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Abstract

In this paper, model sets for linear-time invariant continuous-time systems that
are spanned by fixed pole orthonormal bases are investigated. These bases generalise
the well known Laguerre and two–parameter Kautz cases. It is shown that the
obtained model sets are everywhere dense in the Hardy space H1(Π) under the same
condition as previously derived by the authors for the denseness in the (Π is the open
right half plane) Hardy spaces Hp(Π), 1 < p < ∞. As a further extension, the paper
shows how orthonormal model sets, that are everywhere dense in Hp(Π), 1 ≤ p < ∞
and which have a prescribed asymptotic order may be constructed. Finally, it is
established that the Fourier series formed by orthonormal basis functions converge
in all spaces Hp(Π) and (D is the open unit disk) Hp(D), 1 < p < ∞. The results
in this paper have application in system identification, model reduction and control
system synthesis.
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1 Notation

C the field of complex numbers.

R the field of real numbers.

Π the open right half plane {s ∈ C : Re{s} > 0}.
Π the closed right half plane {s ∈ C : Re{s} ≥ 0}.
D the open unit disk {z ∈ C : |z| < 1}.
T the unit circle {z ∈ C : |z| = 1}.

Hp(Π) the Hardy spaces of functions f analytic on Π and such that
‖f‖p

p = (1/2π) supx>0

∫∞
−∞ |f(x+ jy)|p dy <∞, 0 < p <∞ and

‖f‖∞ = sups∈Π |f(s)| <∞.
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A(Π) the right half plane algebra {f : f ∈ H∞(Π) and continuous on Π}.
A(D) the disk algebra {f : f analytic on D and continuous on D}.

spA the linear span of A.

a the complex conjugate of a.

O(s−m) The notation f(s) = O(s−m) as s→∞ means that

lim sup
|s|→∞

|s|m|f(s)| <∞

2 Introduction

A fundamental idea in various areas of applied mathematics, control theory, signal pro-
cessing and system analysis is that of decomposing (perhaps infinite dimensional) de-
scriptions of linear time invariant dynamics in terms of an orthonormal basis. This ap-
proach is of greatest utility when accurate system descriptions are achieved with only
a small number of basis functions. In recognition of this, there has been much work
over the past several decades [M, B, E, R, S1] and, with renewed interest, more re-
cently [WM, W2, W1, HVB, WP, NHG, BGS, NG] on the construction, analysis and
application of rational orthonormal bases suitable for providing linear system characteri-
sations.

In a system theoretic context, the applications of these orthonormal basis ideas have
been manifold, but nevertheless have concentrated mainly on the discrete time setting [W1,
W2, VHB, O1, O2, WP, NG, BGS]. Motivated largely by problems of estimation from
frequency domain data [AIN, MAL, PGRSH, CW], but also with control system analysis
and synthesis in mind [H, GGRS] this and the companion paper [AN2] focus attention on
the continuous time scenario by considering the set of basis functions defined by a choice
of numbers {ak} ∈ Π as

Bn(s)
∆
=

√
2Re{an}
s+ an

ϕn−1(s), n ≥ 1 (1)

ϕn(s)
∆
=

n∏
k=1

s− ak

s+ ak

, n ≥ 1

with B0(s) = ϕ0(s) ≡ 1. With respect to the usual inner product

〈f, g〉 =
1

2π

∫ ∞

−∞
f(jω)g(jω) dω

on H2(Π) these functions are orthonormal. Previous work on continuous time orthonormal
bases has concentrated on special cases of the basis (1) wherein all the {ak} are the same
real number ak = a ∈ R in which case the ensuing basis is known as the ‘Laguerre’
basis [M2, M1, CW, P1], or the case of all the {ak, ak+1} being the same complex conjugate
pair ak = a, ak+1 = a [WM].

