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The estimation of dynamic models on the basis of observed
input–output measurements:

Stochastic modeling of disturbances and representation of
errors as averages over ensembles of possible noise
realisations (Ljung:1999).
Characterization of disturbances and also estimation errors
according to a deterministic model under which the
worst–case amplitude is quantified (Makila etal.:1995)
–robust or worst-case identification–

Significant advantages. For example, errors due to
non–linearities are easily accommodated, and the resultant
models and error bounds are of a form suitable for
subsequent robust control design.

Hüseyin Akçay Rational Basis Functions for Robust Identification



Introduction
Problem Formulation

Identification Algorithms
Fundamental Model Sets

Robust Identification inA(D)

Conclusions

System classes

Let the discrete-time system with impulse-response sequence
g(k) be represented via an associated power series

G(z) =
∞∑

k=0

g(k)zk . (1)

The system is stable if G is analytic on D1 = D where
DR = {z ∈ C : |z| < R}. In addition, if G(z) is continuous
on the boundary of D denoted by T , then it is an element
of the disc algebra A(D). If |G(z)|p is integrable on T then
G(z) is an element of the Hardy space Hp(D).
The system can also be characterised according to the
space `p that g(k) lives in. Common choices are `1 in
which

∑
k |g(k)| <∞ and `∞ in which supk |g(k)| <∞.
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Linear–in–parameters model structures

ĜN(z, θ) =
n−1∑
k=0

θkBk (z)

where Bk (z) are rational basis functions with prescribed poles.

Laguerre basis functions

Bk (z) ,

√
1− a2

1− az

(
z − a
1− az

)k

, k = 0,1, · · ·

where −1 < a < 1. By choosing a according to prior
knowledge of the relative stability of G(z), the
undermodelling error can be reduced in comparison to the
use of an FIR model structure (Makila:1990), which is a
special case of the Laguerre structure when a = 0.
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Two–parameter Kautz basis is defined as follows. Let

ζ(z) =
cz2 + bz + 1
z2 + bz + c

where b, c ∈ R satisfy b2 − 4c < 0 and ζ has no poles in
the closed unit disk. Let ψ0(z) = 1,
ψ1(z) = 1/(z2 + bz + c) and ψ2(z) = z/(z2 + bz + c). Let
ψk (z) = ζ(z)ψk−2(z) for k > 2. Then Kautz models are
obtained by orthonormalizing ψ0, ψ1 and ψ2. It is more
appropriate to employ them when prior knowledge of a
resonant mode exists (Wahlberg:1994).
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Laguerre and Kautz models are special cases of general
orthonormal bases (Heuberger etal.:1995) where the poles
are again restricted to a finite set.
The rational wavelet basis

Bw (z) ,
1

1− wz
, w ∈ W

where W is a set of discrete points in Dhas been
suggested in Dudley Ward and Partington: 1996.

Denoting the linear span of the set {B0,B1, · · · ,Bn−1} by
Xn, the wavelet basis enjoys the advantage of generalising
the FIR, Laguerre, two–parameter Kautz, and general
orthonormal bases. Intuitively, this should lead to smaller
undermodelling induced error when employed for the
purposes of system identification.
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Fundamental set A set {Bw : w ∈ W} is fundamental in a
given space X if its closure under the norm on X is equal to X .

A sufficient condition for the wavelet basis functions to be
fundamental in A(D)) is that W be a dyadically spaced
lattice of the form (Dudley Ward and Partington:1996):

W =
{
ξp,k : ξp,k = (1− 2−p)ej2πk/2p

, 0 ≤ k < 2p; p ≥ 0
}
.

The dyadically spaced lattice satisfies the so-called
‘Hayman-Lyons condition’ considered in Hayman and
Lyons:1990.
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Re–parameterise the linear space sp{Bw ; w ∈ W} as

Xn = sp
{

1
1− ξkz

; k = 0,1,2 · · · ,n − 1
}

= sp {Bk (z) ; k = 0,1,2, · · · ,n − 1}

where the functions {Bk (z)}, which have been considered in
detail in Ninness and Gustafsson:1997 are defined by

B0(z) =
√

1− |ξ0|2/(1− ξ0z),
(2)

Bk (z) =

√
1− |ξk |2

1− ξkz

k−1∏
m=0

z − ξm

1− ξmz
, k = 1,2, · · · .
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They are orthonormal in H2(D) with respect to the
inner–product

〈Bn,Bm〉 =
1

2π

∫ π

−π
Bn(ejω)Bm(ejω) dω =

{
1 ; m = n
0 ; m 6= n.

