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A SUBSPACE-BASED METHOD FOR SOLVING
LAGRANGE–SYLVESTER INTERPOLATION PROBLEMS∗

HÜSEYIN AKÇAY† AND SEMIHA TÜRKAY†

Abstract. In this paper, we study the Lagrange–Sylvester interpolation of rational matrix
functions which are analytic at infinity, and propose a new interpolation algorithm based on the
recent subspace-based identification methods. The proposed algorithm is numerically efficient and
delivers a minimal interpolant in state-space form. The solvability condition for the subspace-based
algorithm is particularly simple and depends only on the total multiplicity of the interpolation nodes.
As an application, we consider subspace-based system identification with interpolation constraints,
which arises, for example, in the identification of continuous-time systems with a given relative
degree.
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1. Introduction. Many problems in control, circuit theory, and signal process-
ing can be reduced to the solution of matrix rational interpolation problems which
have been widely studied (see, for example, [14, 15, 2, 19, 21, 3, 4, 1, 5, 6, 7, 31,
30, 11, 10] and the references therein). Applications arise, for example, in robust
controller synthesis [19, 21], in the Q-parameterization of stabilizing controllers for
unstable plants [18], in the problem of model validation [32], in circuit theory [34], in
spectral estimation [12], and in adaptive filtering and control [31, 26].

In the simplest form, given complex numbers zk and wk for k = 1, . . . , N , an inter-
polation problem asks for scalar rational functions G(z) which meet the interpolation
conditions

G(zk) = wk, k = 1, . . . , N.

The interpolants can further be required to have minimal complexity in terms of their
McMillan degree. Let R and C denote the fields of the real and complex numbers,
respectively. An extension of this problem to the matrix case is as follows.

Given: a subset ϑ ⊂ C, points z1, . . . , zL in ϑ, rational 1 × p row vector func-
tions v1(z), . . . , vL(z) with vk(zk) �= 0 for all k, and rational 1 × m row vectors
w1(z), . . . , wL(z).

Find: (at least one or all) p×m rational matrix functions G(z) with no poles in
ϑ which satisfy the tangential interpolation conditions

dj

dzj
{vk(z)G(z)}

∣∣∣∣
z=zk

=
dj

dzj
wk(z)

∣∣∣∣
z=zk

(1.1)

for 0 ≤ j ≤ Nk, 1 ≤ k ≤ L.
This problem is known as the tangential Lagrange–Sylvester rational interpolation

problem. One approach to finding a solution is to reduce the problem to a system of
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independent scalar problems, which is not interesting from the viewpoint of matrix
interpolation theory. In addition, a minimal realization can be obtained only after
the elimination of unobservable or/and uncontrollable modes. The contour integral
version of this problem is treated in the comprehensive work [6]. The bitangential or
bidirectional version is studied, for example, in [14, 15, 7, 4]. Related problems are
the nonhomogenous interpolation problem with metric constraints, as in the various
types of Nevanlinna–Pick interpolation and its generalizations [10, 20], and the partial
realization problem, that is, finding a rational matrix function analytic at infinity of
the smallest possible McMillan degree with prescribed values of itself and a few of its
derivatives at infinity [17, 1, 6, 27, 28]. Further applications of interpolation theory
to control and systems theory and estimation are presented in [6, 13, 29].

Prior work on the unconstrained tangential interpolation problem has been largely
carried out by Ball, Gohberg, and Rodman [6, 7]. The solvability issues of the inter-
polation problem, i.e., the existence and the uniqueness of the solutions, have been
analyzed in [8] by using a residual interpolation framework. A more direct algebraic
approach in [11] shows that solving a tangential interpolation problem is equivalent
to solving a matrix Padé approximation problem with Taylor coefficients obeying a
set of linear constraints. In [1, 2, 3, 4], the tangential interpolation problem above
was studied using a tool called the Löwner matrix. In [4], the problem of finding
admissible degrees of complexity of the solutions to the above interpolation problem,
that is, finding all positive integers n for which there exits an interpolant with McMil-
lan degree n, and the problem of parameterizing all solutions for a given admissible
degree of complexity were investigated. Clearly, the solutions of minimal complexity
are of special interest.

The main result in [7] states that the family of rational matrix functions satis-
fying (1.1) can be parameterized in terms of a certain linear fractional map. First,
the interpolation data is translated into a so-called left null pair that describes the
zero structure of a (p + m) × (p + m) resolvent matrix. The computation of the
resolvent matrix requires that the solution of a particular Sylvester equation be in-
vertible. The details can be found in [6]. In [11], a recursive method for computing
the resolvent matrix as a product of elementary first-order rational matrix functions
is presented. This scheme allows recursive updating of the resolvent matrix when-
ever a new interpolation point is added to the input data. In the special case when
the resolvent matrix is in column-reduced form, it is possible to extract the admissible
degrees of complexity as well as the minimal degree of complexity from the linear frac-
tional parameterization formula. The resolvent matrix obtained by an unconstrained
algorithm can be transformed into column-reduced form via a sequence of elemen-
tary unimodular transformations [16]. A detailed algorithm for the construction of a
column-reduced rational matrix function from a given null-pole triple is given in [9].
This algorithm is not recursive, whereas in [11] a column-reduced transfer function is
recursively obtained.

In this paper, we present a numerically efficient algorithm for solving the un-
constrained tangential interpolation problem formulated above. This algorithm is
inspired by the recent work on the frequency domain subspace-based identification
[23, 24, 25, 33]. The solvability conditions for the proposed algorithm are simple,
and depend only on the total multiplicities of the interpolation points. The resulting
interpolating function is in the minimal state-space form. To this date, interpolation
properties of the subspace-based methods have not been investigated in the gener-
ality of this paper. Only in [24] was an interpolation result obtained for uniformly
spaced data on the unit circle of the complex plane. The problem of curve fitting is
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also closely related to the interpolation problem. The use of the frequency domain
subspace-based methods for curve fitting is briefly described in [22].