For the general basis (1) studied here the only restriction on the pole choice {ak} is
via the following result which was recently established in [AN2].
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Theorem 2.1 The linear span of the set of basis functions {Bn(s)}n≥0 is everywhere dense
in all of the spaces Hp(Π), 1 < p <∞ and A(Π) if and only if

∞∑
n=1

Re{an}
1 + |an|2

= ∞. (2)

The first result of this paper is, via Theorem 3.1, to extend this result to the case (which
has important applications in a robust control context) of p = 1.

A function in f(s) ∈ Hp(Π) is said to have ‘asymptotic order’ m if f(s) = O(s−m) as
s → ∞. Clearly the bases defined by (1) have asymptotic order 1, but as illustrated in
other work on continuous time orthonormal bases such as [WM], for the purposes of model
error approximation and minimisation, there is great utility in being able to construct bases
of asymptotic order greater than 1. Accordingly, Theorem 4.1 in § 4 establishes a method
to construct an infinite set of orthonormal bases, each of which have arbitrary asymptotic
order, and whose linear span is everywhere dense in Hp(Π) for all 1 ≤ p <∞.

Up until and including § 4 the paper has established that approximants with arbitrarily
small Hp(Π) norm approximation error exist, but not what they might be. In § 5 a
specific (and obvious) approximant is considered which is the generalised Fourier series
approximant. There, via Theorem 5.1, it is established that this approximant is, in fact,
of arbitrarily small Hp(Π) norm distance from the function being approximated for any
1 < p <∞. The paper concludes by showing how this continuous time result may be used
to establish an equivalent discrete time one.

3 Complete Model Sets in H1(Π)

The paper begins by presenting the following result which extends the result in Theorem 2.1
to include the H1(Π) space.

Theorem 3.1 The linear span of the set of basis functions {Bn}n≥0 is everywhere dense
in all of the spaces Hp(Π), 1 ≤ p <∞ (and A(Π)) if and only if (2) holds.

Proof. The necessity of (2) is proven in [AN2]. To prove the sufficiency, let f ∈ H1(Π)
be a given function. Let ε > 0 be also a given number. It is known that every function f
in H1(Π) can be factored as f = gh for some g, h ∈ H2(Π) (see, for example Garnett [G]).
Choose a function φ and a set of basis elements {B1, · · · , Bn} such that φ ∈ sp{Bk}n

k=1

and

‖g − φ‖2 <
1

2 (1 + ‖h‖2)
ε. (3)

This is possible since by Theorem 2.1, sp{Bk}k≥1 is everywhere dense in H2(Π).

Next choose a sufficiently large number m so that the elements in the set {a1, · · · , an}
with finite multiplicities are not included in the set {am+1, am+2, · · ·}. Set m = 0 when
every element in {a1, · · · , an} has infinite multiplicity. Define a new set of basis functions
in H2(Π) by

B̃k(s) =

√
2Re{ak+m}
s+ ak+m

ϕ̃k−1(s), ϕ̃k(s) =
k+m∏

i=m+1

s− ai

s+ ai

, k ≥ 1
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and ϕ̃0 ≡ 1. Notice that the new basis functions coincide with (1) when m = 0. Since

∞∑
k=m+1

Re{ak}
1 + |ak|2

= ∞,

sp{B̃k}k≥1 is also everywhere dense in H2(Π). Therefore, there exists a finite set of basis

elements {B̃k}N
k=1 and ψ ∈ sp{B̃k}N

k=1 such that

‖h− ψ‖2 <
1

2 (‖g‖2 + ε)
ε. (4)

Let Φ = φψ. The purpose of using new basis functions to approximate h should be clear
now. If we had instead chosen ψ from sp{Bk}k≥1, then the product φψ would not have
been necessarily in the linear span sp{Bk}k≥1.

Applying the Cauchy–Schwarz and triangle inequalities provides, via (3) and (4) that

‖f − Φ‖1 ≤ ‖h‖2‖g − φ‖2 + ‖φ‖2‖h− ψ‖2

<
‖h‖2

2 (1 + ‖h‖2)
ε+

[
‖g‖2 +

ε

2 (1 + ‖h‖2)

]
1

2 (‖g‖2 + ε)
ε

<
ε

2
+
ε

2
= ε.

