A SUBSPACE-BASED METHOD FOR SOLVING LAGRANGE-SYLVESTER INTERPOLATION PROBLEMS

Hüseyin Akçay

Department of Electrical and Electronics Engineering Anadolu University, Eskişehir, Turkey

September 29, 2008

Outline

(9) Background
(2) Problem Formulation
(3) Subspace-based algorithm

- Derivation of the algorithm
- Projection onto the observability range space
- Extracting A and C matrices
- Extracting B and D matrices from data
- Summary of the subspace-based interpolation algorithm
(4) Main Result
- Comparison of the algorithm with existing methods
(5) Examples

6 Conclusions

Interpolation of matrix valued rational functions analytic at infinity from frequency domain data ...
(1) Lagrange interpolation studied by Antoulas and Anderson using a tool called Löwner matrix also with additional constraints such as bounded real, positive real etc.
(2) Generating system approach studied by Antoulas, Ball, Kang, Willems, Gohberg, and Rodman.
(3) Applications of interpolation theory to control and system theory and estimation (see, for example, the monographs: Ball, Gohberg, and Rodman; Nikolski).

Consider a multi-input/multi-output, linear-time invariant discrete-time system represented by the state-space equations:

$$
\begin{aligned}
x(t+1) & =A x(t)+B u(t) \\
y(t) & =C x(t)+D u(t)
\end{aligned}
$$

where $x(t) \in \mathbf{R}^{n}$ is the state, $u(t) \in \mathbf{R}^{m}$ and $y(t) \in \mathbf{R}^{p}$ are the input and the output.

Transfer function

$$
G(z)=D+C\left(z I_{n}-A\right)^{-1} B
$$

is stable and $\{A, B\}$ and $\{A, C\}$ are controllable and observable.

Given: samples of $G(z)$ and its derivatives at L distinct points $z_{k} \in \mathcal{D}$

$$
\frac{d^{j} G\left(z_{k}\right)}{d z^{j}}=w_{k j}, \quad j=0,1, \cdots, N_{k} ; \quad k=1,2, \cdots, L .
$$

Find: $(\widehat{A}, \widehat{B}, \widehat{C}, \widehat{D})$, a minimal realization of $G(z)$.
Lagrange-Sylvester rational interpolation problem.

- Obvious solution! Reduce the problem first to a system of independent scalar problems and obtain a minimal solution by eliminating unobservable or/and uncontrollable modes.
- (Bi)tangential and contour integral versions treated for example, in Ball, Gohberg, and Rodman.
- Related problems: Nonhomogeneous interpolation with metric constraints; Nevanlinna-Pick interpolation; Partial realization.

Outline

Background

Problem Formulation

3 Subspace-based algorithm

- Derivation of the algorithm
- Projection onto the observability range space
- Extracting A and C matrices
- Extracting B and D matrices from data
- Summary of the subspace-based interpolation algorithm

Main Result

- Comparison of the algorithm with existing methods

Examples

Take the z-transform of the state-space equations:

$$
\begin{aligned}
z X(z) & =A X(z)+B U(z) \\
Y(z) & =C X(z)+D U(z)
\end{aligned}
$$

where $X(z)$ denotes the z-transforms of $x(k)$ defined by

$$
U(z) \triangleq \sum_{k=0}^{\infty} u(k) z^{-k}
$$

Let $X_{j}(z)$ be the resulting state z-transform when $u(k)=e_{j}$.

