- \hookrightarrow no charge integration thus no *dark noise*.
- $\hookrightarrow\,$ better SNR and better contrast at low statistics.
- Simultaneous CBCT and PET acquisition of the same field of view !

Challenges :

- Improvement of the quality of tomographic reconstructions.
 - → introduction of *sparse* methods with non-differentiable constraints.

 $\,\hookrightarrow\,$ introduction of Poisson noise in the models.

- Dose reduction (X-ray exposure, radiotracers concentration).
- Application to bimodal and simultaneous data, to spectral or

Yannick Boursier Color X-ray data roximal methods for Poisson Intensity CBCT and PET

2 Models

$$l_j = z_j \exp\left[-\int_{r_j} \mu(n) dn\right] \Leftrightarrow \mathbf{y} = z \exp\left(-A\mu\right)$$

- Discretization :
 - $\mathbf{y} \in \mathbb{R}^n$ the measurements,
 - $\mu \in \mathbb{R}^m$ the unknown absorption coefficient,
 - $A \in \mathcal{M}(\mathbb{R}^m, \mathbb{R}^n)$ the system matrix ($n \ll m$, ill-conditioned).
 - z a constant.
- Noise model :
 - pure Poisson noise : $y_j \sim \mathcal{P}(z_j \exp(-[A\mu]_j))$.
 - no charge integration noise (*dark noise*, additive gaussien noise).

$$I_j = z_j \exp\left[-\int_{r_j} \mu(n) dn\right] \Leftrightarrow y = z \exp\left(-A\mu\right)$$

- Discretization :
 - $y \in \mathbb{R}^n$ the measurements,
 - $\mu \in \mathbb{R}^m$ the unknown absorption coefficient,
 - $A \in \mathcal{M}(\mathbb{R}^m, \mathbb{R}^n)$ the system matrix ($n \ll m$, ill-conditioned).
 - z a constant.
- Noise model :
 - pure Poisson noise : $y_j \sim \mathcal{P}(z_j \exp(-[A\mu]_j))$.
 - no charge integration noise (*dark noise*, additive gaussien noise).

$$I_j = z_j \exp\left[-\int_{r_j} \mu(n) dn\right] \Leftrightarrow y = z \exp\left(-A\mu\right)$$

- Discretization :
 - $y \in \mathbb{R}^n$ the measurements,
 - $\mu \in \mathbb{R}^m$ the unknown absorption coefficient,
 - $A \in \mathcal{M}(\mathbb{R}^m, \mathbb{R}^n)$ the system matrix ($n \ll m$, ill-conditioned).
 - z a constant.
- Noise model :
 - pure Poisson noise : $y_j \sim \mathcal{P}(z_j \exp(-[A\mu]_j))$.
 - no charge integration noise (*dark noise*, additive gaussien noise).

$$I_j = \mathcal{P}(z_j \exp\left[-\int_{r_j} \mu(n) dn\right]) \Leftrightarrow y = \mathcal{P}(z \exp\left(-A\mu\right))$$

- Discretization :
 - $y \in \mathbb{R}^n$ the measurements,
 - $\mu \in \mathbb{R}^m$ the unknown absorption coefficient,
 - $A \in \mathcal{M}(\mathbb{R}^m, \mathbb{R}^n)$ the system matrix ($n \ll m$, ill-conditioned).
 - z a constant.
- Noise model :
 - pure Poisson noise : $y_j \sim \mathcal{P}(z_j \exp(-[A\mu]_j))$.
 - no charge integration noise (*dark noise*, additive gaussien noise).

$$y = \mathcal{P}(z \exp\left(-A\mu\right))$$

- Reconstruction problem : trade-off between the minimization of
 - the negative log-likelihood or data-fidelity :

$$\mathcal{L}_{CBCT}(\mu) = \sum_{j} y_j [A\mu]_j + z_j \exp\left(-[A\mu]_j\right)$$

- and the regularization (priors on objects, for instance *sparsity priors*),
- under the constraint : $\mu \ge 0$.

We consider the problem :

$$\hat{\mu} = \arg\min_{\mu \geq 0} \mathcal{L}_{CBCT}(\mu) + \lambda J_{reg}(\mu)$$

• Challenge : constraint + non-differentiability.

$$w_{L} = \int_{L} x(n) \exp\left(-\mu_{511}(n)\right) dn \Leftrightarrow y = Bx$$

- Discretization :
 - $\mathbf{y} \in \mathbb{R}^n$ the measurements,
 - $x \in \mathbb{R}^m$ the unknown concentration of activity.
 - $B \in \mathcal{M}(\mathbb{R}^m, \mathbb{R}^n)$ the system matrix ($n \ll m$, ill-conditioned).
- Noise model :
 - pure Poisson noise : $x_j \sim \mathcal{P}([Bx]_j)$.