It remains to show that Φ ∈ sp{B1, B2, · · ·}. To this end it is first established that
Φ ∈ spQ where

Q =

{
1

s+ a1

,
1

(s+ a2)M(2)
, · · ·

}
(5)

and M(k) denotes the multiplicity of ak in the set {a1, · · · , ak}. Thus Q is precisely the
set containing all possible partial fraction expansion terms of basis functions B1, B2, · · ·.
Since

φ ∈ sp{B1, · · · , Bn} ⊂ sp

{
1

s+ a1

,
1

(s+ a2)M(2)
, · · · , 1

(s+ an)M(n)

}
and

ψ ∈ sp{B̃1, · · · , B̃N} ⊂ sp

{
1

s+ am+1

,
1

(s+ am+1)M̃(2)
, · · · , 1

(s+ am+N)M̃(N)

}

where M̃(k) is the multiplicity of am+k in the set {am+1, · · · , am+k}, Φ can be written for
some coefficients {ck}, {dk} as

Φ =
n∑

k=1

N∑
`=1

ckd`

(s+ ak)M(k)(s+ am+`)M̃(`)
.

Suppose ak 6= am+`. Then the summand above admits a partial fraction expansion

M(k)∑
i=1

ek,l,i

(s+ ak)i
+

M̃(`)∑
i=1

fk,l,i

(s+ am+`)i
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for some coefficients ek,l,i, fk,l,i where the partial fraction terms above are in spQ. In the
other case ak = am+l, we have

ckd`

(s+ ak)M(k)(s+ am+`)M̃(`)
=

ckd`

(s+ ak)M(k)+M̃(`)

which is again in spQ since for m = 0, ak has infinite multiplicity and for m 6= 0, the sets
{a1, · · · , am} and {am+1, · · · , am+N} are disjoint and the equality ak = am+l is attained
only if ak has infinite multiplicity by the construction of the latter set. Hence Φ ∈ spQ.

To complete the proof, it is sufficient to show that spQ ⊂ sp{Bn}n≥1. Then this will
imply that Φ ∈ sp{Bn}n≥1. Since f and ε are arbitrary, this will then show that sp{Bk}k≥1

is everywhere dense in H1(Π).

Let L be a given positive integer. Write the partial fraction expansions of the basis
functions B1, B2, · · · , BL in the following linear equation form

B1

B2
...
BL

 =


α11 0 · · · 0
α21 α22 · · · 0
...

...
. . .

...
αL1 αL2 · · · αLL




1
s+a1

1
(s+a2)M(2)

...
1

(s+aL)M(L)

 . (6)

The degree of Bk is k which implies that αkk 6= 0 for all k ≤ L and thus the lower triangular
matrix above is invertible. Hence for i = 1, 2, · · · , L

1

(s+ ai)M(i)
∈ sp{Bk, k = 1, · · · , L} ⊂ sp{Bk}k≥1.

Since L is arbitrary, it follows that spQ ⊂ sp{Bn}n≥1. ♣
The proof of Theorem 3.1 is an interesting application of the factorization f = gh

where f ∈ H1(Π) and g, h ∈ H2(Π). The completeness proof in [AN2] for the spaces A(Π)
and Hp(Π), 1 < p < ∞ does not apply to H1(Π) since the basis functions (1) themselves
are not in H1(Π).

Theorem 3.1 shows in particular that a first-order time-delayed system described by
the transfer function

G(s) =
e−sτ

s+ a
, τ, a > 0

and commonly seen in process engineering can be approximated by models spanned by the
basis functions (1) with arbitrarily small approximation errors in the H1(Π) norm. Note
that G is not in H1(Π), yet G ∈ Hp(Π), for all 1 < p <∞ and A(Π).