The Laguerre, two–parameter Kautz, general orthonormal,
rational wavelet bases are special cases of (2).
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Objectives

To show that a necessary and sufficient condition for (2) to
be fundamental in A(D) and in Hp(D) for all 1 ≤ p <∞ is
that

∑∞
k=0(1− |ξk |) = ∞, a much milder condition than the

Hayman-Lyons condition!

To study robust estimation using the minimax scheme
proposed by Mäkilä: 1991 and derive conditions for robust
convergence, and to explicitly quantify estimation error for
each of the spaces A(D),Hp(D) and `1 and for both
frequency–domain and time–domain measurements.
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Consider the problem of identifying an LTI, SISO, discrete-time
system with impulse response g(k).

The system is `2 bounded–input/bounded–output stable
and real. Then, G(z) =

∑∞
k=0 g(k)zk ∈ H∞.

If the system is `∞ bounded–input/bounded–output stable,
then g ∈ `1 and G(z) is continuous on T so that in fact
G(z) ∈ A(D).

The identification of G(z) is performed on the basis of the
observed and possibly noise corrupted input–output behavior of
the system.

Hüseyin Akçay Rational Basis Functions for Robust Identification



Introduction
Problem Formulation

Identification Algorithms
Fundamental Model Sets

Robust Identification inA(D)

Conclusions

Frequency-domain identification

Measurement set–up

Ek = G(ejωk ) + ηk ; k = 0, · · · ,N

where ηk is a corruption to the true frequency response G(ejωk )
assumed to be bounded as ‖η‖∞ ≤ ε.

The robust identification objective is to produce, on the basis of
the observed response Ek , an approximate model ĜN ∈ A(D)
for G in such a way that the following condition is satisfied:

lim
N→∞
ε→0

sup
‖η‖∞≤ε

‖ĜN −G‖∞ = 0, for all G ∈ A(D). (3)
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Time-domain identification

Measurement set–up

y(t) = (g ~ u + η)(t) =
∞∑

k=0

g(k)u(t − k) + η(t),

where the input signal u(t) is bounded as ‖u‖∞ ≤ 1 (with
u(t) = 0 for t < 0) and y(t) is the measured output corrupted by
a bounded disturbance ‖η‖∞ ≤ ε.

The robust estimation objective is to again satisfy (3) or the
following condition under the constraint that ĝN ∈ `1

lim
N→∞
ε→0

sup
‖η‖∞≤ε

‖ĝN − g‖1 = 0 for all g ∈ `1. (4)
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An identification algorithm that satisfies either one of the
above properties is called convergent and robustly
convergent if it does not rely on a–priori information about
the unknown system and noise.

We will call η noise although it may be present due to
nonlinearities, time variations etc.
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The identification algorithms to be studied are a result of the
works of Partington (1994) and Mäkilä (1991) who have derived
a general framework to solve robust estimation problems of the
form just posed.

Given the linear model structure

Ĝ(z, θ) =
n−1∑
k=0

θkBk (z) (5)

and linear subspaces Xk = sp{B0, · · · ,Bk−1}, for frequency
domain measurements the robust estimate ĜN(z) is found as
the solution of the minimax problem:
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ĜN(z) , arg min
H∈Xn

max
0≤k≤N

|H(ejωk )− Ek |. (6)

A sufficient condition on the model structure Xn and the
denseness of the frequency evaluation points ωk such that (6)
results in a robust estimator satisfying (3) is that there exists a
fixed 0 < δ < 1 such that for each n

max
0≤k≤N

|G(ejωk )| ≥ δ ‖G‖∞ for all G ∈ Xn. (7)
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In the case of time–domain data, the algorithm (6) takes the
following (similar) form