Let us reformulate the tangential interpolation problem described above in terms
of system properties. More precisely, let us consider a multi-input/multi-output,
linear-time invariant, discrete-time system represented by the state-space equations

x(k + 1) = Ax(k) + Bu(k),
(1.2)

y(k) = Cx(k) + Du(k),

where x(k) ∈ Rn is the state and u(k) ∈ Rm and y(k) ∈ Rp are, respectively, the
input and the output of the system. The transfer function of the system (1.2) denoted
by G(z) is computed as

G(z) = D + C(zIn −A)−1B,(1.3)

where In is the n×n identity matrix. We assume that that the system (1.2) is stable
and the pairs (A,B) and (C,A) are controllable and observable, respectively. The
stability of (1.2) means that G(z) is a proper rational matrix that is analytic and
bounded in the region ϑ = {z ∈ C : |z| ≥ 1}, and both the controllability and the
observability of the pairs (A,B) and (C,A) mean that the quadruplet (A,B,C,D) is
a minimal realization of G(z).

The interpolation problem studied in this paper can be stated as follows.
Given: noise-free samples of G(z) and its derivatives at L distinct points zk ∈ ϑ,

dj

dzj
G(z)

∣∣∣∣
z=zk

= wkj , j = 0, 1, . . . , Nk, k = 1, 2, . . . , L.(1.4)

Find: a quadruplet (Â, B̂, Ĉ, D̂) that is a minimal realization of G(z).
Clearly, (1.4) is a special case of (1.1) with suitably selected left vectors vk(z) and

nodes zk. A subspace-based algorithm handling the tangential-type constraints (1.1)
as well can be derived along the same lines of the proposed algorithm. The minimality
and the uniqueness of the interpolant are the parts of the problem formulation. What
is left unanswered is a condition on the number of the interpolation nodes, counting
multiplicities. It is also clear that, if it exists, the subspace-based solution is a minimal
interpolating function in the set of all possible solutions.

The proposed interpolation scheme is particularly useful when the samples of G(z)
and its derivatives are corrupted by noise and the amount of data is large with respect
to n. In the noisy case, most interpolation schemes deliver state-space realizations
with McMillan degrees tending to infinity as the amount of data grows unboundedly;
thus such schemes are sensitive to inaccuracies in the interpolation data. Since our
algorithm is subspace-based, it inherits robustness properties of the subspace-based
identification algorithms. In particular, there is no need for explicit model param-
eterization, and this algorithm is computationally efficient since it uses numerically
robust QR factorization and the singular value decomposition. In the paper, we also
consider subspace-based system identification with interpolation constraints.

Note that a given interpolation problem on the right half complex plane can be
converted to an interpolation problem on the unit disk by using the Möbius transfor-
mation:

s = ψ(z)
Δ
= λ

z − 1

z + 1
(λ > 0).(1.5)

We omit the details.
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2. Subspace-based interpolation algorithm. We begin by taking the z-
transform of (1.2),

zX(z) = AX(z) + BU(z),
(2.1)

Y (z) = CX(z) + DU(z),

assuming x(0) = 0, where X(z), Y (z), and U(z) denote respectively the z-transforms
of x(k), y(k), and u(k) defined by

U(z)
Δ
=

∞∑
k=0

u(k) z−k.(2.2)

Let Xj(x) be the resulting state z-transform when

u(k) =

{
ej , k = 0,
0, otherwise,

where ej denotes the unit vector in Rm with 1 on the jth position and 0 elsewhere.
By defining the compound state z-transform matrix,

XC(z)
Δ
= [X1(z) X2(z) · · · Xm(z)] ,(2.3)

G(z) can implicitly be described as

G(z) = CXC(z) + D(2.4)

with

zXC(z) = AXC(z) + B.(2.5)

By recursive use of (2.5), we obtain the relation

zkXC(z) = AkXC(z) +

k−1∑
j=0

Ak−1−jBzj , k ≥ 1.(2.6)

Multiplying both sides of (2.6) with C and using (2.4), we get

zkG(z) = CAkXC(z) + Dzk +

k−1∑
j=0

CAk−1−jBzj , k ≥ 1.(2.7)

Now, recall that the impulse response coefficients of G(z) are given by

gk =

{
D, k = 0,
CAk−1B, k ≥ 1.

(2.8)

Thus, from (2.4), (2.7), and (2.8),

zkG(z) = CAkXC(z) +

k∑
j=0

gk−j z
j , k ≥ 0.(2.9)
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Hence from (2.9), ⎡⎢⎢⎢⎣
G(z)
zG(z)

...
zq−1G(z)

⎤⎥⎥⎥⎦ = OqXC(z) + Γq

⎡⎢⎢⎢⎣
Im
zIm

...
zq−1Im

⎤⎥⎥⎥⎦ ,(2.10)

where

Oq
Δ
=

⎡⎢⎢⎢⎣
C
CA
...

CAq−1

⎤⎥⎥⎥⎦ ,(2.11)

Γq
Δ
=

⎡⎢⎢⎢⎣
g0 0 · · · 0
g1 g0 · · · 0
...

...
. . .

...
gq−1 gq−2 · · · g0

⎤⎥⎥⎥⎦ .(2.12)

For later use, let us write (2.10) in a compact form. The matrix Oq is known
as the extended observability matrix and has full rank n if (A,C) is an observable
pair and q ≥ n. We define the Kronecker product of two matrices E ∈ Cm×n and
F ∈ Cp×q by

E ⊗ F
Δ
=

⎡⎢⎢⎢⎣
E11F E12F · · · E1nB
E21F E22F · · · E2nF

...
...

. . .
...