$$w_L = \int_L \mathbf{x}(n) \exp(-\mu_{511}(n)) dn \Leftrightarrow y = B\mathbf{x}$$

- Discretization :
 - $y \in \mathbb{R}^n$ the measurements,
 - $\mathbf{x} \in \mathbb{R}^m$ the unknown concentration of activity.
 - $B \in \mathcal{M}(\mathbb{R}^m, \mathbb{R}^n)$ the system matrix ($n \ll m$, ill-conditioned).
- Noise model :
 - pure Poisson noise : $x_j \sim \mathcal{P}([Bx]_j)$.

$$w_L = \int_L x(n) \exp\left(-\mu_{511}(n)\right) dn \Leftrightarrow y = Bx$$

- Discretization :
 - $y \in \mathbb{R}^n$ the measurements,
 - $x \in \mathbb{R}^m$ the unknown concentration of activity.
 - $B \in \mathcal{M}(\mathbb{R}^m, \mathbb{R}^n)$ the system matrix ($n \ll m$, ill-conditioned).
- Noise model :
 - pure Poisson noise : $x_j \sim \mathcal{P}([Bx]_j)$.

$$w_{L} = \mathcal{P}\left(\int_{L} x(n) \exp\left(-\mu_{511}(n)\right) dn\right) \Leftrightarrow y = \mathcal{P}(Bx)$$

- Discretization :
 - $y \in \mathbb{R}^n$ the measurements,
 - $x \in \mathbb{R}^m$ the unknown concentration of activity.
 - $B \in \mathcal{M}(\mathbb{R}^m, \mathbb{R}^n)$ the system matrix ($n \ll m$, ill-conditioned).
- Noise model :
 - pure Poisson noise : $x_j \sim \mathcal{P}([Bx]_j)$.

PET model

$$y=\mathcal{P}(Bx)$$

- Reconstruction problem : trade-off between the minimization of
 - the negative log-likelihood or data-fidelity :

$$\mathcal{L}_{PET}(x) = \sum_{j} -y_{j} \ln([Bx]_{j}) + [Bx]_{j}$$

- and the regularization (priors on objects, for instance *sparsity priors*),
- under the constraint $: x \ge 0$.

We consider the problem :

$$\hat{x} = \arg\min_{x \ge 0} \mathcal{L}_{TEP}(x) + \lambda J_{reg}(x)$$

• Challenge : constraint + non-differentiability + In.

Regularization choice

Regularization

• Total variation

$$J_{TV}(u) = \sum_{1 \le i,j \le N} |(\nabla u)_{i,j}|$$

- sharp edges + homogeneous areas (cartoon).
- non-differentiable.
- Sparse representation

$$J_{\ell^1, \Phi}(u) = \sum_{\lambda \in \Lambda} | < u, \phi_{\lambda} > |$$

- sparsity in the dictionnary of $\Phi = \{\phi_{\lambda}\}$ (redundant).
- non-differentiable.
- Regularized Total Variation

$$J_{TV}^{reg} = \sum_{1 \le i,j \le N} \sqrt{\alpha^2 + |(\nabla u)_{i,j}|^2}$$

Yannick Boursier

We consider the both following problems :

• CBCT

$$\hat{\mu} = \arg\min_{\mu \ge 0} \mathcal{L}_{CBCT}(\mu) + \lambda J_{reg}(\mu)$$

TEP

$$\hat{x} = \arg\min_{x \ge 0} \mathcal{L}_{TEP}(x) + \lambda J_{reg}(x)$$

- Difficulties
 - + Convexity;
 - Non-differentiability, constraints;
 - logarithmic function for PET (similar to Kullback-Leibler divergence).

Summing up ...

We consider the both following problems :

• CBCT

$$\hat{\mu} = \arg\min_{\mu \ge 0} \left[\sum_{j} y_j [A\mu]_j + z_j \exp\left(-[A\mu]_j\right) \right] + \lambda J_{reg}(\mu)$$

TEP

$$\hat{x} = \arg\min_{x \ge 0} \left[\sum_{j} -y_j \ln([Bx]_j) + [Bx]_j \right] + \lambda J_{reg}(x)$$

- Difficulties
 - + Convexity;
 - Non-differentiability, constraints;
 - logarithmic function for PET (similar to Kullback-Leibler divergence).

Summing up ...

We consider the both following problems :

• CBCT

$$\hat{\mu} = \arg\min_{\mu} \left[\sum_{j} y_j [A\mu]_j + z_j \exp\left(-[A\mu]_j\right) \right] + \lambda J_{reg}(\mu) + \chi_{\mathcal{C}}(\mu)$$

TEP

$$\hat{x} = \arg\min_{x} \left[\sum_{j} -y_{j} \ln([Bx]_{j}) + [Bx]_{j} \right] + \lambda J_{reg}(x) + \chi_{\mathcal{C}}(\mu)$$

- Difficulties
 - + Convexity;
 - Non-differentiability, constraints;
 - logarithmic function for PET (similar to Kullback-Leibler divergence).