ĝN , arg min
g∈Xn

max
0≤t≤N−1

|(g ~ u)(t)− y(t)| (8)

where ĝN denotes the impulse response of the identified model
and a sufficient condition on the model structure Xn and the
input u such that (8) results in a robust estimator satisfying (4)
is that there exists a fixed 0 < δ < 1 such that for each n

max
0≤t≤N−1

|(g ~ u)(t)| ≥ δ ‖G‖∞ (or ‖g‖1) (9)

and for all G (or g) ∈ Xn.
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Estimation error bounds

Provided that the conditions (7) and (9) hold respectively, it is
possible to specify explicit bounds on the estimation error as
(Partington:1994,Dudley Ward and Partington:1996)

‖G − ĜN‖∞ ≤
(

2
δ

+ 1
)

d(G,Xn;A(D)) +
2
δ
ε (10)

‖g − ĝN‖1 ≤
(

2
δ

+ 1
)

d(g,Xn; `1) +
2
δ
ε (11)

where d(f ,Xn; X ) defined as
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d(f ,Xn; X ) , inf
h∈Xn

‖h − f‖X (12)

represents the error in approximating f by some function from
the model set Xn.

The conditions (7) and (9) are also necessary for robust
recovery of systems in the spaces A(D) and `1
(Partington:1996).

Many other estimation approaches are possible other than
(6) or (8). If the evaluation points ωk are uniformly spaced,
then a class of two–stage non–linear methods are
available (Gu and Khargonekar:1992) for which worst-case
error bounds are comparable to (10).
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The sub-optimality property of the two–stage schemes crucially
depends on the uniform frequency spacing. If this uniformity
requirement is dropped, the error due to undermodelling will
decrease polynomially in model order n (Akçay etal.:1994) even
if G is extremely smooth.

whereas using (6), the undermodelling error will decrease
according to d(G,Xn,A(D)) which decreases exponentially
in n for exponentially stable discrete-time systems.

The formulation (6) or (8) reduces the worst-case
identification problem to a choice of complete model sets.

It is desirable to choose (via prior knowledge of G(z)) basis
functions Bk (z) such that the distance d(G,Xn; X ) from
G(z) to Xn = sp{B0, · · · ,Bn−1} is as small as possible.
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Once a complete model set {Xn} for X has been chosen, it
is necessary to check that it is compatible with the
measurement set–up in that the sufficient conditions (7) or
(9) for robust convergence are satisfied.
In the frequency domain, the link between n and N is
provided by Bernstein’s inequality (Zygmund:1959) for FIR
models and for rational models, it can be derived by means
of a sharp inequality due to Borwein and Erdelyi (1996).
In the time domain, the dependence between n and N is
referred to as the sample complexity (Poolla and
Tikku:1994).
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Fundamental Model Sets inA(D)

Fundamental Model Sets in `1

We will establish that the orthonormal set (2) is a fundamental
set for A(D) iff

∑∞
n=0 (1− |ξn|) = ∞.

It is known (Dewilde and Dym:1981) that {Bk}k≥0 is
fundamental in H2 under the same necessary and
sufficient condition, and we show that this may be
extended to all Hp spaces for 1 ≤ p <∞.
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Fundamental Model Sets inA(D)

Fundamental Model Sets in `1

Finite Blaschke products

ϕn(z) ,
n−1∏
m=0

z − ξm

1− ξm z
. (13)

Lemma (Christoffel-Darboux Identity) For all z, ζ ∈ D,

n−1∑
k=0

Bk (ζ) Bk (z) =
1− ϕn(ζ) ϕn(z)

1− ζz
. (14)

A key consequence of this result is that it facilitates a
simple integral formulation of d(G,Xn;A(D)) as follows.
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Fundamental Model Sets inA(D)

Fundamental Model Sets in `1

Lemma Let G ∈ A(D). Let Ĝn be the projection

Ĝn(ζ) ,
n−1∑
k=0

〈G,Bk 〉 Bk (ζ), ζ ∈ D. (15)

Then
G(ζ)− Ĝn(ζ) =

ϕn(ζ)

2πj

∮
T

G(z)

z − ζ
ϕn(z) dz. (16)

In order to use this result to provide L∞ error bounds, it is
necessary to derive an upper bound on |ϕn(z)|.