Em1F Em2F · · · EmnF

⎤⎥⎥⎥⎦ ∈ Cmp×nq.(2.13)

Let

Zq(z)
Δ
=

⎡⎢⎢⎢⎣
1
z
...

zq−1

⎤⎥⎥⎥⎦ ,(2.14)

Jq,2
Δ
=

⎡⎢⎢⎢⎢⎢⎣
0 · · · 0
1 0
0 1 0
...

. . .
...

0 · · · 1 0

⎤⎥⎥⎥⎥⎥⎦ ∈ Rq×q.(2.15)

By a slight abuse of notation, let Jq,1 denote the q × q identity matrix Iq. Observe
that Jq,2 is obtained by shifting the elements of Jq,1 one row down and filling its first
row with zeros. Let Jq,j denote the matrix obtained by j − 1 repeated applications
of this process to Jq,1 and J0

q,2 = Iq. Note the following relations:

Jq,j =

{
J j−1
q,2 , j ≤ q

0, j > q.
(2.16)
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Thus, the lower triangular block Toeplitz matrix in (2.12) can be written as

Γq =

q−1∑
j=0

Jq,1+j ⊗ gj .(2.17)

Hence, from (2.11)–(2.17) we arrive at the following compact expression for (2.10):

Zq(z) ⊗G(z) = OqXC(z) +

q−1∑
j=0

[J j
q,2 ⊗ gj ] [Zq(z) ⊗ Im] .(2.18)

This equation forms the basis of the frequency domain subspace-based identifi-
cation algorithms [24, 23]. In subspace-based identification algorithms, Zq(z) ⊗G(z)
and the right-hand side of (2.18) are evaluated at a set of distinct points on the unit
circle and then stacked into columns of long matrices. This procedure yields a matrix
equation affine in Oq. From this equation, the range space of Oq is recovered by a
projection. Once the observability range space is recovered, a realization of G(z) is
derived in a routine manner. We will adapt the same strategy.

First, we differentiate both sides of (2.18) l times with respect to z:

dl

dzl
Hq(z) =

l∑
j=0

(
l
j

)
dj

dzj
Zq(z) ⊗

dl−j

dzl−j
G(z)

(2.19)

= Oq
dl

dzl
XC(z) +

q−1∑
j=0

[J j
q,2 ⊗ gj ]

[
dl

dzl
Zq(z) ⊗ Im

]
, l ≥ 0,

where

Hq(z)
Δ
= Zq(z) ⊗G(z).(2.20)

Then, we augment Hq(zk) and the first Nk derivatives of Hq(z) at zk in a data matrix:

Hk
Δ
=

[
Hq(z)

d

dz
Hq(z) · · · dNk

dzNk
Hq(z)

]
z=zk

, k = 1, . . . , L.(2.21)

Using the right-hand side of the first equality in (2.19), let us derive a compact
expression for Hk in terms of the elementary matrices

Dk
Δ
=

⎡⎢⎢⎢⎢⎢⎣
0 1 0 · · · 0

0 2
0 · · ·

...
. . . Nk

0 · · · 0

⎤⎥⎥⎥⎥⎥⎦ ∈ R(Nk+1)×(Nk+1)(2.22)

and

Wk
Δ
=

[
Zq(z)

d

dz
Zq(z) · · · dNk

dzNk
Zq(z)

]
z=zk

, k = 1, . . . , L,(2.23)
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as follows:

Hk =

[
Zq(z)

d

dz
Zq(z)

d2

dz2
Zq(z) · · · dNk

dzNk
Zq(z)

]
z=zk

⊗G(zk)

+

[
0 Zq(z) 2

d

dz
Zq(z) · · ·

(
Nk

1

)
dNk−1

dzNk−1
Zq(z)

]
z=zk

⊗ d

dz
G(zk)

+

[
0 0 Zq(z) · · ·

(
Nk

2

)
dNk−2

dzNk−2
Zq(z)

]
z=zk

⊗ d2

dz2
G(zk) + · · ·

+ [0 0 0 · · · Zq(z)]z=zk
⊗ dNk

dzNk
G(zk)

= Wk ⊗G(zk) + [WkDk] ⊗
d

dz
G(zk) +

1

2!
[WkD2

k] ⊗
d2

dz2
G(zk)

+
1

Nk!
[WkDNk

k ] ⊗ dNk

dzNk
G(zk).

Note that Dj
k = 0 for all j > Nk. Hence,

Hk =

Nk∑
j=0

1

j!
[Wk Dj

k] ⊗ wkj , k = 1, . . . , L.(2.24)

It remains to compute the derivatives of Zq(z). To this end, let

Tq
Δ
=

⎡⎢⎢⎢⎣
0! 0 · · · 0
0 1! · · · 0
...

...
. . .

...
0 0 · · · (q − 1)!

⎤⎥⎥⎥⎦ ∈ Rq×q.(2.25)

Then, it is easy to verify that

dl

dzl
Zq(z) = TqJ l

q,2T −1
q Zq(z), l ≥ 0.(2.26)

Hence from (2.23) and (2.26),

Wk = Tq
[
Iq Jq,2 · · · JNk

q,2

] [
INk+1 ⊗ T −1

q Zq(zk)
]
, k = 1, . . . , L.(2.27)

An alternative compact expression for Hk is obtained by evaluating the right-hand
side of the second equality in (2.19) for l = 0, . . . , Nk, k = 1, . . . , L, and augmenting
the similar terms in compound matrices as follows:

Hk = Oq Xk +

q−1∑
j=0

[J j
q,2 ⊗ gj ] [Wk ⊗ Im], k = 1, . . . , L,(2.28)

where

Xk
Δ
=

[
XC(z)

d

dz
XC(z) · · · dNk

dzNk
XC(z)

]
z=zk

, k = 1, . . . , L.(2.29)

Now, we collect Hk, Xk, and Wk, k = 1, . . . , L, in the compound matrices

H Δ
= [H1 H2 · · · HL] ,(2.30)

X Δ
= [X1 X2 · · · XL] ,(2.31)

W Δ
= [W1 W2 · · · WL] .(2.32)
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Hence,

H = Oq X +

q−1∑
j=0

[J j
q,2 ⊗ gj ] [W ⊗ Im],(2.33)

where H and W are computed from the problem data {zk, {wkj}Nk
j=0}Lk=1 by the for-

mulae (2.30), (2.32), (2.27), (2.24), (2.22), (2.14), (2.15), (2.25). This completes the
first stage of our subspace-based interpolation algorithm. Observe that H is affine in
Oq as advertised.