The completeness result (3.1) has also potential applications on robust identification of
continuous-time systems. An abstract framework that solves robust identification problems
formulated for systems lying in seperable Banach spaces is provided in [P2]. This framework
has found important applications in the identification of discrete-time systems [AN1].

4 Orthonormal Basis Functions with Prescribed Asymp-

totic Order

This section presents a derivation of model sets that are everywhere dense in Hp(Π) for
1 < p <∞ and for which the orthonormal basis functions Bn(s) defining the sets each have
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a prescribed asymptotic order. That is, Bn(s) = O(s−m) as s → ∞. The basis functions
studied in the previous section all have asymptotic order m = 1. The problem of synthesis
of bases of arbitrary asymptotic order has been investigated in the literature for various
specific cases of choice ak of pole position or of asymptotic order m [S2, M, C1, M2].

In contrast to these previous specific cases available in the literature, the following
result provides a recipe to construct bases of arbitrary asymptotic order m and with
arbitrary pole position ak (that satisfies (2)). It is easy to see that suitably chosen linear
combinations of the basis functions (1) yield a set of functions with a prescribed asymtotic
order. The difficult part is to show that this set is everywhere dense.

Theorem 4.1 Suppose that (2) is satisfied. Let P (s) be an mth order polynomial with
roots in the complement of Π and m > 1. Let

ψn(s)
∆
=
Bn(s)

P (s)
−

n−1∑
k=1

〈
Bn

P
, ψk

〉
ψk(s)

‖ψk‖2
2

, ψ1(s)
∆
=
B0(s)

P (s)
. (7)

Then the basis functions

φn(s)
∆
=
ψn(s)

‖ψn‖2

, n ≥ 1 (8)

are orthonormal and have the asymptotic order φn(s) = O(s−m) as s → ∞. Moreover
sp{φn}n≥1 is everywhere dense in Hp(Π) for all 1 ≤ p <∞.

Proof. Let f ∈ Hp(Π) be a given function. Let ε > 0 be also a given number. Approximate
f by a function g ∈ A(Π) that has the properties ‖f − g‖p < ε and

lim
|s|→∞

|s|m|g(s)| = 0, s ∈ Π.

This is possible since such functions form a dense subset of Hp(Π) (see for example,
Garnett [G, Cor. 3.3 in Chap. II]). Take h(s) = P (s)g(s). Then h ∈ A(Π) and since
by Theorem 2.1, sp {1, B1, B2, · · ·} is everywhere dense in A(Π) there exists a function
F ∈ sp{1, B1, B2, · · ·} such that ‖h− F‖∞ < ε which implies that∣∣∣∣g(s)− F (s)

P (s)

∣∣∣∣ < ε

|P (s)|
, s ∈ Π.

Therefore ∥∥∥∥f − F

P

∥∥∥∥
p

< ε+

∥∥∥∥ 1

P

∥∥∥∥
p

ε.

Since f and ε are arbitrary, it follows that the linear span

Q = sp

{
1

P
,
B1

P
,
B2

P
, · · ·

}
is everywhere dense in Hp(Π) for all 1 ≤ p < ∞. Finally, observe that (7) is the Gram-
Schmidt orthogonalisation procedure applied to Q. ♣

The basis functions (7) are useful in any modelling applications that require certain
roll off rates at high frequencies. For example in modal analysis, mechanical structures for
vibration studies are represented by models in the form

Ĝ2n(s) =
n∑

k=1

ak

s2 + 2ξkωks+ ω2
k

where damping coefficients satisfy 0 < ξk < 1 for all k and ωk’s denote natural frequencies.
The frequency response of Ĝ2n rolls off 40 dB per decade.
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5 Convergence of Generalised Fourier Series in Hp(Π)

Let {Bk}k≥1 be a set of basis functions which satisfy (2). Then sp{Bk}k≥1 is an everywhere
dense set of basis functions for H2(Π) and every f ∈ H2(Π) has a Fourier series expansion

f̂n(s) ,
n∑

k=1

〈f,Bk〉Bk(s) (9)

that converges to f in the L2(jR)–norm. When Bk = zk, k = 1, 2, · · · and the underlying
space is Hp(D), it is well known that every f ∈ Hp(D) has a Fourier series which also
converges in the Lp(T)–norm for all 1 < p <∞. In this section it is shown that the same

is true for the basis functions in (1). First it is necessary to establish that the maps f 7→ f̂n

are bounded.

