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Rational Basis Functions for Robust Identification from
Frequency and Time-Domain Measurements*

HUSEYIN AKCAY+ and BRETT NINNESS}

This paper presents general methods for robust identification from time and

frequency domain measurements. Central to the work is the use of a class of

rational bases that are orthonormal in H, and are natural extensions of the
well-known Laguerre and two-parameter Kautz bases.
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Abstract—This paper investigates the use of general bases with
fixed poles for the purposes of robust estimation. These bases,
which generalise the common FIR, Laguerre and two-parameter
Kautz ones, are shown to be fundamental in the disc algebra
provided a very mild condition on the choice of poles is satisfied.
It is also shown that, by using a min-max criterion, these bases
lead to robust estimators for which error bounds in different
norms can be explicitly quantified. The key idea facilitating this
analysis is to re-parameterise the chosen model structures into
a new one with equivalent fixed poles, but for which the basis
functions are orthonormal in H,(D). :C; 1998 Elsevier Science
Ltd. All rights reserved.

1. INTRODUCTION

In connection with the estimation of dynamic mod-
els on the basis of observed input—-output measure-
ments, many approaches have arisen that are
predicated on a stochastic model for disturbances
and a viewpoint that errors are best represented as
averages over ensembles of possible noise realisa-
tions (Ljung, 1987; Soderstrom and Stoica, 1989;
Caines, 1988). Complementary to this is a more
recent school of thought that disturbances, and also
estimation errors, may be characterised according
to a deterministic model under which the worst-
case amplitude is quantified (Makild et al., 1995;
Ninness and Goodwin, 1995).
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There are significant advantages to this latter
approach, which is colloquially known as “robust
identification”. For example, errors due to non-
linearities are easily accommodated, and the result-
ant models and error bounds are of a form suitable
for subsequent robust control design. The formal-
ism of the robust identification school of thought is
that discrete time linear models with impulse re-
sponse sequences g{k) are represented via an asso-
ciated power series

G =Y gtk
k=0

which is the more common discrete time transfer
function evaluated at 1/z. The stability of the sys-
tem may then be characterised according to G(z)
being analytic on the open unit disc D = {ze C:
Iz < 1} or, if the degree of stability is at issue,
analytic on an open disc Dy = {z€ C: |z| < R} of
radius R. When deriving estimation error bounds,
the space in which the true system lies must be
characterised, and with analyticity on D in hand,
this leaves the behaviour of G(z) on the boundary
T={zeC: |zl =1} to be specified. If G(z) is
deemed to be continuous on T, then it is more
compactly described as being an element of the disc
algebra A(D) while if G(z) is not necessarily con-
tinuous on T, but if |G(2)|? is integrable on T then
G(z) may be succinctly described as being an ele-
ment of the Hardy space H,(D). Finally, there is the
possibility that one may wish to avoid frequency
domain characterisations of G(z) altogether, and
instead characterise the system to be identified ac-
cording to the space ¢, that the impulse response
{g(k)} lives in. Common choices here are /, in which
Yulg(k)l < oo and £, in which suplg(k)| < oc.
Typically, in these robust identification contexts,
FIR model structures are employed. Recently,
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however, in an effort to decrease the undermodell-
ing-induced component of the estimation error,
model structures allowing for the encoding of prior
knowledge of pole positions have been introduced.
For example, in Mikild (190) and Wihlberg and
Ljung (1992), it has been proposed that in trying to
robustly estimate the dynamics G(z), a model struc-
ture of the form

n—1

G(z,0) = Z O (2) (1)

k=

be employed where the functions {#,(z)} are the
so-called “Laguerre” basis functions specified as

N2/ 7—g \k
@ (oY1 =d (f “), k=0,1,... ()

1 —az —az

for some fixed @ with — 1 <a < 1. By choosing
a according to prior knowledge of the relative stab-
ility of G(z), the undermodelling error can be re-
duced in comparison to the use of an FIR model
structure (Makild, 1990; Wahlberg, 1991), which is
a special case of the Laguerre structure when a = 0.

In the case of systems G(z) for which prior know-
ledge of a resonant mode exists, then it is more
appropriate to employ the so-called two-parameter
Kautz basis defined as follows (Wahiberg, 1994).
Let

cz2 +bz+1

Uy

where b and ¢ are fixed real numbers satisfying
b? — 4ac < 0 and { has no poles in the closed unit
disk. Let yo(z) =1, ¥y(z) = 1/(z* + bz + ¢) and
¥a(2) = 2/(z* + bz + ¢). Let Y(z) = {(2) Y- 2(2) for
k > 2. Then Kautz models are obtained by or-
thonormalizing o, ¥, and ¥,. Laguerre and Kautz
models are special cases of general orthonormal
bases (Heuberger et al., 1995) where the poles are
again restricted to a finite set. More recently, in
Ward and Partington (1995, 1996), the “rational
wavelet” basis

1_ , weW, (3)

%W(z)él — Wz

has been suggested, where W is a set of discrete
points in D and ~ denotes complex conjugation.
Denoting the linear span of the set
{Bo, By, ..., B,-1} as X, =sp{Z}, the wavelet
basis enjoys the advantage of generalising the FIR,
Laguerre, two-parameter Kautz, and general or-
thonormal bases in the sense that the points in
W may trivially be chosen so that sp{%,;
we W} = X,. Furthermore, by exploiting the great
freedom in the choice of points in W, the wavelet
basis would seem to have much greater utility in
that it allows the injection of much more prior
knowledge of the system G(z). Intuitively, this

should lead to smaller undermodelling-induced er-
ror when employed for the purposes of system
identification (Ward and Partington, 1996).

In the context of robust estimation, perhaps
a more important question is that of whether
sp{#,; we W} can arbitrarily well approximate
any given element G(z) in the space in question, be
it A(D), H,(D) or Z,. In the sequel, we will refer to
this property by the formal definition of a set 4 be-
ing fundamental in a space X if the closure of the
linear span of 4 under the norm on X is equal to X.

In Ward and Partington (1996), it was shown
that a sufficient condition for {#,; we W} to be
fundamental in A(D) was that W be a dyadically
spaced lattice of the form:

W = {ép.k: ip.k = (1 — Z'P)eJ'an,fo"
k.—:O,,Z"_l,pzo,l.} (4)

The dyadically spaced lattice above satisfies the
so-called “Hayman-Lyons condition” considered
in Hayman and Lyons (1990).. Many other lattices
also satisfy this condition and in the construction of
a wavelet basis, kernels different to the Cauchy
kernel Equation (3) yet still parameterised by a lat-
tice satisfying the Hayman—Lyons condition can
also be employed. The Cauchy kernel was used in
Ward and Partington (1996) due to its simplicity.
As well, in Ward and Partington (1996), the reason-
ing behind choosing a dyadically spaced lattice was
to provide approximation of systems with poles
near the circle more efficiently than (for example)
by polynomials.

One of the main results of this paper is to show
that in fact a necessary and sufficient condition for
{#,;we W} to be fundamental in A(D) and in
H,D)forall 1 <p < oo is that with W written as

W = {505 613 523 }

Z =18 = (5)
Condition (5} is clearly much milder than equation
(4). In Section 5, we derive several sufficient condi-
tions for {#,;we W} to be fundamental in /.