Lemma Let ϕn be as in (13). Then for each z ∈ D

|ϕn(z)| ≤ exp

(
−1

2
(1− |z|)

n−1∑
k=0

(1− |ξk |)

)
.
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Fundamental Model Sets inA(D)

Fundamental Model Sets in `1

Let A(DR,K ) denote the set of all G(z) which are magnitude
bounded by K <∞ and analytic on DR = {z ∈ C : |z| < R} for
some R > 1.

For a given G ∈ A(DR,K ), the L∞ distance d(G,Xn;A(D))
from Xn = sp{B0, · · · ,Bn−1} to an arbitrary G(z) can be
bounded.

Lemma Let G ∈ A(DR,K ). Then,

d(G,Xn;A(D)) ≤ KR
R − 1

exp

(
−R − 1

2R

n−1∑
k=0

(1− |ξk |)

)
.
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Fundamental Model Sets inA(D)

Fundamental Model Sets in `1

A set A ⊂ X is fundamental in X if and only if any bounded
linear functional vanishing on A also vanishes on X .

This fact will be used firstly to examine the case of
X = A(D) and the Laguerre basis.

Lemma The Laguerre basis obtained by letting ξk = a, ∀k in
(2) is fundamental in A(D) for all −1 < a < 1.

Theorem The orthonormal set (2) is fundamental in A(D) if
and only if

∑∞
k=0(1− |ξk |) = ∞.

Corollary The set (2) is fundamental in Hp for all 1 ≤ p <∞ if
and only if

∑∞
k=0(1− |ξk |) = ∞.
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Fundamental Model Sets inA(D)

Fundamental Model Sets in `1

The set (2) is a minimal spanning set in H2 since its
elements are orthonormal and removal of any element
from the set diminishes the span.

The above results can also be obtained directly from the
results in Achieser:56. Nevertheless, our results are self
contained and further results will be based on the explicit
error bounds derived.

The rational wavelet basis is defined by

Bw
∆
=

1
1− w̄z

, w ∈ W .

where W is an arbitrary subset of D.
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Fundamental Model Sets inA(D)

Fundamental Model Sets in `1

Corollary Consider the rational wavelet basis. Then, {Bw}w∈W
is a fundamental set in A(D) if and only if

∑
w∈W (1−|w |) = ∞.

The lattice W may be modified so as to contain an element
w a finite or infinite number of times if each repeated w
can be associated uniquely with a basis function in the
form (1− wz)−k for some integer k > 1.
The base constructed in this manner does not contain
polynomials in its linear span. This deficiency can be
remedied by adjoining polynomials into the base.
In Ward and Partington: 1995, model sets containing both
rationals and polynomials are generated by the
Hardy-Sobolev norm on smooth subset of A(D).
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Fundamental Model Sets inA(D)

Fundamental Model Sets in `1

We consider now fundamental model sets applicable for robust
estimation from time-domain data.

Theorem The set (2) is fundamental in `1 if

lim
m→∞

exp

(
−1

2

m−1∑
k=0

(1− |ξk |)

)
m−1∑
k=0

1
1− |ξk |

= 0.

Corollary The set (2) is fundamental in `1 if k−α = O(1− |ξk |)
for some 0 < α < 1.
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Fundamental Model Sets inA(D)

Fundamental Model Sets in `1

A base {Bk} can be fundamental in `1 without requiring the
set of points {ξk} have an accumulation point in D.
When the set {ξk} has an accumulation point in D, the
conclusion of the theorem easily follows from Theorem 2 in
Dudley Ward and Partington:1995, since in this case the
set of basis functions {Bk} will be a fundamental set in the
(Hardy-Sobolev) H2,1 norm, which dominates the `1 norm.
The corollary provides a rather tight criterion. For example,
if 1− |ξk | = O(1/k(log k)β) for some β > 1, then the base
{Bk} will not even be fundamental in AD.
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Fundamental Model Sets inA(D)

Fundamental Model Sets in `1

The following result will be required later.