Since Oq is a real matrix and we are interested in the real range space, we can
convert (2.33) into a relation involving only real valued matrices:

Ĥ = Oq X̂ +

q−1∑
j=0

[J j
q,2 ⊗ gj ]F ,(2.34)

where

Ĥ Δ
= [ReH ImH] ,(2.35)

F Δ
= [ReW ImW] ⊗ Im,(2.36)

X̂ Δ
= [ReX ImX ] .(2.37)

Let z∗ denote the complex conjugate of z. When zk ∈ R, from (2.14) we have
Zq(zk) ∈ Rq. This, by (2.27), implies that Wk ∈ Rq×(Nk+1). From (2.5),

XC(z) = (zIn −A)−1B.(2.38)

Then, from (2.4), (2.38), and (2.29), it follows that Xk ∈ Rn×m(Nk+1) and, for all
j = 0, . . . , Nk, wkj ∈ Rp×m whenever zk ∈ R. Thus, whenever zk ∈ R from (2.24) we
have Hk ∈ Rpq×m(Nk+1). Hence, the imaginary parts of Hk, F , and Xk are all zero,
and they need not be included in (2.35)–(2.37) if zk ∈ R; without loss of generality,
we will assume this in what follows. Let

N
Δ
=

∑
k:zk∈R

(Nk + 1) +
∑

k:zk∈C−R

2(Nk + 1).(2.39)

Then, Ĥ ∈ Rpq×mN , F ∈ Rmq×mN , and X̂ ∈ Rn×mN .

2.1. Projection onto the observability range space. Let F⊥ be the pro-
jection matrix onto the null space of F given by

F⊥ Δ
= ImN −FT (FFT )−1F ,(2.40)

where FT denotes the transpose of F . The summand in (2.34) is cancelled for all j
when multiplied from right by F⊥. Thus,

ĤF⊥ = Oq X̂F⊥.(2.41)

A numerically efficient way of forming ĤF⊥ is to use the QR-factorization[
F
Ĥ

]
=

[
R11 0
R21 R22

] [
QT

1

QT
2

]
.(2.42)
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A simple derivation yields

ĤF⊥ = R22Q
T
2 ,(2.43)

and it suffices to use R22 ∈ Rpq×m(N−q) in the extraction of the observability range
space since QT

2 is a matrix of full rank.

The range space of ĤF⊥ equals the range space of Oq unless rank cancellations
occur. A sufficient condition for the range spaces to be equal is that the intersection of
the row spaces of F and X̂ be empty. In the following, we present sufficient conditions
in terms of the data and the system.

Lemma 2.1. Let X̂ , F , and N be as in (2.37), (2.36), and (2.39), respectively.
Suppose that N ≥ q + n and the eigenvalues of A do not coincide with the distinct
complex numbers zk. Then,

rank

[
F
X̂

]
= qm + n ⇐⇒ (A,B) controllable pair.(2.44)

Proof. The matrix
[
W ⊗ Im

X

]
is rank deficient if and only if there exists a row

vector

[α0 · · · αq−1 β] �= 0(2.45)

with αT
k ∈ Rm, k = 0, . . . , q − 1, and βT ∈ Rn such that

[α0 · · · αq−1 β]

[
W ⊗ Im

X

]
= 0.(2.46)

From (2.32), (2.23), and (2.31), (2.29), equation (2.46) holds if and only if

[α0 · · · αq−1 β]
dj

dzj

[
Zq(z) ⊗ Im

XC(z)

]
z=zk

= 0, 0 ≤ j ≤ Nk, k = 1, . . . , L,




dj

dzj
E(z)

∣∣∣∣
z=zk

= 0, 0 ≤ j ≤ Nk, k = 1, . . . , L,(2.47)

where

E(z)
Δ
=

q−1∑
k=0

αkz
k + β(zIn −A)−1B.

Equation (2.47) implies that for each k the elements of the rational vector E(z) have
common zeros at zk with multiplicity Nk + 1. Since E(z) is real-rational, zk is a zero
of E(z) if and only if z∗k is also a zero of E(z). Therefore, E(z) happens to have a
total number of N zeros counting multiplicities. However, the elements of E(z) have
numerator degrees not exceeding n + q − 1. Hence, any element of E(z) cannot have
N zeros. Thus, E(z) ≡ 0. This implies that αk = 0 for all k and β(zIn −A)−1B ≡ 0.
The latter result follows from the fact that β(zIn−A)−1B is analytic and has a zero at

z = ∞; hence it is orthogonal to
∑q−1

k=0 αkz
k. Recall that (A,B) is an uncontrollable
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pair if and only if it is possible to find a vector β �= 0 such that β(zIn − A)−1B ≡ 0.

Finally, note that
[
F
X̂

]
is rank deficient if and only if

[
W ⊗ Im

X

]
is rank deficient. The

last assertion is due to the fact that, for any complex matrix Z and real vector x,

xTZ = 0 ⇐⇒ x [ReZ ImZ] = 0.