Summing up ...

We consider the both following problems :

• CBCT

$$\hat{\mu} = \arg\min_{\mu} \left[\sum_{j} y_j [A\mu]_j + z_j \exp\left(-[A\mu]_j\right) \right] + \lambda J_{reg}(\mu) + \chi_{\mathcal{C}}(\mu)$$

TEP

$$\hat{x} = \arg\min_{x} \left[\sum_{j} -y_{j} \ln([Bx]_{j} + \epsilon) + [Bx]_{j} \right] + \lambda J_{reg}(x) + \chi_{\mathcal{C}}(\mu)$$

- Difficulties
 - + Convexity;
 - Non-differentiability, constraints;
 - logarithmic function for PET (similar to Kullback-Leibler divergence).

Proximal operator

Let F be a convex proper function to minimize.

We recall that the subgradient of *F*, denoted by ∂*F*, is defined by :

 $\partial \mathcal{F}(x) = \{ p \in X \text{ such that } \mathcal{F}(y) \geq \mathcal{F}(x) + \langle p, y - x \rangle \ \forall y \}$

Proximal operator

Let F be a convex proper function to minimize.

We recall that the subgradient of *F*, denoted by ∂*F*, is defined by :

 $\partial \mathcal{F}(x) = \{ p \in X \text{ such that } \mathcal{F}(y) \geq \mathcal{F}(x) + \langle p, y - x \rangle \ \forall y \}$

For any h > 0 the following problem always has a unique solution :

$$\underset{y}{\arg\min} \frac{1}{2} \|x - y\|^2 + h\mathcal{F}(y)$$

• This solution is given by :

$$y = (I + h\partial F)^{-1}(x) = \operatorname{prox}_{h\mathcal{F}}(x)$$

The mapping $(I + h\partial F)^{-1}$ is called the *proximal* operator.

Examples

$$\operatorname{prox}_{h\mathcal{F}}(x) = \operatorname{arg\,min}_{y} \frac{1}{2} \|x - y\|^2 + h\mathcal{F}(y)$$

• When \mathcal{F} is the indicator function of some closed convex set \mathcal{C} , i.e. :

$$\mathcal{F}(x) = \chi_{\mathcal{C}}(x) = \left\{egin{array}{c} \mathsf{0} \ ext{if} \ x \in \mathcal{C} \ +\infty \ ext{otherwise} \end{array}
ight.$$

→ then $prox_{h\mathcal{F}}(x)$ is the orthogonal projection of x onto C. • When $\mathcal{F}(x) = ||x||_{\dot{B}^{1}_{1,1}}$,

 \hookrightarrow then $\operatorname{prox}_{h\mathcal{F}}(x)$ is the soft wavelet shrinkage of x with parameter h.

• When
$$\mathcal{F}(x) = J_{TV}(x)$$

 $\stackrel{\hookrightarrow}{\to} \text{ then } \operatorname{prox}_{h\mathcal{F}}(x) = x - hP_{h\mathcal{K}}(x), \text{ with } P_{h\mathcal{K}} \text{ orthogonal} \\ \text{ projection onto } h\mathcal{K}, \text{ and } \mathcal{K} = \{\operatorname{div} g \ / \ |g_{i,j}| \le 1 \ \forall i, j\}.$

Proximal algorithms : Forward-Backward splitting

• Let F and G be two convex functions

$$\arg\min_{x} \mathcal{F}(x) = \arg\min_{x} \underbrace{F(x)}_{\text{gradient L-Lipschitz}} + \underbrace{G(x)}_{\text{simple}}$$

Forward-backward splitting

Init. $x_0 \in X$.

$$\mathsf{Loop} \ x_{k+1} = \mathrm{prox}_{hG}(x_k - h\nabla F(x_k))$$

- Convergence ensured provided $h \leq 1/L$.
- For objective functions, convergence speed of order 1/k.

Proximal algorithms : Forward-Backward splitting

• Let F and G be two convex functions

$$\arg\min_{x} \mathcal{F}(x) = \arg\min_{x} \underbrace{\mathcal{F}(x)}_{\text{gradient L-Lipschitz}} + \underbrace{\mathcal{G}(x)}_{\text{simple}}$$

- Convergence ensured provided $h \leq 1/L$.
- For objective functions, convergence speed of order 1/k.

Yannick Boursier

Proximal algorithms : Forward-Backward splitting

• Let F and G be two convex functions

$$\arg\min_{x} \mathcal{F}(x) = \arg\min_{x} \underbrace{F(x)}_{\text{gradient L-Lipschitz}} + \underbrace{G(x)}_{\text{simple}}$$

- Convergence ensured provided $h \leq 1/L$.
- For objective functions, convergence speed of order 1/k.