Background
Problem Formulation

Define the compound state z-transform matrix:

$$
X_{C}(z) \triangleq\left[\begin{array}{llll}
X_{1}(z) & X_{2}(z) & \cdots & X_{m}(z)
\end{array}\right] .
$$

Then, $G(z)$ can implicitly be described as

$$
G(z)=C X_{C}(z)+D
$$

with

$$
z X_{\mathrm{C}}(z)=A X_{\mathrm{C}}(z)+B .
$$

By recursive use, we obtain the relation

$$
z^{k} G(z)=C A^{k} X_{C}(z)+D z^{k}+\sum_{j=0}^{k-1} C A^{k-1-j} B z^{j}, \quad k \geq 1 .
$$

The impulse response coefficients of $G(z)$:

$$
g_{k}= \begin{cases}D, & k=0 \\ C A^{k-1} B, & k \geq 1\end{cases}
$$

Thus,

$$
z^{k} G(z)=C A^{k} X_{\mathrm{C}}(z)+\sum_{j=0}^{k} g_{k-j} z^{j}, \quad k \geq 0
$$

Hence,

$$
\left[\begin{array}{c}
G(z) \\
z G(z) \\
\vdots \\
z^{q-1} G(z)
\end{array}\right]=\mathcal{O}_{q} X_{C}(z)+\Gamma_{q}\left[\begin{array}{c}
I_{m} \\
z I_{m} \\
\vdots \\
z^{q-1} I_{m}
\end{array}\right]
$$

where

$$
\mathcal{O}_{q} \triangleq\left[\begin{array}{c}
C \\
C A \\
\vdots \\
C A^{q-1}
\end{array}\right], \quad \Gamma_{q} \triangleq\left[\begin{array}{cccc}
g_{0} & 0 & \cdots & 0 \\
g_{1} & g_{0} & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
g_{q-1} & g_{q-2} & \cdots & g_{0}
\end{array}\right]
$$

- \mathcal{O}_{q}, extended observability matrix, has full rank n if (C, A) is observable and $q \geq n$.

Let

$$
\begin{gathered}
\mathcal{Z}_{q}(z) \triangleq\left[\begin{array}{c}
1 \\
z \\
\vdots \\
z^{q-1}
\end{array}\right], \quad \mathcal{J}_{q, 2} \triangleq\left[\begin{array}{ccccc}
0 & & \cdots & & 0 \\
1 & 0 & & & \\
0 & 1 & 0 & & \\
\vdots & & & \ddots & \vdots \\
0 & \cdots & 1 & 0
\end{array}\right] \in \mathrm{R}^{q \times q}, \\
\mathcal{J}_{q, 1}=I_{q}, \quad \mathcal{J}_{q, 2}^{0}=I_{q} .
\end{gathered}
$$

- $\mathcal{J}_{q, 2}$ obtained by shifting the elements of $\mathcal{J}_{q, 1}$ one row down and filling its first row with zeros.

Let $\mathcal{J}_{q, j}$ denote the matrix obtained by $j-1$ repeated applications of this process to $\mathcal{J}_{q, 1}$.

- Note the following relations

$$
\mathcal{J}_{q, j}= \begin{cases}\mathcal{J}_{q, 2}^{j-1}, & j \leq q \\ 0, & j>q\end{cases}
$$

Thus,

$$
\Gamma_{q}=\sum_{j=0}^{q-1} \mathcal{J}_{q, 1+j} \otimes g_{j}
$$

A compact expression:

$$
\mathcal{Z}_{q}(z) \otimes G(z)=\mathcal{O}_{q} X_{C}(z)+\sum_{j=0}^{q-1}\left[\mathcal{J}_{q, 2}^{j} \otimes g_{j}\right]\left[\mathcal{Z}_{q}(z) \otimes I_{m}\right] .
$$

- Forms the basis of the frequency domain subspace identification algorithms (McKelvey, Akçay, and Ljung; 1996).
(Subspace ID: evaluate this equation at a set of distinct points on the unit circle and stack into columns of long matrices yielding a matrix equation affine in \mathcal{O}_{q}. Then, recover the range space of \mathcal{O}_{q} by a projection.)