Since all the eigenvalues of A are inside the unit circle, none of them coincide
with any of zk. Thus, by applying Lemma 2.1, we conclude that the two row spaces
of X̂ and F do not intersect and the range space of ĤF⊥ coincides with the range
space of Oq. Then, using the singular value factorization of ĤF⊥,

ĤF⊥ = Û Σ̂V̂ T

(2.48)

=
[
Ûs Ûo

] [
Σ̂s 0

0 Σ̂o

][
V̂ T
s

V̂ T
o

]
,

where Σ̂s ∈ Rn×n, we determine the system matrices Â and Ĉ as

Â = (J1Ûs)
†J2Ûs,

(2.49)
Ĉ = J3Ûs,

where

J1 =
[
I(q−1)p 0(q−1)p×p

]
,(2.50)

J2 =
[
0(q−1)p×p I(q−1)p

]
,(2.51)

J3 =
[
Ip 0p×(q−1)p

]
,(2.52)

0i×j is the i× j zero matrix, and X† = (XTX)−1XT is the Moore–Penrose pseudoin-
verse of the full column rank matrix X. Provided that (C,A) is an observable pair,
the pseudoinverse in (2.49) exists if and only if q > n. Therefore, in order to apply
the lemma it suffices to let q = n + 1. In this case, we have the sole requirement
N > 2n with N defined by (2.39). From Lemma 2.1, it follows that Â and Ĉ defined
in (2.49) are related to A and C in (1.2) by

Â = T−1AT,
(2.53)

Ĉ = CT

for some T ∈ Rn×n.
As noted before, in (2.48) ĤF⊥ can be replaced with R22.

2.2. Extracting B and D from the data. We will now determine B and D
matrices in the realization using the given frequency domain data. Repeated applica-
tion of the differentiation formula

d

dz
X−1 = −X−1 dX

dz
X−1

to XC(z) = (zIn −A)−1B yields the derivatives of G(z) as follows:

dj

dzj
G(z) = δ0j D + (−1)jj!C(zIn −A)−j−1B, j ≥ 0,(2.54)
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where δks is the Kronecker delta. Now, let

Gk
Δ
=

⎡⎢⎢⎢⎣
wk0

wk1

...
wkNk

⎤⎥⎥⎥⎦ , k = 1, . . . , L,(2.55)

and

G Δ
=

⎡⎢⎢⎢⎣
G1

G2

...
GL

⎤⎥⎥⎥⎦ .(2.56)

Observe from (2.54) that, for fixed A and C, the matrices B and D appear
linearly in G. Hence, we can uniquely determine B and D by solving the following
linear least-squares problem

B̂, D̂ = arg min
B,D

∥∥∥∥Ĝ − Ŷ
[

B
D

]∥∥∥∥2

F

,(2.57)

where

‖X‖F
Δ
=

[∑
k

∑
s

|xks|2
]1/2

is the Frobenius norm,

Ĝ Δ
=

[
ReG
ImG

]
∈ RpN×m,(2.58)

Ŷ Δ
=

[
ReY
ImY

]
∈ RpN×(n+p),(2.59)

and

Yk
Δ
=

⎡⎢⎢⎢⎣
C(zkIn −A)−1 Ip
−C(zkIn −A)−2 0

...
(−1)NkNk!C(zkIn −A)−Nk−1 0

⎤⎥⎥⎥⎦ ,(2.60)

Y Δ
=

⎡⎢⎢⎢⎣
Y1

Y2

...
YL

⎤⎥⎥⎥⎦ ,(2.61)

provided that Ŷ is not rank deficient. For the last requirement, a sufficient condition
is presented next.

Lemma 2.2. Let N and Ŷ be as in (2.39) and (2.59), respectively. Suppose that
N > n and the eigenvalues of A do not coincide with the distinct complex numbers
zk. Then,

rankŶ = p + n ⇐⇒ (C,A) observable pair.(2.62)
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Proof. The matrix Y is rank deficient if and only if there exists
[
B
D

]
�= 0 such that

Y
[

B
D

]
= 0 ⇐⇒ dj

dzj
G(z)

∣∣∣∣
z=zk

= 0, 0 ≤ j ≤ Nk, k = 1, . . . , L.

As in the proof of Lemma 2.1, this equation implies that every element of G(z)
has a total number of N zeros counting multiplicities, a contradiction if G(z) is not
identically zero unless N ≤ n.

Thus, from (2.53) and Lemma 2.2, if N ≥ q + n and q > n, we have

B̂ = T−1B,
(2.63)

D̂ = D.

Moreover,

Ĝ(z)
Δ
= Ĉ(zIn − Â)−1B̂ + D̂ = G(z).(2.64)

2.3. Solvability conditions. By picking q = n + 1 in the subspace-based al-
gorithm developed above, we obtain a sufficient condition for the interpolation of
G(z) from its noise-free samples and derivatives evaluated at L distinct points in ϑ as
N ≥ 2n+ 1, where N is defined by (2.39). This condition turns out to be a necessary
condition for the interpolation of G(z), as demonstrated next by a simple example.

Consider an nth-order stable single-input/single-output system represented by
the transfer function

G(z) =
b0z

n + b1z + · · · + bn
zn + a1z + · · · + an

.(2.65)

We are to determine 2n + 1 unknown real coefficients a1, . . . , an, b0, . . . , bn from the
evaluations of G(z) and its derivatives at a given set of distinct frequencies zk ∈ ϑ.
Let N be as in (2.39).

Let us first assume in (1.4) that Nk = 0 and zk ∈ C − R for all k; i.e., the
interpolation nodes are simple and purely complex numbers. Then, N = 2L. With
q = n + 1, the subspace-based algorithm delivers a minimal realization of G(z),
provided that 2L ≥ 2n + 1. This condition is satisfied by choosing L = n + 1.
Clearly, this is the least amount of data one could use to interpolate an arbitrary nth-
order system, as can directly be verified by writing 2L-linear equations down from
(1.4) and (2.65) to determine the unknowns a1, . . . , an, b0, . . . , bn. Notice that if some
interpolation nodes have multiplicities, then the resulting equations become nonlinear
in a1, . . . , an, b0, . . . , bn.