Yannick Boursier
Proximal algorithms : accelerated Forward-Backward

• Let F and G be two convex functions

$$\arg\min_{x} \mathcal{F}(x) = \arg\min_{x} \underbrace{\mathcal{F}(x)}_{\text{gradient L-Lipschitz}} + \underbrace{\mathcal{G}(x)}_{\text{simple}}$$

• Nesterov (2005) and Beck-Teboule (2009) showed that convergence could be accelerated.

FISTA algorithm

Init.
$$x_0 \in X$$
; $y_1 = x_0$; $t_1 = 1$.
Loop
$$\begin{cases} x_k = prox_{hG}(y_k - h\nabla F(y_k)) \\ t_{k+1} = \frac{1 + \sqrt{1 + 4t_k^2}}{2} \\ y_{k+1} = x_k + \frac{t_k - 1}{t_{k+1}}(x_k - x_{k-1}) \end{cases}$$

Convergence ensured provided h ≤ 1/L.
For objective functions, convergence speed of order 1/k².

Yannick Boursier

Primal-dual proximal algorithm : Chambolle-Pock

 Let F and G be two convex functions, X and Y two finite-dimensional real vector spaces, K : X → Y continuous linear operator.

• We remind the definition of the Legendre-Fenchel conjugate of *F* :

$$F^*(y) = \max_{x \in X} \left(\langle x, y \rangle - F(x) \right) \tag{1}$$

• The associated saddle point problem is :

$$\min_{x \in X} \max_{y \in Y} (\langle Kx, y \rangle + G(x) - F^*(y))$$

 \hookrightarrow Arrow-Urwicz method (ascent in y, descent inx).

Yannick Boursier

Primal-dual proximal algorithm : Chambolle-Pock

• Notice that F and G can be non smooth.

Chambolle-Pock algorithm

Init.
$$\tau, \sigma > 0, (x_0, y_0) \in (X \times Y), \ \bar{x}_0 = x_0.$$

Loop
$$\begin{cases} y_{n+1} = \operatorname{prox}_{\sigma F^*}(y_n + \sigma K \bar{x}_n) \\ x_{n+1} = \operatorname{prox}_{\tau G}(x_n - \tau K^* y_{n+1}) \\ \bar{x}_{n+1} = 2x_{n+1} - x_n \end{cases}$$

- Convergence is provided if $\tau \sigma \|K\|^2 < 1$.
- In terms of objective functions, the convergence speed is of order 1/k if both F and G are non smooth functions, and of order 1/k² if at least one has smoothness properties.

Dealing with non-simple functions

How to compute the prox. of $G = J_{TV} + \chi_C$ with C a closed non empty convex set? The FISTA algorithm can solve this problem.

Constrained Total Variation

$$\min_{u\in\mathcal{C}} J_{TV}(u) + \frac{1}{2\lambda} \|f - u\|^2$$
(2)

Proposition :

Let us set :

$$h(v) = -\|H_{\mathcal{C}}(f - \lambda \operatorname{div} v)\|^2 + \|f - \lambda \operatorname{div} v\|^2$$

with $H_{\mathcal{C}}(u) = u - P_{\mathcal{C}}(u)$ and $P_{\mathcal{C}}(u)$ is the orthogonal projection of u onto \mathcal{C} . Let us define :

 $\tilde{v} = \operatorname*{arg\,min}_{\|v\| \leq 1} h(v).$

Then the solution of problem (2) is given by :

$$u = P_{\mathcal{C}}(f - \lambda \operatorname{div} \tilde{v})$$

Yannick Boursier

Dealing with non-simple functions (2)

For some general ℓ^1 constrained regularization $G = J_{\ell^1, \Phi} + \chi_C$ with C a closed non empty convex set, K a continuous linear operator.

Constrained sparse representation

$$\min_{u \in C} \|Ku\|_1 + \frac{1}{2\lambda} \|f - u\|^2$$
(3)

Proposition :