The key tool in deriving these results is to re-
parameterise the linear space sp{#,; we W} as

! 1
X, = — —1
Sp{l — &2 " j

=sp{B2);, k=0,1,2,...,n— 1},

k=01, ...,

where the functions {#,(z)}, which have been con-
sidered in detail in Ninness and Gustafsson (1997)
and Ninness and Hjalmarsson (1997), are defined

by Bo(z)2 /T — Eol?/(1 — &2) and
_ 2 k-1 ¢
Byl lol Iz o )

1 —EkZ m=o01 —EmZ’
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They are orthonormal in H,(D) with respect to the
inner product

T —_—

1 o _
B, B> =5 f B,(e1) B, (€°) do

-n

_ I, m=n, (7
0, m#n )

‘The functions in equation (6) are in fact obtained by
applying the Gram-Schmidt procedure to the ra-
tional wavelet functions equation (3) with respect to
the inner product equation (1). The afore-men-
tioned Laguerre and two-parameter Kautz bases
are special cases of equation (6) where all the {&;}
are chosen to be the same and real (Laguerre) or
complex (Kautz). Formulations of orthonormal
bases with general pole locations other than equa-
tion (6) are possible; see for example, Heuberger
et al. (1995) and van den Hof er al. (1995) where
a state-space approach is taken and Bokor er al.
(1995a, b), Schipp and Bokor (1997), Schipp et al.
(1996) and Szabo et al. (1997).

Since the linear spaces X, spanned by the two
sets are identical, the approximation properties of
X, with respect to A(D), H,(D), ¢, are identical and
any robust estimates obtained will be identical.
However, by exploiting the orthonormality prop-
erty (7) the provision of analytical expressions for
approximation error is greatly facilitated. This res-
onates with the earlier work in a stochastic setting,
where it has also been argued that the main utility
of orthonormal model structures for system identi-
fication is not as an implementational tool (since
simpler structures span the same space X, and
hence provide identical estimates), but as an analy-
sis tool (Ninness and Gustafsson, 1997; Ninness
and Hjalmarsson, 1997).

Having studied these basic approximation prop-
erties, robust estimation using the minimax scheme
proposed by Makila (1991), Mékild and Partington
(1992) and Partington (1994a, 1996) is investigated.
Conditions for robust convergence, and explicit
quantification of estimation error are derived for
each of the spaces 4(D), H,(D) and 7, and for both
frequency-domain and time-domain measure-
ments. As well, analysis of estimation using mixed
parametric/non—parametric model structures is
provided and implications for model reduction are
discussed together with a brief study of how the
results may be extended to the multi-variable set-
ting. Finally, an example is given to illustrate the
application of the minimax algorithm.

In the sequel, the notation y, = O(x;) as k - o
will mean y,/x, remains bounded. Also, the nota-
tion | - || x will denote the norm on the space X, with
the understanding that | - | , means the usual L,(T)
or /, norm as appropriate.

2. PROBLEM FORMULATION

This paper considers the problem of identifying
an underlying linear-time-invariant, single-input/
single-output, discrete-time system with impulse re-
sponse {g(k)}. It is assumed that this system is
£, bounded-input/bounded-output stable and real
so that the associated power-series representation
G(z) =) 2 ,9k)z* e H (D). In particular, if the
system is 7, bounded-input/bounded-output
stable, then g € /; and G(z) is continuous on T so
that in fact G(z) e A(D).

The identification of G(z) is performed on the
basis of the observed and possibly noise corrupted
input-output behaviour of the system, which here-
after is referred to simply as G(z). If the observed
behaviour of G(z) is in the frequency domain, then it
is assumed that the measurement set-up is as follows:

E,=GE)+m, k=0,...,N (8)

where E is the observed frequency response at the
kth, not necessarily uniformly spaced frequency
oy and #y is a corruption to the true frequency
response G(e'*). This corruption n = {50, 11, ... }is
assumed to be bounded as ||5||.. < .

The robust identification objective is to produce,
on the basis of the observed response {E,}, an
approximate model Gy € A(D) for G in such a way
that the following condition is satisfied:

lim sup |Gy —Gl|l, =0 forall Ge A(D). (9)

N—oow fInll> <¢
&0

In the time-domain problem formulation, the given
input-output data {u(t), y(t)}}=o' of the system is
assumed to satisfy the measurement set-up

YO =@®ut+ 0 =3 gkul — k) +n(), (10
k=0

where the input signal u(t) is bounded as |ju| ., <1
(with u(z) = 0 for ¢t < 0) and y(¢) is the measured
output corrupted by a bounded disturbance
7] < & In this case, the robust estimation objec-
tive is to again satisfy equation (8) or the following

condition under the constraint that {gn(k)} € £,

lim sup |gy —gll; =0 forallges,. (11)

N-wo ||n||. <¢
£ 0

An identification algorithm that satisfies either one
of the above properties is called convergent and
robustly convergent if it does not rely on a priori
information about the unknown system and noise.
We will call # noise although it may be present due
to non-linearities, time variations etc.

3. IDENTIFICATION ALGORITHMS

The identification algorithms studied in this
paper are results of the works of Partington (1994a,
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1996) and Maikila (1991) (see also Mikild and Par-
tington, 1992) who have derived a general frame-
work to solve robust estimation problems of the
form just posed. In their framework, given the
linear model structure (1) and linear subspaces
Xy = sp{%o, -.., Bi—1), then for frequency domain
measurements the robust estimate Gy(z) is found as
the solution of the minimax problem

Gny(z)2argmin  max |H(E) — EJ. (12)
HeX, 0<k<N
A sufficient condition on the model structure
X, and the denseness of the frequency evaluation
points {w,} such that equation (12) results in a ro-
bust estimator satisfying equation (9) is that there
exists a fixed 0 < & < 1 such that for each n

max |G(e’™)| > d||G|. forall Ge X,. (13)
0<k<N
In the case of time-domain data, the algorithm (12)
takes the following (similar) form

gvEargmin . max  |(g®u)(®) — y(0)l, (14)

geX, 0<t<N -1

where gy denotes the impulse response of the iden-
tified model and a sufficient condition on the model
structure X, and the input u such that equation (14)
results in a robust estimator satisfying equation (11)
is that also there exists a fixed 0 < & < 1 such that
for each n

max [(g®u)(0)| = 8|Gll, (or llgll)

0<tsN -1
for all G (or g) € X,. (15)

Furthermore, for the algorithms defined by equa-
tions (12) and (13) provided that the conditions (13)
and (15) hold, respectively, then it is possible to
specify explicit bounds on the estimation error as
(Partington, 1994a; Ward and Partington, 1996)

~ 2 2
N 2 2
llg — gnlls S(S+1>d(gvxn;/[)+583 (17)
where d(f, X,; X) defined as
d(f, X,; X)2 inf ||h —fx (18)
heX,

represents the error in approximating f by some
function from the model set X,.. Conditions (13) and
(14) are also necessary for robust recovery of sys-
tems in the spaces A(D) and / (Partington, 1996).

It should be noted that given the richness of the
robust estimation literature, many other estimation
approaches are possible other than equation (12) or
(14). For example, concentrating on frequency-
domain data, if the evaluation points {w;} are uni-
formly spaced, then a class of two-stage non-linear

methods are available (Helmicki et al., 1991; Gu
and Khargonekar, 1992a, b) for which worst-case
error bounds are comparable to Equation (16).
However, these sub-optimality properties are cru-
cially dependent on the uniform frequency spacing.
If this uniformity requirement is dropped, the error
due to undermodelling will decrease polynomially
in model order n (Akgay et al., 1994; Partington,
1993) even if G is extremely smooth, whereas using
equation (12), the bound (16) shows that the under-
modelling error will decrease according to
d(G, X,, A(D)) which, as we shall show, decreases
exponentially in n for exponentially stable discrete-
time systems, and hence at a rate much faster than
the two-stage schemes. (A different implementation
of the two-stage algorithms in Akgay (1997) yields
undermodelling errors decreasing faster than poly-
nomially but strictly slower than exponentially in
n for the same class of systems.)

Given these motivations, the formulation (12) or
(14) reduces the worst-case identification problem
to a choice of complete model sets X,. Since the
error depends upon d(G, X,; X), it 1s desirable to
choose (via prior knowledge of G(z)) basis functions
{B(z)} such that the distance d(G, X,; X) from G(z)
to X, = sp{%o, ..., B, } is as small as possible.