Differentiate $\mathcal{Z}_{q}(z) \otimes G(z) /$ times with respect to z :

$$
\begin{aligned}
H_{q}^{(I)}(z) & =\sum_{j=0}^{\prime}\binom{I}{j}\left[\mathcal{Z}_{q}^{(j)}(z) \otimes G^{(I-j)}(z)\right] \\
& =\mathcal{O}_{q} \frac{\mathrm{~d}^{\prime} X_{\mathrm{C}}(z)}{\mathrm{d} z^{k}}+\sum_{j=0}^{q-1}\left[\mathcal{J}_{q, 2}^{j} \otimes g_{j}\right]\left[\mathcal{Z}_{q}^{(I)}(z) \otimes I_{m}\right], \quad I \geq 0
\end{aligned}
$$

where

$$
H_{q}(z) \triangleq \mathcal{Z}_{q}(z) \otimes G(z)
$$

Augment $H_{q}\left(z_{k}\right)$ and the first N_{k} derivatives of $H_{q}(z)$ at z_{k} in a data matrix:

$$
\mathcal{H}_{k} \triangleq\left[\begin{array}{llll}
H_{q}\left(z_{k}\right) & H_{q}^{\prime}\left(z_{k}\right) & \cdots & H_{q}^{\left(N_{k}\right)}\left(z_{k}\right)
\end{array}\right], \quad k=1, \cdots, L .
$$

A compact expression for \mathcal{H}_{k} in terms of the elementary matrices:

$$
\mathcal{D}_{N_{k}+1} \triangleq\left[\begin{array}{ccccc}
0 & 1 & 0 & \cdots & 0 \\
& 0 & 2 & & \\
& & 0 & \cdots & \\
\vdots & & & \ddots & N_{k} \\
0 & & & \cdots & 0
\end{array}\right] \in \mathbf{R}^{\left(N_{k}+1\right) \times\left(N_{k}+1\right)}
$$

and

$$
\mathcal{W}_{k} \triangleq\left[\begin{array}{llll}
\mathcal{Z}_{q}\left(z_{k}\right) & \mathcal{Z}_{q}^{\prime}\left(z_{k}\right) & \cdots & \mathcal{Z}_{q}^{\left(N_{k}\right)}\left(z_{k}\right)
\end{array}\right], \quad k=1, \cdots, L
$$

is derived as

$$
\mathcal{H}_{k}=\sum_{j=0}^{N_{k}} \frac{1}{j!}\left[\mathcal{W}_{k} \mathcal{D}_{N_{k}+1}^{j}\right] \otimes w_{k j}, \quad k=1, \cdots, L
$$

- $\mathcal{D}_{N_{k}+1}^{j}=0$ for all $j>N_{k}$.

An alternative compact expression for \mathcal{H}_{k} :

$$
\mathcal{H}_{k}=\mathcal{O}_{q} \mathcal{X}_{k}+\sum_{j=0}^{q-1}\left[\mathcal{J}_{q, 2}^{j} \otimes g_{j}\right]\left[\mathcal{W}_{k} \otimes I_{m}\right], \quad k=1, \cdots, L
$$

where

$$
\mathcal{X}_{k} \triangleq\left[\begin{array}{llll}
X_{\mathrm{C}}\left(z_{k}\right) & X_{\mathrm{C}}^{\prime}\left(z_{k}\right) & \cdots & X_{\mathrm{C}}^{\left(N_{k}\right)}\left(z_{k}\right)
\end{array}\right], \quad k=1, \cdots, L .
$$

The derivatives of $\mathcal{Z}_{q}(z)$?
Let

$$
\mathcal{T}_{q} \triangleq\left[\begin{array}{cccc}
0! & 0 & \cdots & 0 \\
0 & 1! & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & (q-1)!
\end{array}\right] \in \mathbf{R}^{q \times q}
$$

Then, it is easy to verify that

$$
\frac{\mathrm{d}^{\prime} \mathcal{Z}_{q}(z)}{\mathrm{d} z^{\prime}}=\mathcal{T}_{q} \mathcal{J}_{q, 2}^{\prime} \mathcal{T}_{q}^{-1} \mathcal{Z}_{q}(z), \quad I \geq 0
$$