Let us define

$$h_{\mathcal{K}}(\mathbf{v}) = -\|H_{\mathcal{C}}(f + \lambda K^* \mathbf{v})\|^2 + \|f + \lambda K^* \mathbf{v}\|^2$$

with $H_{\mathcal{C}}(u) = u - P_{\mathcal{C}}(u)$ and $P_{\mathcal{C}}(u)$ is the orthogonal projection of u onto \mathcal{C} . Let us define :

$$\widetilde{v} = rgmin_{\mathcal{K}}(v) \ \|v\| \leq 1$$

The solution of problem (3) is given by :

$$u = P_{\mathcal{C}}(f + \lambda K^* \tilde{v})$$

Yannick Boursier

2 Models

Yannick Boursier

Outline

Recalls on CBCT and PET

2 Models

3 Methods

4 Results

CBCT : algorithms

• CBCT : simulation results

• CBCT : results on real data

• PET : algorithms

• PET : simulation results

• PET : results on real data

5 Conclusion

CBCT : algorithms

• Problem

$$\hat{\mu} = \arg\min_{\mu} \underbrace{\sum_{j} y_{j}[A\mu]_{j} + z_{j} \exp\left(-[A\mu]_{j}\right)}_{\text{F : L-Lipschitz gradient}} + \underbrace{\lambda J_{reg}(\mu) + \chi_{\mathcal{C}}(\mu)}_{\text{G : simple}}$$

• Forward-backward splitting

•
$$x_{k+1} = prox_{hG}(x_k - h\nabla F(x_k)).$$

• Prox. computation (constraint + regularization) : FISTA.

Outline

2 Models

3 Methods

- Results
- CBCT : algorithms
- CBCT : simulation results
- CBCT : results on real data
- PET : algorithms
- PET : simulation results
- PET : results on real data

5 Conclusion

Simulated data

• Phantoms, i.e objects to reconstruct :

Zubal

Contrast

Resolution

• Quantitative criteria

•
$$SNR(I, T) = 10 \log_{10} \left(\frac{\operatorname{mean}(I^{2})}{\operatorname{mean}(|I - T|^{2})} \right)$$

• $SSIM(I, T) = \operatorname{mean}_{w} \left(\frac{(2\operatorname{mean}(I_{w})\operatorname{mean}(T_{w}) + a)(2\operatorname{cov}(I_{w}, T_{w}) + b)}{\operatorname{mean}(I_{w})^{2} + \operatorname{mean}(T_{w}^{2} + a)(\operatorname{var}(I_{w}) + \operatorname{var}(T_{w}) + b)} \right)$
• $CNR(I) = \frac{|\operatorname{mean}(I_{in}) - \operatorname{mean}(I_{out})|}{\sqrt{\operatorname{var}(I_{in}) + \operatorname{var}(I_{out})}}$

CBCT Zubal : z = 1e3 photons

TVreg

Snr = 14.95 ssim = 0.810

Snr = 13.87 ssim = 0.849

FB-TV

Snr = 14.98 ssim = 0.852

Snr = 9.07 ssim = 0.199

Snr = 11.84 ssim = 0.458

Snr = 14.36 ssim = 0.676

CBCT Zubal : z = 1e2 photons

TVreg

Snr = 11.42 ssim = 0.659

Snr = 10.63 ssim = 0.741

FB-TV

Snr = 11.40 ssim = 0.737

Snr = 0.41 ssim = 0.078

Snr = 7.97 ssim = 0.207

MLEM_Huber

Snr = 10.86 ssim = 0.507

CBCT Zubal : z = 1e3 and z = 1e2

Photon	Algorithm	SNR	SSIM	λ	nb. iter.	time (s)
count						
	TVreg	15.06	0.808	200	300	36
	FB-Wav	14.06	0.826	25	300	110
1.2	FB-TV	15.10	0.845	200	300	85
162	FBP	9.08	0.201	-	-	0.09
	MLEM	11.86	0.462	-	43	14
	MLEM-H	14.52	0.680	7e5	752	
1 <i>e</i> 2	TVreg	11.34	0.625	80	300	32
	FB-Wav	10.62	0.695	10	300	110
	FB-TV	11.35	0.690	80	300	78
	FBP	0.44	0.076	-	-	0.07
	MLEM	7.90	0.200	-	17	5.67
	MLEM-H	10.78	0.489	3.5e4	605	

CBCT Contrast with 60 projections

MLEM

Photon count = 100

snr = 8.13, ssim = 0.170 Yannick Boursier cnr = 1.06

MLEM-Huber

snr = 17.50, ssim = 0.521 cnr = 3.23

snr = 21.57, ssim = 0.914 cnr = 5.33

snr = 17.42, ssim = 0.817 cnr = 3.50

snr = 13.33, ssim = 0.351

enr = 2.11

snr = 10.28, ssim = 0.294 snr = 13.90, ssim = 0.779 Proximal method/sofor Poisson Intensity CBCTcand2BET

CBCT Contrast with 60 projections

photon count	Algorithm	CNR	SSIM	SNR
1 <i>e</i> 4	FB-Wav	4.18	0.911	20.09
	FB-TV	5.33	0.914	21.57
	MLEM-H	3.23	0.521	17.50
1 <i>e</i> 3	FB-Wav	2.96	0.839	17.01
	FB-TV	3.50	0.817	17.42
	MLEM-H	2.11	0.351	13.33
1e2	FB-Wav	2.08	0.779	12.93
	FB-TV	2.34	0.779	13.90
	MLEM-H	1.46	0.294	10.28