For example, if frequency response data indicate
several lightly damped modes, then to speed up the
convergence rate of d(G, X ,; &/) to zero, some poles
in the basis functions {#,(z)} could be moved to-
ward the boundary of D with approximately the
same arguments as the resonant frequency of the
modes.

However, once one has chosen a complete model
set {X,} for X, it is necessary to check that it is
compatible with the measurement set-up in that the
sufficient conditions (13) or (15) for robust conver-
gence are satisfied. Typically (for example, for fre-
quency domain measurements) this will result in
the conclusion that for a given number N of data,
depending on the choice of model structure X,
there is a maximum model order n(N) such that
equation (13) is satisfied. This is reminiscent of the
well-known bias/variance constraint on model or-
der that exists in a stochastic setting for system
identification (Ljung, 1987).

The link between n and N for FIR models is
provided by Bernstein’s inequality (Zygmund,
1959) and for rational models, it can be derived by
means of a sharp inequality due to Borwein and
Erdelyi (1996). In the time domain, the dependence
between n and N is referred to as the sample com-
plexity (Poolla and Tikku, 1994). In Sections 6 and
7 we will address the question of how n and N are
related for various scenarios, but to begin with we
address the more rudimentary question of whether
the model structures X, are complete in the various
spaces A(D), H,(D) and #, of interest.
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4. FUNDAMENTAL MODEL SETS IN 4(D)

In this section, we establish that the orthonormal
basis (6) is a fundamental set for A(D) if and only if
it satisfies the condition

Y (1~ ) = . (19)

It is known {(Dewilde and Dym, 1981; Ninness and
Gustafsson, 1997) that the basis (6) is fundamental
in H,(D) under the same necessary and sufficient
condition, and in this section we show that this may
be extended to all H,(D) spacesfor 1 < p < . In
deriving these results, a key tool is the following
lemma which is presented in terms of finite
Blaschke products defined by
n—1
on) 2 [ Zlm (20)

mZOI—EZ.

Lemma 1 (Christoffel-Darboux Identity). Let
{PB,}n >0 be as in equation (6). Then forall z, { e D

"ilm@k(z) =000 )
k=0 1—(z

Proof. The proof is by induction (see Ninness and
Hjalmarsson, 1997). ]

A key consequence of this result is that it facilit-
ates a simple integral formulation of d(G, X,; A(D)
as follows.

Lemma 2. Let G € A(D) and %,(z) be as in equation
(6). Let G, be the projection

n—1
G2 Y <G B>&(), (eD. (22
k=0

Then

G~ G =

odl) | G(2) —
27 %TZ——C oa(z)dz.  (23)

Proof. Since G € Hy(D), it can be represented by
the Cauchy integral of its boundary function G(e')
[Rudin (1987), Theorem 17.11] as

1 G(z)
G(©) :2—nj§Tz — dz, (eD.

Then using Lemma 1

~ n-l 1 —dz
G,({)= kgo B (0) 3 ﬁ G(2) '@k(z)_;

=§T @) 11— 0(0) )] dz
mJrz—¢

_ oa0) [ G(2)

@.(z)dz. O

In order to use this result to provide L(T) error
bounds, it is necessary to derive an upper bound on

@n(2)].

Lemma 3. Let ¢, be as in equation (20). Then for
each ze D,

1 n—1
loa(2)l < eXp<— S =1lzD Z (1— |€k|)>- 24)

Proof. Let z =re! and &, = Re’™ denote polar
decompositions of z and ¢,. Put = 6 — w,. Then
a simple algebraic manipulation yields

Z_fn
1 -&,z

2 2

re — R
1 —rRe"

B

1—=r>(1—R?Y
1 4+ r*R* —2rRcos y’

(1+7(1+R)

gl—(l—r)(l—R)—(1+rR)2 .

<1—(1-r(—R),
<exp(—=(1 = — R)), (25)

where the last inequality follows from the fact that
e *>1 —x for all x. Consideration of equations
(25) and (20) completes the proof. O

Use of these results allows the calculation of the
L (T)-norm distance d(G, X ,; A(D)) from the space
X, =sp{Ao, ..., B,—,} to an arbitrary G(z) with
relative stability such that the power series G(z) is
convergent on the disc Dy for some R > 1 in which
case we write G € A(Dg, K) if |G(z)] is bounded by
K < oo in Dyg.

Lemma4. Let {X,}, o be the set spanned by equa-
tion (6). Let G € A(Dg, K) and d(G, X,; X) be as in
equation (16). Then

KR R—1"2} .
d(G, X AD) < p— exp( ~ SR kgo(l - I:kl))-
(26)

Proof. Since d{(G,X,; AD)) <|G— H|, for all
Hesp {#)r-¢ we can use G, in equation (20) to
over-bound d(G, X,; A(D)). Lemma 2 provides the
following expression for G — G,

GO -G =294 69 4 rep.

2rj Jr(z — Doul2)

The integrand above is meromorphic in Dg. Thus,
the contour integrals on T and (R — &)T are equal
by the residue theorem (Rudin, 1987, Theorem
10.42]if R — ¢ > 1 since each pole is encircled once




1106 H. Akcay and B. Ninness

by T and (R — ¢)T. Therefore

oD fﬁ G(z)
(R—s)T(Z —{ol2)

3

< KR i
Smoros P e
KR
=————  sup @l (27
R—1-—¢ izl = TR — &)

Let ¢ = 0. Then

2 KR
GC—-Gllo £5— 2)].
1G =Gl Sy sup Il

Use of Lemma 3 now completes the proof. ]

The remainder of this section is devoted to exam-
ining the question of whether or not {2,} is funda-
mental in certain spaces. Key to this analysis is that
via a well-known application of the Hahn-Banach
theorem, it is possible to establish (see, for example,
Achieser (1992), Section 30) that a set A < X is
fundamental in X if and only if any bounded linear
functional vanishing on A also vanishes on X. This
will be used firstly to examine the case of X = A(D),
and in this case it is also useful to know that
a special case of the set {#,} considered here,
namely the Laguerre basis, is fundamental in A(D).
A proof of this fact is as follows.

Lemma 5. The Laguerre basis (2) (which is equation
(6) with &, = a, Vk) is fundamental in A(D) for all
—l<a<l

Proof. Let
zZ—a

w = ,(z)

T1-az

Since ¥, is a bilinear map, it suffices to show that
the closed linear span of the set {%,°y, '} (here
< denotes composition of functions (feg)(z) =
fl(g(z)) denoted by L equals to A(D). A simple
calculation yields

1
Beows () = — b

N
Thus L < A(D). The reverse inclusion follows
from the well-known fact that polynomials are
dense in A(D) (Rudin, 1987, Theorem 20.5) and any
F € A(D) can be written as F = (1 + aw)H where
H(w) = Fw)(1 +aw) since (1 +aw)™ ' e A(D)
whenever |a| < 1. O

k=01,... (28

Combining the previous lemmata with these ob-
servations, we have the main result of this section
characterising the fundamentalness of the or-
thonormal bases (6) in A(D) in terms of the chosen

pole positions {1/&,}

Theorem 6. The orthonormal set in equation (6)
is fundamental in A(D) if and only if

a0

reoll — 1E) = 0.

Proof. Suppose first that Y (1 —|&]) = oco. Let
B be the set of all Laguerre functions defined in
equation (2) for the case of a = 1/2. Since it has just
been established that the Laguerre basis is funda-
mental in A(D), the set sp B is dense in A(D).
Notice (using the notation defined just before
Lemma 4) that B < A(D,, N/5). Therefore, the set
sp A(D,, /3) is dense in A(D). But by Lemma 4, it
also holds that sp A(D,, \/3) < spiB;}x = 0. There-
fore {#}1 » o is fundamental in A(D).