Now, collect $\mathcal{H}_{k}, \mathcal{X}_{k}$, and \mathcal{W}_{k} in the compound matrices:

$$
\begin{aligned}
\mathcal{H} & \triangleq\left[\begin{array}{llll}
\mathcal{H}_{1} & \mathcal{H}_{2} & \cdots & \mathcal{H}_{L}
\end{array}\right] \\
\mathcal{X} & \triangleq\left[\begin{array}{llll}
\mathcal{X}_{1} & \mathcal{X}_{2} & \cdots & \mathcal{X}_{L}
\end{array}\right] \\
\mathcal{W} & \triangleq\left[\begin{array}{llll}
\mathcal{W}_{1} & \mathcal{W}_{2} & \cdots & \mathcal{W}_{L}
\end{array}\right]
\end{aligned}
$$

Hence,

$$
\mathcal{H}=\mathcal{O}_{q} \mathcal{X}+\sum_{j=0}^{q-1}\left[\mathcal{J}_{q, 2}^{j} \otimes g_{j}\right]\left[\mathcal{W} \otimes I_{m}\right]
$$

Background

An equation involving only real-valued matrices

$$
\widehat{\mathcal{H}}=\mathcal{O}_{q} \widehat{\mathcal{X}}+\sum_{j=0}^{q-1}\left[\mathcal{J}_{q, 2}^{j} \otimes g_{j}\right] \mathcal{F}
$$

where

$$
\left.\left.\begin{array}{rl}
\widehat{\mathcal{H}} & \triangleq[\operatorname{Re\mathcal {H}} \\
\operatorname{Im} \mathcal{H}
\end{array}\right], \quad \begin{array}{lll}
\widehat{\mathcal{X}} & \triangleq[\operatorname{Re} \mathcal{X} & \operatorname{Im} \mathcal{X}
\end{array}\right],
$$

Total number of interpolation conditions:

$$
N \triangleq \sum_{k: z_{k} \in \mathbf{R}}\left(N_{k}+1\right)+\sum_{k: z_{k} \in \mathbf{C}_{-\mathbf{R}}} 2\left(N_{k}+1\right) .
$$

- $\widehat{\mathcal{H}} \in \mathbf{R}^{p q \times m N}, \mathcal{F} \in \mathbf{R}^{m q \times m N}$, and $\widehat{\mathcal{X}} \in \mathbf{R}^{n \times m N}$.
- The first stage is complete: $\widehat{\mathcal{H}}$ is affine in \mathcal{O}_{q} !

Outline

Background

Problem Formulation

3 Subspace-based algorithm

- Derivation of the algorithm
- Projection onto the observability range space
- Extracting A and C matrices
- Extracting B and D matrices from data
- Summary of the subspace-based interpolation algorithm

Main Result

- Comparison of the algorithm with existing methods

Examples
Conclusions

The projection matrix onto the null space of \mathcal{F} :

$$
\mathcal{F}^{\perp} \triangleq I_{m N}-\mathcal{F}^{T}\left(\mathcal{F F}^{T}\right)^{-1} \mathcal{F}
$$

Then,

$$
\widehat{\mathcal{H}} \mathcal{F}^{\perp}=\mathcal{O}_{q} \widehat{\mathcal{X}} \mathcal{F}^{\perp} .
$$

- $\operatorname{Range}\left(\widehat{\mathcal{H} F}{ }^{\perp}\right)=\operatorname{Range}\left(\mathcal{O}_{q}\right)$ if no rank cancelations occur!
- Sufficient condition: " $\operatorname{Range}\left(\mathcal{F}^{T}\right) \bigcap \operatorname{Range}\left(\widehat{\mathcal{X}}^{T}\right)=$ Empty. "

Lemma 1 Suppose that $N \geq q+n$ and the eigenvalues of A do not coincide with the distinct complex numbers z_{k}. Then,

$$
\operatorname{rank}\left[\begin{array}{l}
\mathcal{F} \\
\widehat{\mathcal{X}}
\end{array}\right]=q m+n \Longleftrightarrow(A, B) \text { controllable. }
$$

- Since A is stable, Range $\left(\widehat{\mathcal{H}} \mathcal{F}^{\perp}\right)=\operatorname{Range}\left(\mathcal{O}_{q}\right)$.