CBCT Contrast : influence of number of projections

	Nb. angles		90		60			
Photon	Algorithm	CNR	SSIM	SNR	CNR	SSIM	SNR	
count								
	TVreg	3.17	0.793	17.15	3.00	0.743	16.95	
	FB-Wav	3.18	0.851	17.68	2.96	0.839	17.01	
1.2	FB-TV	3.93	0.831	17.65	3.50	0.817	17.42	
162	FBP	0.82	0.046	3.57	0.65	0.033	2.09	
	MLEM	1.95	0.274	11.87	1.77	0.253	11.36	
	MLEM-H	2.27	0.337	13.49	2.11	0.351	13.33	
	Nb. angles		30					
	TVreg	2.78	0.728	15.46				
1e3	FB-Wav	2.61	0.802	15.39				
	FB-TV	3.36	0.756	15.25				
	FBP	0.44	0.017	-0.79				
	MLEM	1.53	0.218	10.33				
	MLEM-H	2.04	0.393	13.47				

CBCT Resolution with 60 projections

MLEM

snr = 14.60, ssim = 0.526 cnr = 3.27

snr = 11.88, ssim = 0.322 cnr = 2.07

snr = 8.94, ssim = 0.149 Yannick Boursier onr = 0.96

MLEM-Huber

snr = 18.85, ssim = 0.818 cnr = 4.69

snr = 14.26, ssim = 0.615 cnr = 2.50

snr = 10.71, ssim = 0.418 snr = 11.52, ssim = 0.508 Proximal methedls0for Poisson Intensity CBCTcand176T

FB-TV

snr = 20.54, ssim = 0.925 cnr = 5.66

snr = 15.84, ssim = 0.766 cnr = 2.98

Outline

Recalls on CBCT and PET

2 Models

3 Methods

4

Results

- CBCT : algorithms
- CBCT : simulation results
- CBCT : results on real data
- PET : algorithms
- PET : simulation results
- PET : results on real data

5 Conclusion

10000 photons per pixel, 60 projections ($\lambda = 15$; 25; 40)

1000 photons per pixel, 60 projections ($\lambda = 15$; 25; 40)

Outline

Recalls on CBCT and PET

2 Models

3 Methods

4

- Results
- CBCT : algorithms
- CBCT : simulation results
- CBCT : results on real data

• PET : algorithms

- PET : simulation results
- PET : results on real data

5 Conclusion

PET : algorithms

• Problem

$$\hat{x} = \arg\min_{x} \underbrace{\sum_{j} -y_{j} \ln([Bx]_{j} + \epsilon) + [Bx]_{j}}_{\text{F : L-Lipschitz gradient}} + \underbrace{\lambda J_{reg}(x) + \chi_{\mathcal{C}}(\mu)}_{\text{G : simple}}$$

• Forward-backward splitting

•
$$x_{k+1} = prox_{hG}(x_k - h\nabla F(x_k)).$$

- Prox. computation (constraint + regularization) : FISTA.
- *ϵ* > 0 !!!

PET : algorithms

• Problem

$$\hat{x} = \arg\min_{x} \sum_{j} -y_{j} \ln([Bx]_{j}) + [Bx]_{j} + \lambda J_{reg}(x) + \chi_{\mathcal{C}}(x)$$

 \hookrightarrow rewritten as :

$$\hat{x} = \arg\min_{x} F(Kx) + G(x)$$

- Assumptions : F and G proper, convex, l.s.c, F and G non-differentiable, K linear and continuous.
- Chambolle-Pock algorithm (primal-dual) :

$$\begin{cases} y_{n+1} = prox_{\sigma F^*}(y_n + \sigma K \bar{x}_n) \\ x_{n+1} = prox_{\tau G}(x_n - \tau K^* y_{n+1}) \\ \bar{x}_{n+1} = 2x_{n+1} - x_n \end{cases}$$

Yannick Boursier

PET algorithm : Chambolle-Pock version 1

• Problem

$$\hat{x} = \arg\min_{x}$$

$$\underbrace{\sum_{j} -y_{j} \ln([Bx]_{j}) + [Bx]_{j}}_{F(Kx), \ K=B} + \underbrace{\lambda J_{reg}(x) + \chi_{\mathcal{C}}(x)}_{G(x)}$$

- Assumptions : F and G proper, convex, l.s.c, F and G non differentiable, K linear and continuous.
- Algorithme de Chambolle-Pock (primal-dual) :

$$\begin{cases} y_{n+1} = prox_{\sigma F^*}(y_n + \sigma K \bar{x}_n) \\ x_{n+1} = prox_{\tau G}(x_n - \tau K^* y_{n+1}) \\ \bar{x}_{n+1} = 2x_{n+1} - x_n \end{cases}$$