Conversely assume that ) (I — |&]) < oc. Then
the finite Blaschke products in equation (20)

modulated by []"™" — &./|&.l converge uniformly
on D to a function ¢(z)e H, which has zeros
precisely at the points &, (Rudin, 1987, Theorem
15.21). In this case, the linear functional F defined
on A(D) by
1 —dz
F(h) = 2 3% hz)olz)— (29)
is clearly nontrivial and also bounded. However, by
Cauchy’s Integral Theorem it also vanishes for any
%, of the form equation (6). Therefore, the linear
span of the set {4,} defined by equation (6) is not
dense in A(D). O

The lemmata may also be combined to charac-
terise the fundamentalness of the orthonormal
bases (6) in H,(D) for 1 < p < co in terms of the

chosen pole positions {1/&,}.

Corollary 7. The orthonormal set in equation (6) is
fundamental in H,(D) for all 1 <p < oc if and
only if Y. (1 — |&)) = oc.

Proof. If Y (1 —|&]) < oo, then the non-trivial
bounded linear functional F defined by equation
(29) extends to a bounded linear functional on
H,(D) for all p > 1 and hence equation (6) is not
fundamental in H (D). The sufficiency follows from
the facts that the set of polynomials in z is dense in
H,D) for all 0 < p < oo (Duren, 1970, Theorem
3.3) and H (D) norm dominates all H,(D) norms
for p > 0. |

The set {4, } defined via equation (6) is a minimal
spanning set in H,(D) since its elements are or-
thonormal and removal of any element from the set
diminishes the span.

Theorem 6 and Corollary 7 can also be obtained
directly from the results in (Achieser (1992, Section
A.2). Nevertheless, our results are self-contained
and further results in the subsequent sections will
be based on the explicit error bounds that were
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derived in this section. Theorem 6 also has the
following corollary.

Corollary 8. Consider the rational wavelet basis
#., w e W in equation (3) where W is an arbitrary
subset of D. Then {#,, we W}isa fundamental set
in A(D) if and only if },_, (1 — |w])) =

Proof. Without loss of generality, assume that W is
countable and let {£,} denote an enumeration of
W. Now construct an orthonormal base from W
as in equation (6). Then clearly sp{#,},cw =
SP {%n}n = o. Direct application of Theorem 6 then
provides the result. O

The lattice W may be modified so as to contain
an element w a finite or infinite number of times if
each repeated w can be associated uniquely with
a basis function in the form (1 —wz)™* for some
integer k > 1. The base constructed in this manner
does not contain polynomials in its linear span.
- This deficiency can be remedied by adjoining poly-
nomials into the base. In contrast to the basis
construction presented here, hybrid models, i.e.
models containing both rationals and polynomials,
are generated in Ward and Partington (1995) by the
Hardy-Sobolev norm on smooth subsets of A(D).

5. FUNDAMENTAL MODEL SETS IN 7,

Having considered fundamental model sets ap-
plicable for robust estimation from frequency
domain data, we now turn to the problem of estima-
tion from time domain data. In this scenario, it is
more natural to specify fundamental model sets
according to the time domain properties of their
elements, in which case the most common choice is
to consider the space of systems whose impulse
responses lie in #,; see for example Mikild et al.
(1995) for a review, results and further references.
One reason for the choice of space being 7, is the
appeal of providing models suitable for subsequent
¢ controller design (Tse et al., 1993; Dahleh and
Khammash, 1993).

In light of these motivations, we turn to the issue
of formulating rational model sets that are funda-
mental in 7. In the sequel we will investigate their
use in robust estimation from time-domain data. As
in the previous section, a key tool will be to employ
the orthonormal set {#,} defined via equation (6).

Theorem 9. The orthonormal set in equation (6) is
fundamental in /, if

-1 m—1 1
lim e’(p(*l Z (1 —|fk|)> z m =0. (30)
k=0 sk

m—oc

Proof. Let g = {g,} €/, and ¢ > 0. Truncate {g,}
at the k = nth term to provide g, = {go, ..., gn-1}

where n is chosen such that |lg — g,|/, = Z,f” |g(k)
| < e Let G, be the estimate of G, (z) = YrZsglk)Zr
as in equation (22) and let ¥ denote the impu]se
response of G,. By Hardy’s inequality (Duren,
1970, Theorem 3.15), we bound | g, — ¥ |; as fol-
lows:

gn — ¥ l1 <194(0) — ¥(0))
+ % LG |G (%) — Giu(e®)]db. (31)

Since G, € A(Dg, sup,,; < |G, (2))) for all R > 1, we
have from the proof of Lemma 4,

[940) — Y(0)] < |Gy — Gl

< sup |G
|z|spR| 1(Z)|R__1

R _ ln*l
exp( _ﬁ—kzo(l - |f|k)>- o
(

As in the proof of Lemma 4, we have the following
expression for G, — G, for all R > 1:

Pm(e") i; Gi(2)

jo i0
G =Gl = e

(33)

Hence, the integrand in equation (31) is calculated
from equation (33) as

—[G (©%) — Gule™)] =& w’m(e"")ég Gi(2)
R

I Jrr— eMgmia)

o Pm(€”) Gi(2)
T S e
(34)
We first bound ¢,(z)2de,/dz. Write ¢,(z) as
¢m(2) = 2°@4(z) where o denotes the multiplicity of
8

a zero at 0. Without loss of generality, assume
& =0for f <k <m. Then

'S (=18 94s(2)

B - a—1 a T e .
) = e 7Y e~ &)
Hence
1+ & ™SH 1+ &
- —=. (35
1@l oo < o+ Z ToE o @Y

We bound the first integral in equation (31) from
Lemma 3 as

_1_ 12) dz
2 Jrr{z — eje)q’m(z)

<

sup [G1(2)| sup |@pm(2)|
R—1 |z =R ! [zIR™!

m—1
< R sup|G,(z)|exp( IZ (1— |fk>

TR-1,._% k=0
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The second integral in equation (34) can be
bounded in a similar fashion. Therefore

R
lg =¥l <&+ o7 sup |G (2)]

—1]z=R

R— 172!
XCXP( —Tkgo (11— |fk|))

"o+ & R J
X —_—t— | 36
[k;l—lékl R-1]
The right-hand side of equation (36) tends to ¢ as

m — oo for fixed n and R = 2 under the hypothesis
of the theorem. O

Corollary 10. The orthonormal set in equation (6)
is fundamental in 7, if k™% = O(1 — |&|) for some
O<a< 1.

Proof. For some constants C;, C,, the left-hand
side of equation (30) is bounded as

m—1 1 m-—1 —1
log 3 <log ). C1k’SIOgC1‘m(—m"‘“—)
k:ol —Iékl k=0 2

< C,logm.

The term on the right-hand side of equation (30) is
calculated as

m—1 m—1
Y (-2 Y Cik™*=Com'™®
k=0 k=0
for some constants C;, C4. Hence the result. [

Thus, a base {#,} can be fundamental in /; with-
out requiring the set of points {&} have an accu-
mulation point in D. When the set {£} has an
accumulation point in D, the conclusion of
Theorem 9 easily follows from (Ward and Partington,
1995, Theorem 2), since in this case the set of basis
functions {#,} will be a fundamental set in
the (Hardy-Sobolev) H*! norm, which dominates
the £, norm.

Corollary 10 provides a rather tight criterion.
For example, if 1 — |&] = O(1/k(logk)’) for some
B > 1, then from Theorem 6 the base {%,} will not
even be fundamental in A(D).

The following result will be required in a later
section.