Corollary Let {Xn}n≥0 be the model set spanned by the
orthonormal set in (2), where the chosen poles lie in the
complement of Dr for some fixed r > 1. Let g denote the
impulse response of a transfer function G ∈ A(DR,K). Then

d(g,Xn; `1) ≤
KR

R − 1

(
r + 1
r − 1

n +
R

R − 1

)
e−(R−1)(r−1)n/2Rr .
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Frequency Response Measurements Case
Time-domain Measurements Case

A solution to the problem of identification from frequency
domain data is presented.

The model sets are assumed to be complete in A(D) but
arbitrary.

The frequency response data are not required to be
uniformly spaced.

Given fundamental model sets {Xn}, it is necessary to
derive the relationship n(N) (known as a sampling theorem
for A(D)) such that the sufficient condition (7) holds for
robust convergence of the scheme (6) to exist.
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Frequency Response Measurements Case
Time-domain Measurements Case

Maximum angular gap:

δN , max
0≤k≤N

min
` 6=k

0≤`≤N

|ωk − ω`| (17)

where ω0 = 0 and ω1 = π.

Lemma Let {Bk}n−1
k=0 be a set of rational functions analytic in Dr

for some r > 1 and let p denote the number of poles of {Bk}n−1
k=0

(including poles at ∞). Let δN be as in (17). Then (7) holds for
some 0 < δ < 1 provided that

δN ≤ 2
(1− δ)(r − 1)

p(r + 1)
. (18)

Hüseyin Akçay Rational Basis Functions for Robust Identification



Introduction
Problem Formulation

Identification Algorithms
Fundamental Model Sets

Robust Identification inA(D)

Conclusions

Frequency Response Measurements Case
Time-domain Measurements Case

Corollary Consider the orthonormal set in (2). Let
rn = maxk<n |ξk |. Then (7) holds for some 0 < δ < 1 if

δN ≤ 2
1− δ

n

(
1− rn

1 + rn

)
. (19)

If ωk are uniformly spaced and the chosen poles outside
|z| < r for some fixed r > 1, (7) is satisfied provided

N ≥ (r + 1)πn
2(1− δ)(r − 1)

.

This condition is weaker than the requirement for the
rational wavelets in Dudley Ward and Partington:1996.
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Frequency Response Measurements Case
Time-domain Measurements Case

Theorem Consider the orthonormal set in (2). Suppose
{ejωk}k≥0 is dense in T . Let δN be as in (17).Then the algorithm
given in (6) is robustly convergent if

∑∞
n=0(1− |ξn|) = ∞ and δN

satisfies (19) with rn = maxk<n |ξk |. In particular for each fixed
r > 1, an orthonormal set of rational functions with poles in the
complement of Dr can be chosen such that the algorithm given
in (6) is robustly convergent if

δN ≤ 2
1− δ

n

(
r − 1
r + 1

)
or when the frequencies are uniformly spaced

N ≥ πn
2(1− δ)

(
r + 1
r − 1

)
.
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Theorem Consider the orthonormal set in (2). Let
rn = maxk<n |ξk |. Suppose {ejωk}k≥0 is dense in T . Let δN be
as in (17). For each N, choose an n such that (19) is satisfied.
Let Ĝn be the estimate of G ∈ A(DR,K ), R > 1 by the
algorithm given in (6). Then

‖G−Ĝn‖∞ ≤
(

2
δ

+ 1
)

KR
R − 1

exp

(
−R − 1

2R

n−1∑
k=0

(1− |ξk |)

)
+

2
δ
ε.

In particular for each fixed r > 1, an orthonormal set of rational
functions with poles in the complement of Dr can be chosen
such that if δN satisfies (5) or N satisfies (5) when the
frequencies are uniformly spaced, then

‖G − Ĝn‖∞ ≤
(

2
δ

+ 1
)

KR
R − 1

e−(R−1)(r−1)n/2Rr +
2
δ
ε.
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The last theorem extends the Laguerre and Kautz results
in Dudley Ward and Partington:1996 to arbitrary
orthonormal bases.

Notice that The upper bound on the estimation error is
minimized for r = ∞. This conforms with the n-width result
Pinkus:1985 that polynomial models are optimal for the
class A(DR,K ).
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Solutions to the problems of identification from time-domain
data are presented.

The condition (9) places severe restrictions on inputs.

An input signal u satisfying (9) is called a δ-cover of Xn
(Harrison etal.:1997). The length of the shortest δ-cover of Xn is
the sampling size for u.