Now, as a special case, let us consider the situation that all zk are on the unit
circle excluding the points ±1. Thus, Algorithm 2.1 recovers nth-order stable systems
from n + 1 noise-free frequency response measurements, excluding the frequencies 0
and π. If the frequencies contain 0, from (2.39) we then have N = 2L − 1. Hence,
with q = n + 1 selected, we must have 2L − 1 ≥ 2n + 1, which is fulfilled by letting
L = n + 1. If, in addition, the frequencies contain π as well, we end up with the
interpolation condition L = n+2. The last conclusion extends an interpolation result
in [24] derived for the uniformly spaced frequencies case to the nonuniformly spaced
frequencies case.

It is easy to see, for example, by the partial fraction expansion or similar tech-
niques, that these results hold for multi-input/multi-output systems with multiple
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interpolation nodes as well. Therefore, Algorithm 2.1 is capable of using a minimum
amount of the frequency domain data for the Lagrange–Sylvester interpolation of
stable systems.

2.4. Summary of the subspace-based interpolation algorithm. Let us
summarize the interpolation algorithm in the following.

Algorithm 2.1. Subspace-based interpolation algorithm.
1. Given the data (1.4), compute the matrices Ĥ and F defined by (2.35) and

(2.36) through (2.30), (2.32), (2.24), (2.27), (2.22), (2.25), (2.15), and (2.14).
2. Perform the QR-factorization in (2.42).

3. Calculate the singular value decomposition in (2.48) with ĤF⊥ replaced by
R22 defined in (2.42).

4. Determine the system order by inspecting the singular values, and partition
the singular value decomposition such that Σ̂s contains the n largest singular
values.

5. With J1, J2, and J3 defined by (2.50)–(2.52), calculate Â and Ĉ from (2.49).

6. Solve the least-squares problem (2.57) for B̂ and D̂, where Ĝ and Ŷ are defined
by (2.58) and (2.59) through (2.60)–(2.61) and (2.55)–(2.56).

Clearly, Σ̂o = 0 in (2.48) when the data are not corrupted by noise, the system that
has generated the data is of McMillan degree n, N ≥ q + n, and q > n. As we stated
earlier, Algorithm 2.1 produces a minimal stable realization of the interpolant, given
that the latter exits. In most interpolation problems, the existence and the uniqueness
questions are easily settled, and the construction of a solution (or all solutions) with
certain properties such as the McMillan degree constraints, in particular minimality,
remains a difficult one. The algorithm outlined above is straightforward to implement.
In the implementation of the algorithm, it suffices to let q = n + 1 and N = 2n +
1, where N is defined by (2.39). The system order, if unknown a priori, can be
determined in step 4 of Algorithm 2.1 from the inspection of the singular values. This
process also reveals redundancies in the data. Numerically, the most expensive step
in the algorithm is the singular value decomposition of R22. Notice with q = n + 1
and N = 2n + 1 selected, that R22 ∈ Rp(n+1)×mn.

The main result of this paper is captured in the following.
Theorem 2.3. Consider Algorithm 2.1 with the data in (1.4) originating from

a discrete-time stable system of order n. Let N be as in (2.39). If N ≥ q + n and

q > n, then the quadruplet (Â, B̂, Ĉ, D̂) is a minimal realization of G(z).

2.5. Discussion. In the rest of this section, we will briefly comment on the
similarities and the differences between Algorithm 2.1 and the Löwner matrix–based
approach [1].

The most striking difference between the methods appears to be the formation
of data matrices. In [1], elements of a Löwner matrix are computed by taking partial
derivatives of the divided differences [G(z) − G(s)]/(z − s) evaluated at z = zk and
s = zl, where the number of the derivatives is determined by the particular choice of
the (block) row and column sets and the multiplicities of the nodes. If zk equals zl, a
limiting process has to be used to define that particular element. It is required that
the numbers of the chosen block rows and columns add up to N . The elements of H
in the proposed algorithm, on the other hand, consist of linear combinations of the
derivatives of the products zlG(z) evaluated at z = zk, where for each k, l satisfies
0 ≤ l ≤ Nk. A simple transformation that relates H to a Löwner matrix does not
seem possible unless all the zk are the same, in which case the problem solved reduces
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to a conventional partial realization problem. In the latter case, notice that this link
is provided by the bilinear map (1.5).

Both algorithms rely on the factorization of the data matrices discussed above as
a product of two matrices which are directly related to the observability and control-
lability concepts. In [1], the Löwner matrix is expressed as a product of the so-called
generalized observability and the controllability matrices, whereas in the proposed
algorithm this relation is recovered after some projections. In fact, the proofs of
Lemmas 2.1, 2.2, and 3.1R in [1] use the same ideas.

The most striking similarity between the algorithms is the condition N > 2n. It
should be noted that the stability assumption is not essential in the formulation of the
interpolation problem, since the data are already assumed to originate from a finite-
dimensional dynamical system with a complexity bounded above and the number of
the nodes is finite. This assumption is necessary in an identification setup. Without
the knowledge that the data have originated from a dynamical system with a com-
plexity bounded above, the condition N > 2n is precisely one of the requirements for
the existence of a unique minimal-order interpolating rational matrix [1]. In addition
to this requirement, there is also a more stringent rank condition captured in As-
sumption 4.1 in [1]. Thus, both algorithms operate under the same conditions which
assure the existence of a unique minimal interpolating rational matrix. We have not
addressed the properness issue in this paper due to our standing assumption on the
origins of the data. Again, without the knowledge of the origins of the data, one has
to secure that the solution of the interpolation problem is a proper transfer function.
The properness is guaranteed by Assumption 4.2 in [1]. It is also noted there that this
assumption can be eliminated by means of a suitably chosen bilinear transformation.