Lemma 5.1 Let f̂n be as in (9). Then there exists a constant Cp < ∞, which depends
only on p, such that for all 1 < p <∞

‖f − f̂n‖p ≤ Cp‖f‖p. (10)

Proof. Let ψ(s) = f(−js). Then ψ is analytic on the upper half plane Im{s} > 0 and
(1/2π)

∫∞
−∞ |ψ(t)|pdt = ‖f‖p

p. Hence ψ(s) can be represented by a Cauchy integral [D,
Theorem 11.8] as

ψ(s) =
1

2πj

∫ ∞

−∞

ψ(t)

t− s
dt, Im{s} = y > 0

and consequently

f(s) =
1

2π

∫ ∞

−∞

f(jω)

s− jω
dω, s ∈ Π. (11)

For the basis functions {Bk}k≥1 defined by (1), the following well-known Christoffel-
Darboux formula (see [AN2] for a sample derivation) holds

n∑
k=1

Bk(jω)Bk(s) =
1− ϕn(jω)ϕn(s)

s− jω
, s ∈ Π. (12)

Therefore from (9), and (11)–(12)

f̂n(s) = f(s)− ϕn(s)

2π

∫ ∞

−∞

f(jω)ϕn(jω)

s− jω
dω, s ∈ Π

= f(s)− ϕn(s)
1

2πj

∫ ∞

−∞

f(−jω)ϕn(−jω)

ω − js
dω

∆
= f(s)− ϕn(s)H̃n(s). (13)

Put f̃n(ω) = f(−jω)ϕn(−jω) and F̃n(js) = H̃n(s), s ∈ Π. Then F̃n is analytic on the

upper half plane and from (13) the following representation holds for F̃n

F̃n(s) =
1

2πj

∫ ∞

−∞

f̃n(ω)

ω − s
dω, Im{s} = y > 0. (14)

7



The map f̃n 7→ F̃n defined by (14) is a bounded linear operator from Lp(R) onto Hp({y >
0}) (see [RR, Theorem 5.32]). Hence

‖f − f̂n‖p = ‖H̃n‖p = ‖F̃n‖p ≤ Cp‖f̃n‖p = Cp‖f‖p (15)

where Cp is a constant which depends only on p. ♣
For the precise value of Cp, the reader is referred to Chapter III in Garnett [G]. Let

Xn denote the linear space spanned by the functions Bk, k = 1, 2, · · · , n and define

en(f ; p) = min
g∈Xn

‖f − g‖p. (16)

Thus en(f ; p) is the best Hp(Π) norm approximation error of f by functions in Xn. Since⋃∞
n=1Xn is everywhere dense in Hp(Π) (1 ≤ p < ∞) and A(Π), the quantity en(f ; p)

defined by (16) monotonically tends to zero as n → ∞. Using Lemma 5.1, the following
main result of this section can now be established.

Theorem 5.1 Consider the partial sums of the Fourier series defined by (9). Let en(f ; p)
be as in (16). Suppose that (2) holds. Then for all 1 < p <∞ and f ∈ Hp(Π)

‖f − f̂n‖p ≤ Cp en(f ; p) (17)

and
lim

n→∞
‖f − f̂n‖p = 0. (18)

Proof. Let f ∈ Hp(Π) and g be the minimizing solution in (16). Let ψ = f − g.
Observe that ĝn = g since g ∈ Xn. Due to the linearity of Fourier series, notice also that
ψ̂n = f̂n − ĝn. Hence from Lemma 5.1

‖f − f̂n‖p = ‖ψ − ψ̂n‖p ≤ Cp ‖ψ‖p = Cp en(f ; p).