Corollary 11. Let {X,},> o be the model set span-
ned by the orthonormal set in equation (6), where
the chosen poles lie in the complement of D, for
some fixed r > 1. Let g denote the impulse response
of a transfer function G € A(Dg, K) and d(g, X,; /1)
be as in equation (7). Then

KR (r+1 R

d(ga anfl) <

—(R~1Kr— 1n/2Rr
R—1r—ﬂ+R—Je ‘

Proof. In the proof of Theorem 9, set G; = G and
replace RT by (R — )T for sufficiently small 6 > 0
and r by r 1. Then after these changes and letting
§ — 0, we obtain

KR <r+1 R
1

— < n+ e_(R—l)("— 1)n/2Rr,
lg =¥l < o R_1>

(37)

where  is the impulse response of G, in equation
(22). The inequality above is an upper bound for
d(gs Xm {1) D )

6. ROBUST IDENTIFICATION IN A(D) FROM
FREQUENCY RESPONSE MEASUREMENTS

In this section, we present a solution to the first
problem formulated in Section 2; namely that of
identification from frequency domain data. The
model sets are assumed to be complete in A(D) but
arbitrary. The frequency response data is not re-
quired to be uniformly spaced. This problem for the
equally spaced case has been well studied and
a range of robustly convergent algorithms are
available in the literature (Gu and Khargonekar,
1992a, b; Helmicki et al., 1991; Partington, 1991).
The non-uniformly spaced case is more difficult to
handle and several robustly convergent (Akgay,
1997; Akgay et al., 1994; Partington, 1993) and
some tuned convergent algorithms (Chen et al,
1995; Gu et al., 1993) have been proposed in the
literature. The common feature of the algorithms
(Akgay, 1997; Akgay et al., 1994; Chen et al., 1995;
Gu, 1994; Gu and Khargonekar, 1992a, b; Gu et al.,
1993; Helmicki et al., 1991; Partington, 1991, 1993)
is that the identified model is chosen from the set of
finite-impulse response systems.

As we pointed out in Section 3, given funda-
mental model sets {X,} it is necessary to derive the
relationship n(N) (known as a sampling theorem
for A(D)) such that the sufficient condition (12)
holds for robust convergence of the scheme (11) to
exist. In order to derive this, assume first (without
loss of generality) that wy, =0 and w; =n. We
define the maximum angular gap between the first
N + 1 points by

SN2 max min o, — o, (38)
0<k<N /7#k
0</ <N

and via this we can derive the relationship n(N) by
the following lemma.

Lemma 12. Let {#,}:=4 be a set of rational func-
tions analytic in D, for some r > 1 and let p denote
the number of poles of {#,}; = (including poles at
o). Let dy be as in equation (38). Then equation
(13) holds for some 0 < é < 1 provided that

(1-90r—-1

Sy <2
N= p(r+1)

(39)
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To prove Lemma 12, we need the following
lemma which is a corollary of a result in Borwein
and Erdelyi (1996).

Lemma 13. Suppose ay,...,a, are in the comp-
lement of D, for some r > 1. Then

, r+1
lg(Z)ISr—_Imllgllw, zeD, (40)
where
gz Hk Wz —by)
Hk (2 —a)
and m > n.
Proof. Split g as
P(z
9= T + ot = 0i0) + 00,
k=1

where P(z) is a polynomial of degree at most n — 1.
Let

hi(2) = g1(2) — (1 — az)" " g4 (2),
where a € D and h,(z) = g(z) — hy(2). Then h, is
a proper rational function with m poles and is

analytic in D, provided |x| < 1/r. The derivative of
h; is bounded from Borwein and Erdelyi (1996) as

, r+1
lh2(z)] < " lh2llew, ze€D. 41)

The derivative k(z) is calculated as
hi(z) =[1 — (1 — 0z)' "] g}(2)
+ a(n —m)1 — az)" ™ 1g,(2).
Therefore, as « tends to zero, h, and k) tend to zero

uniformly on D UT. Letting « tend to zero also in
equation (41) then provides equation (40). O

Proof of Lemma 12. Suppose || g|l. is attained at
the point e/*. Now |a — wy| < /2 for some k and
since Y

g(e'™) = J g'(e)je” d0 + | g,

a

we have

lg(e™*) = llgl —J 1910

a

2 [ gllw — 19" 6n/2. (42)

Thus, from equations (42) and (40), we have
lg(e™)| > d|gll, provided that equation (39)
is satisfied. O

Corollary 14. Consider the orthonormal set in
equation (6). Let r, = max, .,|¢]. Then equation
(13) holds for some 0 < é < 1 provided that

1—-6/1—r
2. 4
oy <2 n <l+r”) “3)

Thus, if frequencies are uniformly spaced and the
chosen poles lie in the complement of D, for some
fixed r > 1, condition (13) is satisfied provided
N2>+ )an/2(1 —8)(r — 1). This condition is
weaker than the requirement for the rational
wavelets developed in Ward and Partington
(1996). In Theorem 5 and Corollary 6 of Ward and
Partington (1996), n and N satisfy the relations
n=2P"1—1and N > n2??* V(1 — §), where p is
the lattice parameter in equation (4). Thus, the
sampling theorem for the radial basis functions
and uniformly spaced data can be expressed as
N > z(n + 1)*/1 — 8). Furthermore, n model poles
lie in the complement of the open disk
D, 41— 1) since p in equation (4) is related to r by
the expression 1/r=1—-277

Our results in this section are summarised in the
following theorem.

Theorem 15. Consider the orthonormal set in
equation (6). Suppose {e’*}, . ¢ is dense in T. Let
dy be as in equation (38).Then the algorithm given
in equation (12) is robustly convergent if
neo(l —|&,) = o0 and Jy satisfies equation (43)
with r, = max, ., |&;|. In particular, for each fixed
r > 1, an orthonormal set of rational functions with
poles in the complement of D, can be chosen such

that the algorithm given in equation (12) is robustly

convergent if
1—-6/r—-1
<2
On < n (r + 1) “44

or when the frequencies are uniformly spaced

n r+1
N22(1—5)(r-1>' “43)

The inequality (16) provides a simple upper
bound for the identification error. However, the
distance d(G, X,; A(D)) is difficult to evaluate in
most cases because it depends not only on the
system but also the chosen model sets. In this
section, we will simplify the analysis and assume
that G € A(Dg, K) where the meaning of the latter
notation was defined just before Lemma 4. Even
with this simplification, it is still hard to calculate
exact values of d(G, X,; A(D)) for arbitrary model
sets. However, Lemma 4 provides a useful bound
on d(G,X,; A(D)) which when combined with
equation (16) provides the following result.

Theorem 16. Consider the orthonormal set in
equation (6). Let r,=max,.,|&] Suppose
{1} o is dense in T. Let 8 be as in equation (38).
For each N, choose an n such that equation (43) is
satisfied. Let G,, be the estimate of g € A(Dg, K),
R >1 by the algorithm given in equation (12).
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Then
~ 2 KR
G -G <= S——
n n||w_(5+1)R_1
R—1"21 . 2
CXP( - —ZR—,(Z"‘O“ - |€k|)> +58-

(46)
In particular for each fixed r > 1, an orthonormal
set of rational functions with poles in the comp-
lement of D, can be chosen such that if  satisfies
Equation (44) or N satisfies equation (44) when the
frequencies are uniformly spaced, then

2 2 KR ‘
G—G,le <= BR (R-ve-1m2Rr
16— Gl < (34 1)

2
+ 56 47

Theorem 16 extends the Laguerre and Kautz
results in Ward and Partington (1996) to arbitrary
orthonormal bases. Notice that the upper bound in
equation (47) is minimized for r = 20. This con-
forms with the n-width result (Pinkus, 1985) that
polynomial models are optimal for the class
A(Dp, K).