The Löwner matrix–based and proposed algorithms cannot be directly applied
when there does not exist a unique minimal interpolating function and the data are
not scalar. This may happen either in the presence of noise which corrupts transfer
function evaluations or when the true dynamics is of higher dimension. The problem
is then to find the admissible degrees of complexity, i.e., those positive integers n for
which there exist solutions G(z) to the interpolation problem (1.4) with deg G = n,
and to construct all corresponding solutions for a given admissible degree n. This
problem is known as the partial realization problem. If the original data do not sat-
isfy the criterion for the existence of a unique minimal interpolating function, one
needs to add interpolation data until the criterion becomes satisfied. The fact that
the data can be found so that the increase in degree is finite is nontrivial. The added
data will necessarily drive up the degree of the interpolating transfer function. In the
scalar case, dealt with in [2], the way this can be done is set out and is rather compli-
cated. The multivariable case is studied in [4] using the generating system approach.
While [4] gives the theory behind the determination of the minimal McMillan degree
and all admissible degrees, the current paper and [1] provide the theory behind the
construction in state-space terms of the solution of admissible degrees.

A departure of Algorithm 2.1 from the Löwner matrix–based approach is the
determination of the minimal order. Under the stated conditions, in Algorithm 2.1
the minimal order and the observability range space are extracted by a singular value
decomposition, while in the Löwner matrix–based approach the minimal order is
determined by checking ranks of several (generalized) Löwner matrices. The singular
value decomposition is not sensitive to random inaccuracies in data; that is, the true
singular values and the observability range space are consistently estimated as N
increases unboundedly, provided that n is finite or increases more slowly than N
[24, 25]. To our best knowledge, an asymptotic error analysis for randomly corrupted
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transfer function evaluations has not been performed for any of the interpolation
algorithms in the literature.

Deficiencies of the proposed interpolation algorithm and the Löwner matrix–based
approach are the same. As pointed out in [1], a parameterization of solutions when
the original data have to be added and derivation of recursive formulae for allowing
update of a realization when one or more interpolation data become available are
absent. It would be interesting to develop connections between the constrained in-
terpolation problems such as the Nevanlinna–Pick and the positive-real interpolation
and Algorithm 2.1. It is worth mentioning that the Nevanlinna–Pick interpolation
can be transformed into an interpolation problem without norm constraint by adding
the mirror image interpolation points to the original data [3].

3. Subspace-based identification with interpolation constraints. In this
section, we will consider identification of an nth-order stable system with transfer
function G(z) from noisy samples of the frequency response,

wl = G(eiθl) + ηl, l = 1, . . . ,M,(3.1)

with the interpolation constraints

dj

dzj
G(z)

∣∣∣∣
z=zk

= Ekj , j = 0, 1, . . . , Nk, k = 1, . . . , L,(3.2)

where 0 ≤ θl ≤ π, l = 1, . . . ,M , denote the discrete-time frequencies and ηl is a
sequence of independent zero-mean complex random variables with a known covari-
ance function that is uniformly bounded. The number of the constraints defined in
(2.39) satisfies N < n. The interpolation constraints (3.2) reflect the prior knowledge
on G(z). For example, by taking Ekj = 0 for all j ≤ Nk, we enforce a zero with
multiplicity Nk + 1 at zk. These constraints may also be used as design variables to
focus on a frequency band of interest.

We would like to find an identification algorithm which maps the data {wl, θl}Ml=1

to an nth-order model ĜM (z) that satisfies the interpolation constraints in (3.2) such
that, with probability one,

lim
M→∞

‖ĜM −G‖∞ = 0,

where

‖X‖∞
Δ
= sup

ω
σ1(X(eiω))

and σ1 denotes the largest singular value. Algorithms with this property are called
strongly consistent. This identification setup except for the constraints in (3.2) can
be found, for example, in [24].

A motivating example for the constraints in (3.2) is as follows. Suppose that the
system to be identified is nth order stable single-input/single-output continuous-time
system represented by the transfer function

Gc(s) =
b0s

m + b1s + · · · + bm
sn + a1s + · · · + an

,(3.3)

where the denominator degree n is greater than the numerator degree m, and we are
given M noise corrupted frequency response measurements

wl = G(iωl) + ηl, l = 1, . . . ,M.(3.4)

Assuming b0 �= 0, the relative degree of Gc(s) is defined as τ
Δ
= n−m.
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A direct use of the Möbius transform technique (1.5) targets identifying the
discrete-time equivalent of Gc(s) defined by

Gd(z)
Δ
= Gc (ψ(z)) ,(3.5)

using wl, l = 1, . . . ,M , at the transformed discrete-time frequencies

θk = 2 arctan
(ωk

λ

)
, k = 1, . . . ,M.(3.6)

Then, the continuous-time identified transfer function denoted by Ĝc
M (s) is obtained

from the discrete-time identified transfer function denoted by Ĝd
M (z) by using the

inverse Möbius map z = ψ−1(s); i.e., Ĝc
M (s) = Ĝd

M (ψ−1(s)). Due to noise and
unmodeled dynamics, the former is only a proper transfer function.

If maintaining the relative degree is a concern, we then high-pass filter Ĝc
M (s) as

follows:

ĜM (s) =
Ĝc

M (s)

(s + μ)τ
,

where μ > 0 is chosen sufficiently outside the bandwidth of Ĝc
M (s). This filtering

increases the order of the identified model by τ . This problem can be circumvented
by including the constraints

dj

dzj
Gd(z)

∣∣∣∣
z=−1

= 0, j = 1, . . . , τ,

in the problem formulation. Observe that when applied to (3.3), the Möbius map
(1.5) introduces a zero of Gd(z) at z = −1 with multiplicity τ .