♣
The inequality (17) shows that the approximation error of the linear estimate (9) is

in the order of the best achievable error for every choice of basis functions when the
approximated system lies in Hp(Π) (1 < p < ∞). The choice of basis functions on the
other hand depends on the class of systems. This subject will not be pursued here.

The remainder of this section will be consumed with the extension of Theorem 5.1
to the discrete–time orthonormal basis functions studied in [NG, AN1, NHG] defined on
D ∪T by

Bn(z)
4
=

√
1− |ξn|2

1− ξnz
φn−1(z), φn(z)

4
=

n∏
k=1

z − ξk

1− ξkz
, φ0(z)

4
= 1. (19)

These basis functions were considered in [AN1] for the purpose of robust estimation. In
particular, it was shown that model sets spanned by (19) are complete in Hp(D) for all
1 ≤ p <∞ and A(D) if and only if the sequence of complex numbers ξk ∈ D satisfies

∞∑
n=1

(1− |ξn|) = ∞. (20)
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The following is the discrete-time version of Lemma 5.1. In what follows, the notation
‖ · ‖p refers to the Lp–norms on the unit circle and the inner product for two functions
f, g ∈ H2(T) is defined as

〈f, g〉 =
1

2π

∫ π

−π

f(ejω)g(ejω) dω.

Lemma 5.2 Let f̂n denote the partial sums of the Fourier series of f ∈ Hp(D), that is

f̂n(z) =
n∑

k=1

〈f,Bk〉Bk(z). (21)

Then there exists a constant Cp <∞, which depends only on p, such that

‖f − f̂n‖p ≤ Cp‖f‖p, 1 < p <∞. (22)

Proof. The proof is very similar to that of Lemma 5.1. Accordingly, it is omitted, and
instead the required modifications of Lemma 5.1 are specified. The Cauchy formula for
f ∈ H1(D) is

f(z) =
1

2π

∫ 2π

0

f(ejθ)

1− e−jθz
dθ (23)

and the well-known Christoffel-Darboux formula (which can be proven by induction) is

n∑
k=1

Bk(ejθ)Bk(z) =
1− φn(ejθ)φn(z)

1− e−jθz
, z ∈ D.

♣

Theorem 5.2 Consider the partial sums of the Fourier series defined by (21). Let en(f ; p)
denote the best Hp(D) norm approximation error of f by functions in sp{B}n

k=1. Then for
all 1 < p <∞ and f ∈ Hp(D)

‖f − f̂n‖p ≤ Cp en(f ; p) (24)

and if (20) holds

lim
n→∞

‖f − f̂n‖p = 0. (25)

In Theorems 5.1–5.2, the cases p = 1 and p = ∞ can not be included since the Riesz
maps Lp(R) → Hp({y > 0}) and Lp(T) → Hp(D) defined respectively by (14) and (23)
are not bounded for p = 1 and p = ∞.

Under additional system and/or basis smoothness assumptions, partial sums in (9)
and (21) can be computed by fast Fourier transform techniques with guaranteed error
convergence behaviour. We omit the details (see [GKL, WM]).
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6 Conclusions

This paper has provided an analysis of the approximation properties of certain general
classes of rational orthonormal basis functions. The nature of the results was such as to
establish that for linear-time invariant continuous-time system modelling, arbitrarily small
Hp norm approximation error was possible for any p ∈ [1,∞) and furthermore, this may
be provided while at the same time using bases with arbitrary asymptotic order. Finally,
a specific construction of the system approximant via Fourier decomposition was shown
to be one in which the Hp norm error is arbitrarily small for any p ∈ (1,∞). The results
have application in the analysis and design of robust estimation and control strategies.

References
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