The sampling sizes and δ-covers are known for
polynomials and certain compact subsets of A(D) and `1:

The sampling size for the set of nth order polynomials
denoted by Pn in the `1-norm is O(βn) for some β ∈ (1,2]
(Dahleh etal.:1993).
The sampling size of Pn in the H∞-norm is O(n2) (Harrison
etal.:1996).
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The δ-covers for polynomial models can be used in the
construction of δ-covers for compact rational model sets
(with the same norm).

Example: The set of n-th order, strictly proper transfer
functions which are analytic on Dr for some fixed r > 1,
denoted by V(n, r−1). Every 0.2 + 0.8δ-cover of Pm is also
a δ-cover of V(n, r−1) (Harrison etal.:1997) where m can be
chosen to be any integer satisfying

m ≥ 4nr
r − 1

ln
(

20r
(1− δ)(r − 1)

)
.
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Lemma Let {Xn}n≥0 be the model set spanned by the
orthonormal set in (2), where the chosen poles lie in the
complement of Dr for some fixed r > 1. For each n choose an
integer m satisfying (3). Let u be the 0.2 + 0.8δ-cover of Pm in
X , where X denotes either A(D) or `1, and let N be the length
of u. Then

max
0≤t≤N−1

|(g ~ u)(t)| ≥ δ ‖g‖X for all g ∈ Xn.
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Theorem Consider the orthonormal set in (2), where the
chosen poles lie in the complement of Dr for some fixed r > 1.
Let X denote either `1 or A(D) and let the inputs be chosen as
in the lemma. Then the algorithm given in (8) robustly
converges in X .

Theorem Consider the orthonormal set in (2), where the
chosen poles lie in the complement of Dr for some fixed r > 1.
Let the inputs be chosen as in the lemma. Let Ĝn be the
estimate of G ∈ A(DR,K ), by the algorithm given in (6). Then

‖G − Ĝn‖∞ ≤
(

2
δ

+ 1
)

KR
R − 1

e−(R−1)(r−1)n/2Rr +
2
δ
ε.
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Theorem Consider the orthonormal set in (2), where the
chosen poles lie in the complement of Dr for some fixed r > 1.
Let the inputs be as in the lemma. Let ĝn be the estimate of g,
the impulse response of G ∈ A(DR,K ), by the algorithm given
in (8). Then

‖g − ĝn‖1 ≤
(

2
δ

+ 1
)

KR
R − 1

(
r + 1
r − 1

n +
R

R − 1

)
·e−(R−1)(r−1)n/2Rr +

2
δ
ε.
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When X = H2(D) (or `2), a necessary and sufficient condition
for the existence of robustly convergent algorithms in X is that
there exists a fixed 0 < δ < 1 such that for each n

max
0≤t≤N−1

|(g ~ u)(t)| ≥ δ ‖g‖2 = δ ‖G‖2 for all g (or G) ∈ Xn.

Then , for the minimax algorithms an explicit bound on the `2
norm of the estimation error is obtained from Partington:1994
as

‖g − ĝN‖2 ≤
(

2
δ

+ 1
)

d(g,Xn, `2) +
2
δ
ε.
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The persistence of excitation condition places mild
restrictions on the choice of input signal despite the fact
that it appears to be stronger than the usual persistence of
excitation condition in Ljung:1999.

The sampling size of δ-covers for polynomial models is
O(n) (Partington:1994).

As well, the least-squares algorithm has robust
convergence property in `2 (or H2(D)) identification.
Moreover, u can be chosen such that to identify a system
G ∈ calPn with an error of O(ε) one requires only O(n)
measurements (Partington:1994).
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An analysis of the use of rational model structures in a
robust estimation context was provided. A key result of this
analysis was the provision of necessary and sufficient
conditions on the poles of the rational model structures for
them to form a fundamental set in A(D) and Hp(D)
(1 ≤ p <∞).
It was shown how robust estimation algorithms using both
time and frequency domain data could be constructed
together with explicit error bounds on the estimation
accuracy. These results have implications for mixed
parametric/non–parametric estimation, model reduction
and may be extended to the multi-variable setting.
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