Now, the solution of the constrained identification problem (3.1)–(3.2) is partic-
ularly simple if one notes from (2.54) the following set of equations:

δ0j D + (−1)jj!C(zkIn −A)−j−1B = Ekj , j = 0, . . . , Nk, k = 1, . . . , L,(3.7)

which describe N hyperplanes in the parameter space of B and D for fixed C and
A. Hence, it suffices to solve the linear least-squares problem (2.57) with the lin-
ear constraints (3.7). With this modification, the frequency domain subspace-based
identification algorithm presented in [24] is strongly consistent. The inclusion of the
noise covariance information in the algorithm is straightforward and can be found in
[24]. This extension can be viewed as the tangential version of the Lagrange–Sylvester
interpolation problem (1.1).

4. Example. The purpose of this section is to illustrate Algorithm 2.1 with a
step-by-step numerical example. Suppose that the system to be found by interpolation
has the following state-space representation:

A =

⎡⎢⎢⎣
−0.5 0.5 0 0
−0.5 −0.5 0 0

0 0 0.5 0
0 0 0 −0.25

⎤⎥⎥⎦ , B =

⎡⎢⎢⎣
1 0 0
1 1 0
0 −1 0
1 1 1

⎤⎥⎥⎦ ,

C =

[
1 1 1 0
0 1 0 1

]
, D =

[
1 −1 0
0 1 1

]
.
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Thus, n = 4, p = 2, and m = 3. This system has the transfer function

G(z) =

⎡⎢⎢⎣
z2 + 3z + 1.5

z2 + z + 0.5
−z3 + 0.5z2 + 0.5z + 0.75

z3 + 0.5z2 − 0.25
0

2z2 + 1.25z + 0.5

z3 + 1.25z2 + 0.75z + 0.125

z3 + 3.25z2 + 2.5z + 0.75

z3 + 1.25z2 + 0.75z + 0.125

z + 1.25

z + 0.25

⎤⎥⎥⎦ .

Let us assume that the interpolation data are as follows:

z1 = 1 + i, N1 = 0, z2 = 1 − i, N2 = 0, z3 = 2, N3 = 4

and

w10 =

[
1.9333 − 0.5333i −0.8667 + 0.4000i 0
0.8878 − 0.5236i 1.9545 − 0.6569i 1.4878 − 0.3902i

]
,

w20 =

[
1.9333 + 0.5333i −0.8667 − 0.4000i 0
0.8878 + 0.5236i 1.9545 + 0.6569i 1.4878 + 0.3902i

]
,

w30 =

[
1.7692 −1.2051 0
0.7521 1.8291 1.4444

]
, w31 =

[
−0.2840 0.2433 0
−0.2804 −0.3395 −0.1975

]
,

w32 =

[
0.2003 −0.4251 0
0.2084 0.2757 0.1756

]
, w33 =

[
−0.2000 0.9844 0
−0.2333 −0.3341 −0.2341

]
,

w34 =

[
0.2456 −2.8518 0
0.3531 0.5390 0.4162

]
.

Then we set q = 5 and compute N = 9. Therefore, the inequalities N ≥ q + n
and q > n are both satisfied. In step 1, we compute the matrices Ĥ ∈ R10×27 and
F ∈ R15×27. The QR-factorization in step 2 results in R22 ∈ R10×12 given by

R22 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−0.4622 0 0 0 0 · · · 0

0.0381 −0.0518 0 0
...

. . .
...

−0.2544 0.0203 −0.0240 0
−0.0176 0.0194 −0.0075 −0.0009
−0.1144 −0.0070 0.0091 −0.0089

0.0094 −0.0110 0.0094 −0.0025
−0.0583 0.0035 −0.0045 0.0045
−0.0033 0.0057 −0.0061 0.0037

−0.0344 0.0033 −0.0037 −0.0022
...

. . .
...

−0.0007 −0.0013 0.0015 −0.0027 0 · · · 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

which is not unexpected since n = 4. In step 3, we compute the nonzero singular
values 0.5460, 0.0609, 0.0249, and 0.0098. The matrices Â and Ĉ computed in step 5
are

Â =

⎡⎢⎢⎣
0.5204 −0.1361 0.3199 0.5352
0.0882 −0.4983 0.4848 −0.1035
0.0052 0.0820 −0.4810 0.7195

−0.0295 0.1919 −0.3546 −0.2911

⎤⎥⎥⎦ ,

Ĉ =

[
0.8460 0.2123 −0.2149 −0.3233

−0.0721 0.8069 0.5289 0.1046

]
.
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In step 6, we compute Ĝ ∈ R18×3 and Ŷ ∈ R18×6 matrices, and the solution of the
least-squares problem is

B̂ =

⎡⎢⎢⎣
1.0502 −0.5390 −0.0816
2.8626 1.8321 0.9041

−0.1545 1.0984 0.4896
−1.4555 −0.9375 0.0547

⎤⎥⎥⎦ ,

D̂ =

[
1.0000 −1.0000 −0.0000

−0.0000 1.0000 1.0000

]
.

The realization (Â, B̂, Ĉ, D̂) is similar to (A,B,C,D). In fact, the estimates of the
interpolation data computed from the former has a maximum error 5.9746 × 10−14.

5. Conclusions. In this paper, we presented a new algorithm for the Lagrange–
Sylvester interpolation of rational matrix functions that are analytic at infinity. This
algorithm is related to the recent frequency domain subspace-based identification
methods and is not sensitive to inaccuracies in data. A necessary and sufficient
condition for the existence and the uniqueness of a minimal interpolant was formulated
in terms of the total multiplicity of the interpolation nodes. The purpose of this
contribution was to pinpoint the kinship between the frequency domain subspace-
based identification of stable linear systems and the minimal rational interpolation of
stable systems.
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[25] T. McKelvey, H. Akçay, and L. Ljung, Subspace-based identification of infinite-dimensional
multivariable systems from from frequency response data, Automatica, 32 (1996), pp. 885–
902.
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