7. ROBUST IDENTIFICATION IN 4(D) FROM
TIME DOMAIN MEASUREMENTS

In this section, we present solutions to the second
problem formulated in Section 2. Condition (15)
places severe restrictions on the choice of inputs.
Following the terminology introduced in Harrison
et al. (1997), we will call an input signal u that
satisfies equation (15) a d-cover of X,.. The length of
the shortest 3-cover of X, is said to be the sampling
size for u. The sampling sizes and J-covers are
known for polynomials and certain compact sub-
sets of A(D) and 7.

In Dehleh et al. (1993), Harrison and Ward
(1996), Poolla and Tikku (1994), the sampling size
for the set of nth-order polynomials denoted by
2, in the ¢,-norm was shown to be O(f") for some
B (1, 2]. On the other hand, the sampling size for
the same set of polynomials in the H (D) -norm is
O(n?) (Harrison et al., 1996). In Harrison et al.
(1996), Kacewicz and Milanese (1995) and Mikild
(1991), examples of the d-covers of polynomial
models for the ¢, and H (D) norms are presented.
The §-covers for polynomial models can be used in
the construction of d-covers for compact rational
model sets (with the same norm). An example is the
set of nth order, strictly proper transfer functions
which are analytic on D, for some fixed r > 1,
denoted by #"(n, r~'). In Harrison et al. (1997), it is
shown that each 0.2 + 0.86-cover of 2, is also
a d-cover of ¥'(n, r 1), where m can be chosen to be

any integer satisfying

4nr 20r
Zr_11n<(1_5)(r_1)>. (48)

Example 17. Let Ge ¥ (n,0.9). Set 6 =0.5. Then
equation (48) reads m > 240n. Thus each 0.6-cover
of #540.»18 2 0.5-cover of ¥7(n,0.9). Suppose X = ¢,
and let u be a sequence that contains only all
possible m-tuples of +1. Set m = 240n. Thus
N=2"4+m—1 and u is a l-cover (and hence
0.6-cover) of 2,, (Dahleh et al., 1993; Kacewicz and
Milanese, 1995; Mikild, 1991; Poolla and Tikku,
1994). Then u yields ||g®u|, = 0.5/ ¢gl; for all
G e ¥ (n, 0.9), where g denotes the impulse response
of G.

The following lemma is immediate.

Lemma 18. Let {X,}, o be the model set spanned
by the orthonormal set in equation (6), where the
chosen poles lie in the complement of D, for some
fixed r > 1. For each n choose an integer m satisfy-
ing equation (48). Let u be the 0.2 4+ 0.86-cover of
2,,in X, where X denotes either A(D) or £, and let
N be the length of u. Then

max |(g®u)(t)| = dlgllx forallgeX,. (49)

O<trsN-—1

Use of Lemma 18 together with Theorem 9 pro-
vides the following robust convergence result for
A(D) and /.

Theorem 19. Consider the orthonormal set in
Equation (6), where the chosen poles lie in the
complement of D, for some fixed » > 1. Let X de-
note either £, or A(D) and let the inputs for the
system in equation (10) be chosen as in Lemma 18.
Then the algorithm given in equation (14) robustly
converges in X.

As in Section 6, from equations (16), (17), Lemma
4, Corollary 11, and Lemma 18, we obtain the
following worst-case identification error bounds in
the H (D) and /; norms.

Theorem 20. Consider the orthonormal set in
equation (6), where the chosen poles lie in the
complement of D, for some fixed r > 1. Let the
inputs for the system in equation (10) be chosen as
in Lemma 18. Let G, be the estimate of
G € A(Dg, K), by the algorithm given in equation
(12). Then

~ 2 ) KR
—_ < | = 1 —(R—1)r—1)n/2Rr
G G,,Hw_<5+ R—le

+ e (50)
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Theorem 21. Consider the orthonormal set in
equation (6), where the chosen poles lie in the
complement of D, for some fixed r > 1. Let the
inputs for the system in equation (10) be chosen as
in Lemma 18. Let §, be the estimate of g, the
impulse response of G € A(Dg, K), by the algorithm
given in equation (14). Then

o—atie(Pe ) KR (11, R
=l =15 R—i\r—1""R=1

2
xe_(R—1)(r—1)n/2R'+38. (51)

When X = H,(D) or X = ¢,, a necessary and suffi-
cient condition for the existence of robustly conver-
gent algorithms in X is that there exists a fixed
0 < ¢ < 1 such that for each n

max [(g®u)()] = dlgll. =G|

<t N—-1

for all g (or G)e X,,. (52)

Furthermore, for the algorithms defined by equa-
tions (12) and (14) provided that equation (52)
holds, an explicit bound on the £, norm of the
estimation error is obtained from Partington
(1994a, 1996)

R 2 2
g —gnllz < (3 + 1>d(g,- X ) t5¢e (53)

Condition (52) places mild restrictions on the
choice of input signal despite the fact that it appears
to be stronger than the usual persistence of excita-
tion condition in Ljung (1987), Soderstrom and
Stoica (1989). In particular, the sampling size of
d-covers for polynomial models is O(n) (Partington,
1994b). As well, the least-squares algorithm has
robust convergence property in ¢, (or H,(D)) iden-
tification. Moreover, input signal can be chosen
such that to identify a system G € 2, with an error
of O(e) one requires only O(n) measurements (Par-
tington, 1994a). Extension of this result to power-
bounded noise case is discussed in Partington and
Mikild (1995).

8. MIXED PARAMETRIC/NON-PARAMETRIC
MODELS

The upper bounds on the worst-case identifica-
tion errors in the H, (D) and /, norms given in
Theorems 16, 20, and 21 are minimised if poly-
nomial models are used when the unknown system
is in the class A(Dyg, K). Indeed, the linear span of
polynomials form optimal model sets in the Kol-
mogorov’s n-width sense (see Pinkus (1985) for
a comprehensive treatment of n-widths). However,
in practice, it is more common that prior know-
ledge about G(z) is significantly richer than the

simple statement G € A(Dg, K). In this section, we
show that large improvements can be obtained
over the non—parametric approach of using poly-
nomial models by instead employing more general
classes of models constituted of mixed parametric
and non-parametric models.

To illustrate this, consider the example of the
following perturbation model:

m—1

Ay
Gle) = kgo 1 - Ekz

where f; # 0 for all k and h e A(D) is arbitrary but
its norm satisfies |4, < C,. Let r = max,|f;| and

Y o laxl =1 —r for normalisation. We assume
that the points f, lie in the circles

+ h(z) = H(z) + h(z), (54)

D) =1{zeC:lz—pl < = Ind >
k=0,....,m—1

for some u < 1 so that the uncertainty radius is
modulated according to the pole position such as
to preclude crossing of the stability boundary. This
choice of uncertainty structure is predicated on the
assumption that in practice, while one may be un-
sure of system time constants, one is normally con-
fident of whether or not the system is stable. With
this choice of uncertainty structure, observe that
D(y,) = D for all y, € D. Although this section will
concentrate on the model structure (44), note that
other examples of mixed parametric and non—para-
metric models have also appeared in the literature
(Elia and Milanese, 1993; Giarre et al., 1997; Kosut
et al., 1992).

We will calculate an upper bound on
d(G, X,; A(D)) for a suitably chosen base using the
prior information on §;. We pick the orthonormal
set in equation (6) with

T O0<k<mO<p<M

mt Ly = ’ 55
fk+( +1)p {O, k=m 0<p<M. (55)

Set n=mM +m and let H, denote the least-
squares estimate of H as in equation (22). Then
from Lemma 2, we obtain by an application of
Cauchy formula

HQ) — B0
1
T =D

%(C) <P,.(Z')
2mj = 0 § Z_ﬁk (1—1{2) dz

277~'Jko

N

M (Pn(ﬁk

@) Z A (56)
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for all { e D. But from our uncertainty description,
we have for all k #m

n—1
B — &
|(pn(ﬁ )‘ =
=11z
M-1
Bk - 5k+(m+1)
= B T |t
¢ pl;[() 1 _Ek+(m+1)ﬂﬂk
m—1M~1
x l—[ 1_ fl+(m-+—1)p
=0 p=0 €z+(m+1)pﬁz
l;ek
< (rp™.