Yannick Boursier

PET algorithm : Chambolle-Pock version 2

• Problem

$$\hat{x} = \arg\min_{x} \underbrace{\sum_{j} -y_{j} \ln([Bx]_{j}) + [Bx]_{j} + \chi_{\mathcal{C}}(Bx)}_{G(x)} + \underbrace{\lambda J_{reg}(x)}_{F \in \mathbb{K} \times \mathbb{K}} + \chi_{\mathcal{C}}(x)}_{F = \|.\|_{1}, \ K = \nabla}$$

- Assumptions : F and G proper, convex, l.s.c, F and G non differentiable, K linear and continuous.
- Chambolle-Pock algorithm (primal-dual) :

$$\begin{cases} y_{n+1} = prox_{\sigma F^*}(y_n + \sigma K \bar{x}_n) \\ x_{n+1} = prox_{\tau G}(x_n - \tau K^* y_{n+1}) \\ \bar{x}_{n+1} = 2x_{n+1} - x_n \end{cases}$$

Yannick Boursier

Outline

Recalls on CBCT and PET

2 Models

3 Methods

Results

- CBCT : algorithms
- CBCT : simulation results
- CBCT : results on real data
- PET : algorithms
- PET : simulation results
- PET : results on real data

5 Conclusion

Simulated data

Zubal

Contrast

Resolution

• Quantitative criteria

•
$$SNR(I, T) = 10 \log_{10} \left(\frac{\operatorname{mean}(I^{2})}{\operatorname{mean}(|I - T|^{2})} \right)$$

• $SSIM(I, T) = \operatorname{mean}_{w} \left(\frac{(2\operatorname{mean}(I_{w})\operatorname{mean}(T_{w}) + a)(2\operatorname{cov}(I_{w}, T_{w}) + b)}{\operatorname{mean}(I_{w})^{2} + \operatorname{mean}(T_{w}^{2} + a)(\operatorname{var}(I_{w}) + \operatorname{var}(T_{w}) + b)} \right)$
• $CNR(I) = \frac{|\operatorname{mean}(I_{in}) - \operatorname{mean}(I_{out})|}{\sqrt{\operatorname{var}(I_{in}) + \operatorname{var}(I_{out})}}$

• Phantoms, i.e objects to reconstruct :

PET Zubal, fcount = $500\ 000$

TVreg

Snr = 15.33, ssim = 0.903

CP-Wav

Snr = 14.83, ssim = 0.886

FBP

Yannick Boursier 11.68, ssim = 0.432

FB-Wav

Snr = 14.74, ssim = 0.885

CP-TV-BT

Snr = 15.33, ssim = 0.906

MLEM

FB-TV

Snr = 15.38, ssim = 0.907

CP-TV

Snr = 14.82, ssim = 0.859

MLEM_Huber

Algorithm	SNR	SSIM	λ	nb. iter.	time (s)
TVreg	15.33	0.902	0.70	200	10
FB-Wav	14.77	0.889	0.10	150	89
FB-TV	15.37	0.905	0.70	100	62
CP-Wav	14.68	0.885	0.10	80	63
CP-TV-BT	15.32	0.905	0.70	80	63
CP-TV	14.84	0.860	0.70	400	266
SPIRAL	15.17	0.905	0.70	100	76
FBP	11.59	0.429	-	-	0.04
MLEM	13.38	0.819	-	17	2
MLEM-H	15.22	0.866	0.9/0.25	267	46

PET Zubal, fcount = $100\ 000$

TVreg

Snr = 12.26, ssim = 0.842

CP-Wav

Snr = 12.84, ssim = 0.850

FBP

Yannick Boursten 7.72, ssim = 0.258

FB-Wav

Snr = 11.84, ssim = 0.837

CP-TV-BT

Snr = 13.30, ssim = 0.864

MLEM

FB-TV

Snr = 12.29, ssim = 0.849

CP-TV

Snr = 12.96, ssim = 0.823

MLEM_Huber

Algorithm	snr	ssim	λ	nb. iterations	time (s)
TVreg	12.12	0.841	0.40	200	13
FBwav	11.55	0.834	0.0625	150	89
FB-TV	12.14	0.847	0.40	100	68
CPwav	11.65	0.835	0.0625	50	40
CP-TV-BT	13.13	0.862	0.40	50	46
CP-TV	12.86	0.823	0.40	100	78
SPIRAL	11.77	0.841	0.40	100	86
FBP	6.66	0.254	-	-	0.08
MLEM	11.06	0.731	-	10	2
MLEM-H	12.92	0.837	0.8/0.25	278	58