QR-factorization

$$
\begin{gathered}
{\left[\begin{array}{c}
\mathcal{F} \\
\widehat{\mathcal{H}}
\end{array}\right]=\left[\begin{array}{cc}
R_{11} & 0 \\
R_{21} & R_{22}
\end{array}\right]\left[\begin{array}{l}
Q_{1}^{T} \\
Q_{2}^{T}
\end{array}\right] .} \\
\widehat{\mathcal{H}} \mathcal{F}^{\perp}=R_{22} Q_{2}^{T},
\end{gathered}
$$

- Use $R_{22} \in \mathbf{R}^{p q \times m(N-q)}$ in the extraction of the observability range space since Q_{2}^{T} is a matrix of full rank.

Outline

Background

Problem Formulation

3 Subspace-based algorithm

- Derivation of the algorithm
- Projection onto the observability range space
- Extracting A and C matrices
- Extracting B and D matrices from data
- Summary of the subspace-based interpolation algorithm

Main Result

- Comparison of the algorithm with existing methodsExamples
Conclusions
- Use the singular value factorization of $\widehat{\mathcal{H}} \mathcal{F}^{\perp}$ to get A and C :

$$
\begin{aligned}
\widehat{\mathcal{H}} \mathcal{F}^{\perp} & =\widehat{U} \widehat{\Sigma} \widehat{V}^{T} \\
& =\left[\begin{array}{ll}
\widehat{U}_{s} & \widehat{U}_{0}
\end{array}\right]\left[\begin{array}{cc}
\hat{\Sigma}_{s} & 0 \\
0 & \hat{\Sigma}_{0}
\end{array}\right]\left[\begin{array}{c}
\widehat{V}_{s}^{T} \\
\widehat{V}_{o}^{T}
\end{array}\right]
\end{aligned}
$$

where $\widehat{\Sigma}_{s} \in \mathbf{R}^{n \times n}$. Let

$$
\widehat{A}=\left(J_{1} \widehat{U}_{s}\right)^{\dagger} J_{2} \widehat{U}_{s}, \quad \widehat{C}=J_{3} \widehat{U}_{s}
$$

where $X^{\dagger}=\left(X^{\top} X\right)^{-1} X^{\top}$ and

$$
\begin{aligned}
& J_{1}=\left[\begin{array}{ll}
I_{(q-1) p} & 0_{(q-1) p \times p}
\end{array}\right], \\
& J_{2}=\left[\begin{array}{ll}
0_{(q-1) p \times p} & I_{(q-1) p}
\end{array}\right],
\end{aligned}
$$

$$
J_{3}=\left[\begin{array}{ll}
I_{p} & 0_{p \times(q-1) p}
\end{array}\right] .
$$

- If (C, A) is observable, $\left(J_{1} \widehat{U}_{s}\right)^{\dagger}$ exists if and only if $q>n$.

Then, from Lemma 1 for some $T \in \mathbf{R}^{n \times n}$,

$$
\widehat{A}=T^{-1} A T, \quad \widehat{C}=C T .
$$

Outline

Background

Problem Formulation

(3) Subspace-based algorithm

- Derivation of the algorithm
- Projection onto the observability range space
- Extracting A and C matrices
- Extracting B and D matrices from data
- Summary of the subspace-based interpolation algorithm Main Result
- Comparison of the algorithm with existing methodsExamples
Conclusions

Repeated application of the differentiation formula

$$
\frac{d}{d z} x^{-1}=-X^{-1} \frac{d X}{d z} X^{-1}
$$

to $X_{C}(z)=\left(z I_{n}-A\right)^{-1} B$ yields the derivatives of $G(z)$:

$$
G^{(j)}(z)=\delta_{0 j} D+(-1)^{j} j!C\left(z I_{n}-A\right)^{-j-1} B, j \geq 0
$$

where $\delta_{k s}$ is the Kronecker delta.