Thus |H — H,||» < (rw)™. Hence for this choice of
basis functions, it follows that

d(H, X ,; A(D)) < (rm)™.

This result applies for any rational function of the
form H + P, where P,e #, and M > s since

d(P, X,; AD) =0 forall M > s.

Thus, the model sets {X,},. o spanned by the or-
thonormal set (6) whose parameters are chosen as
in equation (55) satisfy

d(G, X s AD)) < (rp)™ + d(h, Py 1; A(D)).

Let Gy, be the estimate of G by the algorithm given
in equation (12) where the basis functions are
chosen as above, the frequencies are dense in T, and
the maximum angular gaps satisfy

(1 -9 -1

<
on<2 n(1 + 1)

(57)
Then from equation (16), we have

A 2
G —Gnllw < (5 + 1>(m)M

+ (g + l)d(h, Pp-1; AD)

+ - & (58)

i N

The first term tends to zero geometrically and the
second term, which asymptotically tends to zero, is
bounded by (2/6 + 1)C,. This inequality shows
that by using mixed parametric-nonparametric
models, one can obtain large improvements in
estimation error. In particular, the number of
measurements needed to estimate a transfer func-
tion, within a given level of accuracy, can be
reduced dramatically in comparison to impulse re-
sponse models. If only one model pole is chosen in
D(y,), then the first term above must be replaced by
ruO(|B,/™). Thus in order to improve approxima-
tion error converge rate, one has to choose multiple
poles around the dominant poles of the system.
Indeed, the orthonormal base with infinitely re-

peated poles at 1/7,, k=0,...,m — 1 has been
shown to be optimal in the Kolmogorov’s n-width
sense (Oliveira & Silva, 1996).

In this paper, the distance d(G, X,; X) has been
estimated by means of the orthogonal projection
(20) which has proven to be an effective tool in the
computation of approximation errors. In spite of
this, the projection (20) has not been used for robust
estimation. This i1s due to a result presented by
Partington (1992) which states that if Gy is the
least-squares estimate of G, then the L (T) norm of
the worst-case identification error diverges as
O(log N)e. It is also interesting to observe that the
least-squares estimate diverges as the number of
data tends to infinity even if ¢ = 0 provided that
he A(D) is arbitrary subject to the constraint
[hllo < C, (Somorjai, 1980). The two-stage algo-
rithms in Akgay et al. (1994), Gu and Khargenekar
(1992a,b) can be used in the estimation of equation
(54) but under more restrictive sampling conditions
than equation (57) (Ak¢ay, 1997).

8.1. Model reduction

When both r and g are close to one, M and
consequently N by equation (57) must be chosen
large enough to keep the O(ru™) term in equation
(58) within acceptable limits. Then a model reduc-
tion procedure is necessary to extract a nominal
model from the identified model Gy. The optimal
Hankel norm model reduction and balanced trunc-
ations are the most frequently used techniques. In
practice, both methods often work well. They both
require a balanced state-space realisation of Gy or
dn. The subspace-based system identification algo-
rithms in McKelvey et al. (1996) and Kung (1978)
can be used to effectively compute state-space para-
meters for a particular realisation.

Assume h(z) in equation (54) is constant so that
model sets contain only proper rational functions.
(If h(z) is not constant and modeled by poly-
nomials, then the polynomial and the rational parts
of Gy can be reduced separately). The input to the
algorithm in McKelvey et al. (1996) are the com-
puted frequency response of Gy at an arbitrary set
of equally spaced frequencies. This method exactly
retrieves an nth-order transfer function when the
frequency response measurements are noise-free
and the number of measurements is at least n + 2.
Moreover, the returned state-space realisation is
close to being in balanced form McKelvey et al.
(1996). However, in order to obtain accurate re-
sults, the number of computed frequency response
samples must be kept rather large in comparison to
the identified model order.

This technique was used in the identification of
a power transformer, where it was not possible to
obtain a balanced realisation directly from the
identified modet for a subsequent model reduction
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(Akgay et al, 1997).. This problem is related to the
fact that if the system order is high, poles and zeros
of the system are sensitive to polynomial factoring.
The algorithm in Kung (1978) is even simpler. An
nth-order system can exactly be retrieved from its
first 2n + 1 noise-free impulse response coefficients.
Then again a balancing transformation on the com-
puted state-space parameters is performed.

8.2. Choice of pole locations

The choice of pole positions plays an important
role in the quality of the approximation of a given
system by a truncated series. Although optimal
solution in the Kolmogorov’s n-width sense is con-
ceptually simple:

X,2arginfsup inf |G — H|y,
X, Ge§ HeX,

where S < X captures prior information on G, ex-
cept few isolated cases it is hardly computable.
Several methods to determine optimal pole loca-
tions for simple uncertainty descriptions and model
structures have been proposed in the literature. The
discussion of these methods is beyond the scope of
the current paper. We refer the interested reader to
Bodin and Wahlberg (1994), den Brinker (1996),
Oliveira e Silva (1995), Fu and Dumont (1993), and
Zimmermann and Williamson (1994) and the refer-
ences therein.

9. MULTI-INPUT/MULTI-OUTPUT SYSTEMS

There is no difficulty extending the results of
this paper to multi-variable systems. We show this
for the frequency-domain formulation. The time-
domain extension is similar.

Let G(z) be p x ¢ matrix-valued transfer function
of the unknown system with entries in A(D). Let
Gl denote the H_(D)"*? norm of G defined by
sup,, 0,(G(e’"*)) where ¢, denotes the largest singu-
lar value. Assume that noise in equation (8) is
bounded as 5, (n,) < ¢ for all k. Given a sequence of
scalar-valued functions {%,},- o in A(D), model
sets are defined by

n—1

X"é{xpeA(D)“q: Y = Z Ak B Iy € RPY,
k=0

k=0,...,n—1}.

Since G is real, the linear span of basis functions
must be defined with respect to the real field when
the basis functions are real. We choose basis poles
in complex conjugate pairs so that each basis func-
tion is real—see Ninness and Gustafsson (1997) for
more detail on this point. Obviously, {X,},5 ¢ is
a complete model set for A(D)**? if and only if
{B:}x » o 1s fundamental in 4(D). It only remains to

derive an upper bound on the worst-case identifica-
tion error of the minimax algorithm introduced
next. For this purpose, we define the identified
model Gy e X. to be a solution of the minimax
problem

Gy2arg min max  |H™@e*) — E". (59)

HeX, Osk<n
I<isplsm<yg

The proof of the following result is adapted from
Partington (1994a).

Theorem 22. Consider the orthonormal set equa-
tion (6). Let r, = max;<,|&|. Suppose {&/}, . ¢ is
dense in T. Let dy be as in equation (38). For each
N, choose an n such that equation (43) is satisfied
for some 0 <8 < 1. Let Gy be the estimate of
G e A(D)"*7 given in equation (59). Then

16~ 6ol = (3+1)d0G. X AP

+ %8 (60)

where § = 8/./pq.