PET Contrast for fcount = 2e5

snr = 12.59, ssim = 0.321 cnr = 1.29

snr = 12.53, ssim = 0.31 enr = 1.31

snr = 12.59, ssim = 0.323 Yannick Boursier cnr = 1.29

MLEM-Huber

snr = 15.60, ssim = 0.835 cnr = 2.12

snr = 15.92, ssim = 0.898 cnr = 2.60

snr = 15.46, ssim = 0.832 cnr = 2.18

snr = 15.80, ssim = 0.897 cnr = 2.53

fcount = 2e5

N. angles		30			60			90	
Algo	CNR	SSIM	SNR	CNR	SSIM	SNR	CNR	SSIM	SNR
CP-TV-BT	2.60	0.898	15.92	2.53	0.897	15.80	2.97	0.906	16.33
MLEM	1.29	0.321	12.59	1.31	0.318	12.53	1.29	0.323	12.59
MLEM-H	2.12	0.835	15.60	2.18	0.832	15.46	2.12	0.828	15.55

fcount = 1e5

N. angles		30			60			90	
Algo	CNR	SSIM	SNR	CNR	SSIM	SNR	CNR	SSIM	SNR
CP-TV-BT	2.64	0.900	16.11	2.55	0.897	15.84	2.72	0.901	15.92
MLEM	1.62	0.405	14.00	1.59	0.418	13.91	1.67	0.428	14.14
MLEM-H	2.67	0.842	17.50	2.42	0.837	17.24	2.59	0.842	17.39

PET Resolution for fcount = 2e5

MLEM

snr = 7.89, ssim = 0.194 cnr = 0.86

snr = 7.85, ssim = 0.196 cnr = 0.84

Snr = 7.90, ssim = 0.197 Yannick Boursier cnr = 0.87

MLEM-Huber

snr = 9.36, ssim = 0.345 cnr = 1.29

snr = 9.65, ssim = 0.395 cnr = 1.30

snr = 9.59, ssim = 0.378 cnr = 1.34

snr = 9.35, ssim = 0.331

enr = 1.27

snr = 9.40, ssim = 0.346 Proximal methods for Poisson Intensity CBCT_and 18 FT

Outline

Recalls on CBCT and PET

2 Models

3 Methods

Results

- CBCT : algorithms
- CBCT : simulation results
- CBCT : results on real data
- PET : algorithms
- PET : simulation results
- PET : results on real data

5 Conclusion

PET : real data

(80 projections, FBP then FB-TV $\lambda = 0.5; 1; 5; 10; 50$)

2 Models

Conclusion

- Demonstrator of simultaneous PET and CBCT (based on hybrid pixel technology) have been developed.
- Proposed algorithm are adapted to the physics of acquisition (photon-couting mode) and also to the pure Poisson noise.
- Efficiency and robustness of the algorithms have been proved on synthetic data and for a low number of projection angles.
- Results obtained on real data are very encouraging and confirm this trend.
- Perspectives : 3D implementation on GPU (work in progress), simultaneous acquisitions.

Thank you for your attention ! Questions ?

- radiotracer attached to a molecule that will be absorbed by some organs, depending of their function
- → radioactive decay emits a positron, which annihilates with an electron after a very short time, and this yields... two gamma rays radiation of 511 keV and opposite direction.
 Rings of detectors are supposed to detect them.
 parallel-beam geometry
 - Possible absorption of photons when crossing the body

State of the art : quick non exhaustive review

- some algorithms to recover CBCT and PET images viewed as Poisson noisy data
 - Filtered backprojection for Cone Beam geometry : FDK algorithm (Feldkamp and all 1984...)
 - EM algorithm and variants (Shepp and Vardi 1982, Lange and Carson 1984, Hudson and Larkin 1994...)
 - Regularization of EM type algorithms : quadratic surrogate functions (De Pierro 1994, Fessler and all 1998...), Huber (Chlewicki and all 2004...), TV (Harmany and all 2011...)
- $\rightarrow\,$ technics closed to the ones used in convex optimization

State of the art : quick non exhaustive review

- Forward backward splitting (Combettes-Wajs 2005) after using an Anscombe transform to go back to Gaussian noise applied in the setting of Deconvolution problems with Poisson noisy data (Dupé et al 2009)
- Alternative Direction Method of Multipliers in the context of poissonian image reconstruction (Figueiredo 2010)
- PPXA algorithm applied in the context of dynamical PET (Pustelnik et al 2010)
- Primal dual algorithm using TV regularization in the context of blurred Poisson noisy data (Bonettini and Ruggiero 2010)

• . . .

600 photons per pixel, 60 projections ($\lambda = 15$; 25; 40)

Proximal methods for Poisson Intensity CBCT and PET

15000 photons per pixel, 60 projections ($\lambda = 15$; 25; 40)

Proximal methods for Poisson Intensity CBCT and PET

Acceleration en 3D