- The derivatives are linear in B and D for given A and C.

Let

$$
\mathcal{G}_{k} \triangleq\left[\begin{array}{c}
w_{k 0} \\
w_{k 1} \\
\vdots \\
w_{k N_{k}}
\end{array}\right], \quad \mathcal{G} \triangleq\left[\begin{array}{c}
\mathcal{G}_{1} \\
\mathcal{G}_{2} \\
\vdots \\
\mathcal{G}_{L}
\end{array}\right] .
$$

$$
\mathcal{Y}_{k} \triangleq\left[\begin{array}{cc}
C\left(z_{k} I_{n}-A\right)^{-1} & I_{0} \\
-C\left(z_{k} I_{n}-A\right)^{-2} & 0 \\
\vdots & \\
(-1)^{N_{k} N_{k}!C\left(z_{k} I_{n}-A\right)^{-N_{k}-1}} & 0
\end{array}\right], \quad \mathcal{Y} \triangleq\left[\begin{array}{c}
\mathcal{Y}_{1} \\
\mathcal{y}_{2} \\
\vdots \\
\mathcal{Y}_{L}
\end{array}\right]
$$

Determine B and D by solving the linear LS problem:

$$
\widehat{B}, \widehat{D}=\arg \min _{B, D}\left\|\widehat{\mathcal{G}}-\widehat{\mathcal{Y}}\left[\begin{array}{l}
B \\
D
\end{array}\right]\right\|_{F}^{2}
$$

provided that \mathcal{Y} is not rank deficient where

$$
\begin{aligned}
& \widehat{\mathcal{G}} \triangleq\left[\begin{array}{l}
\operatorname{Re} \mathcal{G} \\
\operatorname{Im} \mathcal{G}
\end{array}\right] \in \mathbf{R}^{p N \times m}, \\
& \widehat{\mathcal{Y}} \triangleq\left[\begin{array}{l}
\operatorname{Re} \mathcal{Y} \\
\operatorname{Im} \mathcal{Y}
\end{array}\right] \in \mathbf{R}^{p N \times(n+p)}
\end{aligned}
$$

A sufficient condition

Lemma 2 Suppose that $N>n$ and the eigenvalues of A do not coincide with the distinct complex numbers z_{k}. Then,

$$
\operatorname{rank} \mathcal{Y}=p+n \quad \Longleftrightarrow \quad(C, A) \text { observable. }
$$

- If $N \geq q+n$ and $q>n$, then

$$
\widehat{B}=T^{-1} B, \quad \widehat{D}=D
$$

and

$$
\widehat{G}(z) \triangleq \widehat{C}\left(z I_{n}-\widehat{A}\right)^{-1} \widehat{B}+\widehat{D}=G(z)
$$

Outline

Background

Problem Formulation

3 Subspace-based algorithm

- Derivation of the algorithm
- Projection onto the observability range space
- Extracting A and C matrices
- Extracting B and D matrices from data
- Summary of the subspace-based interpolation algorithm

Main Result

- Comparison of the algorithm with existing methods

Examples

Conclusions

Algorithm

(1) Given the data, compute the matrices $\widehat{\mathcal{H}}$ and \mathcal{F}.
(2) Perform the QR-factorization.
(3) Calculate the singular value decomposition with $\widehat{\mathcal{H}} \mathcal{F}^{\perp}$ replaced by R_{22}.
44 Determine the system order by inspecting the singular values, and partition the singular value decomposition such that $\widehat{\Sigma}_{s}$ contains the n largest singular values.
(5) With J_{1}, J_{2}, and J_{3}, calculate \widehat{A} and \widehat{C}.
(6) Solve the least-squares problem for \widehat{B} and \widehat{D}.

Theorem Consider the above algorithm with the noise-free frequency domain data of a discrete-time stable system of order n. If $N \geq q+n, q>n$, then the quadruplet ($\widehat{A}, \widehat{B}, \widehat{C}, \widehat{D}$) is a minimal realization of $G(z)$.