Proof. If dy is chosen as in Equation (43), then
from Lemma 12 we have that for all I,m and
H™ e sp(Aih

max |H™(@e)| > 6 | H™| .
O<ksN
Since for all w

o (HE®) <./pg  max

l<i<sptl<m<g

|H'™ (&),
it follows that whenever H™ € sp{#,}r=}

. )
max max [H™(e*)| = —= |H||»-
I<isplsmsq 0<k<N rq

(61)

Let ¥ be the closest element of X, to G in A(D)P*4.
Since Gy € X, from equation (61) we obtain for
some s, t and i

|P(e) — GRE™)| = 5 ¥ — Gullo.  (62)
The left-hand side of equation (62) is bounded as
| () — G(e™)]
< |W(e) — EY| + | EY — G(e™)]
<||¥ — Gl + &+ |EF — P
<2I¥Y — G + 2, (63)

where the second inequality is due to the fact that
¥ is a candidate minimiser of equation (59). Last,
we have the following triangle inequality:

G =Gyl <G —Pllo + |¥ = Grllo. (64



1114 H. Akg¢ay and B. Ninness

Thus from equations (62)64), we obtain equa-
tion (60). O

The minimax problem in equation (59) is com-
plex and hence difficult to implement. However, it
can be re-cast as a real-parameter minimax prob-
lem at the expense of slightly increased error
bounds as follows. To simplify the notation, we
assume G is single-input/single-output and define
the matrices

Bo©™) o By (@)
S T DL (69)
Bole) Boo1(©)
T
EA[E - EN] : (66)

T
/\é[/’»o r met } ; (67)

and let ®x and @, denote, respectively, the real and
imaginary parts of ®. Let Eg and E, be the real and
1mag1nary parts of E. Define the identified model as

Gy =Y 1=0/x By where A = (7, -+ 4,_1)"isasolu-
tion of the minimax problem

2[5

The multi-variable form of equation (68) is ob-
tained by concatenation. This minimax problem is
a linear programming problem involving real ma-
trices and vectors and can be solved efficiently by
the algorithm of Barrodale and Phillips (1975).
A similar real-parameter minimax algorithm was
used in Mikild and Partington (1992) with the
same purpose of obtaining an easier numerical
solution. The algorithm in Mikild and Partington
(1992) uses non-uniformly spaced data and works
well with Laguerre models. The proof of the follow-
ing result is modified from Theorem (22).

A £argmin
AeR"

(68)

Theorem 23. Consider the orthonormal set equa-
tion (6). Let r, = maxX<,/&. Suppose {e*}; o is
dense in T. Let 8y be as in equation (38). For each
N, choose an n such that equation (43) is satisfied
for some 0 <& < 1. Let Gy be the estimate of
G € A(D) given in equation (68). Then

IG—Gll.. s(%+

where & = 5/(1 + \/2).

1>d(G, X, A(D) + (69)

2
—5‘-8

Proof. Let Gy =Y}, o 4% B, be a solution in equa-
tion (12) and let A = (4o -+ 4y—1)"- Since Gy € X,,,
by the same argument as in the proof of Theorem
22, we derive the following inequality similar to

equation (62):

max |[¥(e/) —
O0<k<N

Gy 281 — Gyl (70)

where W is the closest element of X, in A(D) and

the inequalities in equation (63) are replaced by
|W(e) — Gy < |¥ — Gl + ¢

+ |E—=®A|,. (71)
Next

|E—-®A|. Sﬁ“[zjﬂ —[?f] w
=[5 ]-[Z].

< 2I1®A - Ell,,

<2006 =¥l +2, (72

where the second inequality is due to the fact A is
a candidate minimiser of equation (68). Lastly, we
have the following inequality

1G = Gyl €16 —¥|o + II'¥ — Gyl (73)

Thus from equations (70){73), we obtain equation
(69). O

10. EXAMPLE

In this section, we use a simulation example to
illustrate the minimax algorithm (12). Work is in
progress to use the methods developed and ana-
lysed here on real data. Consider the approxima-
tion of the infinite-dimensional system

—S

N

by a rational transfer function. (The square root of
s = &' is defined by €/”? for 6 # =+ =m.) The identi-
fication of this system for N = 256 equally spaced
frequencies in [0, n) as obtained through by the
bilinear map

G(s) =

was investigated in Akgay et al. (1993). We use the
same transformation so that G(y) € A(D). Then the
continuous-time identified system is obtained by
the back transformation z =y~ *(s) from the dis-
crete-time identified system. This map preserves the
sup-norm.

We will compare the minimax algorithm of this
paper with a Fourier series based algorithm. The
real-parameter minimax algorithm in equation (68)
is implemented with the basis functions #o(z) = 1
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and
(1+01kz+1

Bz) =L IET
D =TTk

k=1,...,50.

In the Fourier-based algorithm, first the frequency
response data are extended into the interval (n, 27)
using complex conjugate symmetry of G. Then the
impulse-response coefficients of G are estimated
from the extended frequency response by 512-point
inverse discrete-Fourier transform. In the third
step, a linear model is calculated as ng% 4(k)z~.

1115

The eighth-order nominal model is obtained by
the balanced truncation of § as implemented by the
Kung’s realization algorithm (Kung, 1978). The
eighth-order nominal model for the minimax algo-
rithm is extracted from the real-parameter minimax
solution by first calculating 51 impulse-response coef-
ficients in Y 72, ¢, #4(z), where ¢, are the coefficients
sought in the minimax problem, and then applying
the model reduction technique described above.
In Figs. 1 and 2, the frequency responses of G,
nominal models, and the identification errors

1 0 bl e
_1
010 F 4
2
5
g 10_2 — Data |
=+~ Identified model
= - Error
-3
10 .
107 107 10°
0 T
g -10F J
—— Data
-=-- |dentified model
_30 i\ ey . i I
107 107 107 10° 10’ 10° 10°

Frequency (rad/sec)

Fig. 1. Plot of G and the eighth-order model frequency responses and the approximation error magnitude using the Fourier-series-
based algorithm

10 T T
13»10" e 1
.‘é
g 10_2 | Data ]
-=-- l|dentified model
-~~~ Error
-3
10 N " " . s
10° 107 107 10° 10' 107 10°
Frequency (rad/sec)
0 T T T T
'B -10r 7
3
2
o -20F _
—— Data
=+~ |dentified model
-30 L L L 2
10° 107 107 10° 10' 10° 10°
Frequency (rad/sec)

Fig. 2. Plot of G and the eighth-order model frequency responses and the approximation error magnitude using the real-parameter
minimax algorithm.
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produced by the algorithms on the same noise-free
data set are plotted, respectively. The L (T) errors
of the nominal models were computed 0.0542 for
the Fourier series based and 0.0831 for the real-
parameter minimax algorithm. Both algorithms are
successful in capturing the low-frequency dynamics
of G and outside the bandwidth, the approximation
errors are relatively small in comparison to | G || .

11. CONCLUSIONS

This paper has provided an analysis of the use of
rational model structures in a robust estimation
context. A key result of this analysis is the provision
of necessary and sufficient conditions on the poles
of the rational model structures for them to form a
fundamental set in A(D) and H,(D)for 1 <p < 0.
For A(D) this condition, which restricts how quick-
ly the poles may approach the stability boundary, is
much milder than sufficient conditions that have
been put forward by other authors.

Having established these results, and similar
ones for /, the paper showed how robust estima-
tion algorithms using both time and frequency
domain data could be constructed together with
explicit error bounds on the estimation accuracy.
These results have implications, as discussed,
for mixed parametric/non—-parametric estimation,
model reduction and may be extended to the multi-
variable setting.

An important and perhaps surprising point is
that although the main spaces of interest are not
the Hilbert space H,(D) , the key analytical tool
used is to in fact re-formulate the various problems
studied into equivalent problems expressed in
terms of a basis that is orthonormal in H,(D), with
the orthonormality itself playing an important role.

This is reminiscent of equivalent strategies em-
ployed in the classical theory of orthogonal poly-
nomials where, as in this paper, the key use of the
orthonormal property is the derivation of a so-
called Christoffel-Darboux formula for the repro-
ducing kernel associated with the subspace in
which the estimated model is constrained to lie
according to the chosen model structure. This same
strategy of reformulating estimation problems with
respect to an orthonormal basis for the purposes of
facilitating analysis has also been employed in
a stochastic prediction error setting in Ninness et
al. (1997).
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