- Extends an interpolation result in McKelvey, Akçay, and Ljung (1996) for uniformly spaced points on the unit circle to arbitrary interpolation points in the complement of the open unit disk (including derivatives).

Outline

Background
 Problem Formulation

Subspace-based algorithm

- Derivation of the algorithm
- Projection onto the observability range space
- Extracting A and C matrices
- Extracting B and D matrices from data
- Summary of the subspace-based interpolation algorithm
(4) Main Result
- Comparison of the algorithm with existing methodsExamples
Conclusions

Differences between the algorithm and the Löwner matrix based approach (Anderson and Antoulas; 1990):

- Formation of the data matrices
- Determination of the minimal order.

Similarities between the algorithm and the Löwner matrix based approach (Anderson and Antoulas; 1990):

- Both rely on the factorization of the data matrices as a product of two matrices related to the observability and controllability concepts.
- The solvability conditions are the same.

Numerical example

System in the state-space representation:

$$
\begin{aligned}
& A=\left[\begin{array}{rrrr}
-0.5 & 0.5 & 0 & 0 \\
-0.5 & -0.5 & 0 & 0 \\
0 & 0 & 0.5 & 0 \\
0 & 0 & 0 & -0.25
\end{array}\right], \quad B=\left[\begin{array}{rrr}
1 & 0 & 0 \\
1 & 1 & 0 \\
0 & -1 & 0 \\
1 & 1 & 1
\end{array}\right] \\
& C=\left[\begin{array}{lrrr}
1 & 1 & 1 & 0 \\
0 & 1 & 0 & 1
\end{array}\right], \quad D=\left[\begin{array}{rrr}
1 & -1 & 0 \\
0 & 1 & 1
\end{array}\right] .
\end{aligned}
$$

i.e, $n=4, p=2, m=3$. This system has the transfer function:

$$
G(z)=\left[\begin{array}{ccc}
\frac{z^{2}+3 z+1.5}{z^{2}+z+0.5} & G_{12}(z) & 0 \\
G_{21}(z) & G_{22}(z) & \frac{z+1.25}{z+0.25}
\end{array}\right]
$$

where

$$
\begin{aligned}
G_{12}(z) & =-\frac{z^{3}+0.5 z^{2}+0.5 z+0.75}{z^{3}+0.5 z^{2}-0.25} \\
G_{21}(z) & =\frac{2 z^{2}+1.25 z+0.5}{z^{3}+1.25 z^{2}+0.75 z+0.125} \\
G_{22}(z) & =\frac{z^{3}+3.25 z^{2}+2.5 z+0.75}{z^{3}+1.25 z^{2}+0.75 z+0.125}
\end{aligned}
$$

Interpolation data:

$$
z_{1}=1+i, z_{2}=1-i, N_{1}=N_{2}=0, z_{3}=2, N_{3}=4
$$

$$
\begin{aligned}
w_{10}= & {\left[\begin{array}{crc}
1.9333 & -0.8667 & 0 \\
0.8878 & 1.9545 & 1.4878
\end{array}\right] } \\
& -\left[\begin{array}{rrc}
0.5333 & -0.4000 & 0 \\
0.5236 & 0.6569 & 0.3902
\end{array}\right] i, \\
w_{20}= & {\left[\begin{array}{rrc}
1.9333 & -0.8667 & 0 \\
0.8878 & 1.9545 & 1.4878
\end{array}\right] } \\
& +\left[\begin{array}{rrc}
0.5333 & -0.4000 & 0 \\
0.5236 & 0.6569 i & 0.3902
\end{array}\right] i,
\end{aligned}
$$

$$
\begin{aligned}
& w_{30}=\left[\begin{array}{ccc}
1.7692 & -1.2051 & 0 \\
0.7521 & 1.8291 & 1.4444
\end{array}\right], \\
& w_{31}=\left[\begin{array}{ccc}
-0.2840 & 0.2433 & 0 \\
-0.2804 & -0.3395 & -0.1975
\end{array}\right], \\
& w_{32}=\left[\begin{array}{ccc}
0.2003 & -0.4251 & 0 \\
0.2084 & 0.2757 & 0.1756
\end{array}\right], \\
& w_{33}=\left[\begin{array}{ccc}
-0.2000 & 0.9844 & 0 \\
-0.2333 & -0.3341 & -0.2341
\end{array}\right], \\
& w_{34}=\left[\begin{array}{ccc}
0.2456 & -2.8518 & 0 \\
0.3531 & 0.5390 & 0.4162
\end{array}\right] .
\end{aligned}
$$

$$
q=5 \Longrightarrow N=9 ; \quad N \geq q+n, q>n
$$

Results: $\quad\left[\begin{array}{llll}0.5204 & -0.1361 & 0.3199 & 0.5352\end{array}\right.$

$$
\begin{aligned}
& \widehat{A}=\left[\begin{array}{rrrr}
0.0882 & -0.4983 & 0.4848 & -0.1035 \\
0.0052 & 0.0820 & -0.4810 & 0.7195 \\
-0.0295 & 0.1919 & -0.3546 & -0.2911
\end{array}\right], \\
& \widehat{C}=\left[\begin{array}{rrrr}
0.8460 & 0.2123 & -0.2149 & -0.3233 \\
-0.0721 & 0.8069 & 0.5289 & 0.1046
\end{array}\right]
\end{aligned}
$$

$$
\widehat{B}=\left[\begin{array}{rrr}
1.0502 & -0.5390 & -0.0816 \\
2.8626 & 1.8321 & 0.9041 \\
-0.1545 & 1.0984 & 0.4896 \\
-1.4555 & -0.9375 & 0.0547
\end{array}\right]
$$

$$
\widehat{D}=\left[\begin{array}{rrr}
1.0000 & -1.0000 & -0.0000 \\
-0.0000 & 1.0000 & 1.0000
\end{array}\right]
$$

- $(\widehat{A}, \widehat{B}, \widehat{C}, \widehat{D}) \sim(A, B, C, D)$. (Max. error: $\left.5.9746 \times 10^{-14}\right)$.

Finding Q-Parameter

Example: Active suspension design for a quarter-car model
Closed-loop transfer function:

$$
\begin{equation*}
T_{z w}=G_{11}+G_{12}(Y-M Q) \widetilde{M} G_{21}, \quad Q \in \mathcal{R} H_{\infty} \tag{1}
\end{equation*}
$$

where $T_{z w} \in \mathbf{R}^{3 \times 1} ; Y, M, \widetilde{M} \in \mathcal{R} H_{\infty}$ are some matrices in a double coprime factorization of G_{22} over $\mathcal{R} H_{\infty}$; and G_{11}, G_{12}, G_{21}, G_{22} are some (open loop) block matrices.

Problem: find a $Q \in \mathcal{R} H_{\infty}$ satisfying (1) given $T_{z_{k} w}(s)$.

- $T_{z \mid w}, I \neq k$ are uniquely determined by $T_{z_{k} w}$ (trade-offs).
- $T_{z_{k} w}$ and/or its derivatives are subject to certain interpolation conditions at $s=0, s=\infty$, and some finite and nonzero invariant frequencies.
- Quite often a $T_{z_{k} w}$ with desirable features and satisfying (1) and the interpolation conditions can be constructed.

Solution: evaluate (1) and/or its derivatives at a set of sufficiently many and arbitrarily selected frequencies to formulate a bitangential interpolation problem. Next, use the subspace-based algorithm to obtain a minimal realization of Q . (Türkay and Akçay; 2008).

- A new algorithm for the Lagrange-Sylvester interpolation of rational matrix functions analytic at ∞ was introduced.
- A necessary and sufficient condition in terms of the total multiplicity of the interpolation nodes for the existence and uniqueness of a minimal interpolant was formulated.
- The algorithm is insentitive to inaccuracies in the interpolation data.

