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Abstract

In this paper, we present a new subspace-based algorithm for the identi"cation of multi-input/multi-output, square, discrete-time,
linear-time invariant systems from nonuniformly spaced power spectrum measurements. The algorithm is strongly consistent and it is
illustrated with one practical example that solves a stochastic road modeling problem.
? 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

Identi"cation of multi-input/multi-output systems from a
measured power spectrum is a problem arising in certain ap-
plications; for example, the design of linear shaping "lters
for noise processes. A practical application is the model-
ing of stochastic road disturbances experienced by a vehicle
moving forward. The goal here is to model road spectrum
by a rational transfer function of reasonably low order and
to use this approximation for a design of a linear shaping
$lter with a white noise input. Once such an approxima-
tion is made, the vehicle control problem can be formulated
in standard form. The algorithm of this paper determines a
state-space realization of road spectrum. Applications to the
modeling of acoustic power spectra and the modeling of pas-
senger sensitivity for car accelerations are presented in Van
Overschee, De Moor, Dehandschutter, and Swevers (1997).
In this paper, we study the problem of "tting a linear

discrete-time power spectrum to given measured power
spectrum samples. A parametric or model-based approach
to this problem uses a nonlinear least-squares criterion,
which is optimized by an iterative nonlinear search in
the parameter space. Discussion of parametric as well
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as nonparametric methods, which mostly use time-domain
data, can be found in Kay (1988), Priestley (1989) and
Stoica and Moses (1997). Drawbacks of this approach
are convergence problems and diDculty of parameterizing
multi-input/multi-output systems. There has been an exten-
sive amount of research to determine the so-called canonical
models (Glover & Willems, 1974; Guidorzi, 1974, 1981;
Van Overbeek & Ljung, 1982).
The subspace approach, on the other hand, does not suIer

from any of these inconveniences. In subspace identi"ca-
tion algorithms, there is no explicit need for parameteriza-
tion since full state-space models are used and the only pa-
rameter is the order of the system. The major advantage of
subspace identi"cation algorithms over the classical predic-
tion error methods (Ljung, 2000) is the absence of nonlinear
parametric optimization problems. Subspace identi"cation
algorithms are noniterative and therefore do not suIer from
convergence problems. They always produce results, which
are often good for practical data.
Given time domain measurements, there are many

state-space subspace identi"cation algorithms available
(Larimore, 1990; Verhaegen, 1994; Viberg, 1995; Van
Overschee & De Moor, 1996a). Frequency domain sub-
space identi"cation algorithms have already appeared in
the literature (Liu, Jacques, & Miller, 1994; McKelvey,
Ak'cay, & Ljung, 1996a, b; Van Overschee & De Moor,
1996b). They can be described as direct frequency do-
main formulations of time-domain subspace algorithms.
If the excitation of the system is well-designed, each
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measurement in the frequency domain compiled from a large
number of time-domain measurement is of high quality.
Moreover, data originating from diIerent experiments can
easily be combined in the frequency domain (Schoukens &
Pintelon, 1991). However, these algorithms are not directly
applicable for the identi"cation of frequency domain power
spectra since rational spectrum models are constrained to
have positive real transfer functions.
In Van Overschee et al. (1997), a subspace algorithm

which uses spectrum samples obtained at uniformly spaced
frequencies was presented. The algorithm in Van Overschee
et al. (1997) is based on McKelvey et al. (1996a); and it
uses biased impulse response coeDcients expressed as func-
tions of the system matrices. However, this algorithm gener-
ates strongly consistent power spectrum estimates. A related
work is Verhaegen (1996). In this work, a subspace algo-
rithm for the time domain identi"cation of mixed causal and
anti-causal systems was proposed. The frequency domain
extension of this algorithm was given in Fraanje, Verhaegen,
Verdult, and Pintelon (2003).
The objective of this paper is to remove the restriction

on the frequencies. This problem is precisely formulated in
Section 2. In Section 3, we present our subspace-based al-
gorithm to identify multi-input/multi-output systems from
power spectrum samples measured at nonuniformly spaced
frequencies and show that this algorithm is not only strongly
consistent but also recovers "nite-dimensional rational spec-
tra given a "nite number of noise-free data (depending on
the model order). The proposed algorithm is based on the
results in Van Overschee et al. (1997), Verhaegen (1996)
and Fraanje et al. (2003). The proofs are given in the Ap-
pendices. In Section 4, the properties of the new algorithm
are studied by means of two examples. In the "rst exam-
ple, we simulate a system that has a power spectrum with
sharp peaks. In the second example, we illustrate the practi-
cal relevance of the problem treated in this paper by solving
a stochastic road modeling problem.

2. Problem formulation

Consider a multi-input/multi-output square linear-time in-
variant discrete-time system represented by the state-space
equations:

x(t + 1) = Ax(t) + Bu(t);

y(t) = Cx(t) + Du(t);
(1)

where x(t)∈Rn is the state, u(t)∈Rm and y(t)∈Rm are,
respectively, the input and the output of the system. The
transfer function of system (1) denoted by G(z) is computed
as

G(z) = D + C(zIn − A)−1B; (2)

where In is the n × n identity matrix. We summarize the
requirements on G(z) in the following:

Assumption 2.1. System (1) is stable and strictly minimum
phase: all eigenvalues of A and A − BD−1C lie strictly in-
side the unit circle. The pairs {A; B} and {A; C} are control-
lable and observable, respectively. All eigenvalues of A are
nonzero and distinct.

Thus, system (1) is a minimal stochastic system. Note that
since the Jordan canonical form is not numerically stable,
a slight perturbation of A will lead to distinct eigenvalues if
A has repeated eigenvalues.
Assuming that u(t) is zero mean unity variance white

noise process, the power spectrum associated with (1)
denoted by S(z) is de"ned as

S(z), G(z)GT(z−1): (3)

System (1) is called the innovation form, unity variance,
minimum phase spectral factor associated with power spec-
trum S(z). From (3) and Assumption 2.1, note that

S(ej�)¿ 0 for all �: (4)

This is the positive realness condition, and it imposes a
constraint on the given spectrum samples Sk , i.e. Sk ¿ 0 for
each k, as well as on the identi"ed power spectrum denoted
by ŜN (z).
We will assume that the noise � corrupting the spectrum

samples is a zero mean complex white noise process with a
covariance function satisfying

E

[
Re �k

Im �k

]
[Re �Ts Im �Ts ] =

[ 1
2Rk 0

0 1
2Rk

]
�ks: (5)

Here E(x) denotes the expected value of random variable
x; AT, A∗, and AH are, respectively, the transpose, the
complex conjugate, and the complex conjugate transpose
of A; Re x and Im x are the real and the imaginary parts
of x; and �ks is the Kronecker delta. Furthermore, we as-
sume that the fourth-order moments are bounded above by
some M� ¡∞ as

E ‖�k‖4F 6M� for all k; (6)

where ‖�k‖F , [Tr(�Hk �k)]1=2 denotes the Frobenius norm
of �k .
Given a set X , we denote the number of elements in X

by C(X ). Thus, C({�k}Nk=1 ∩ [a; b]) is the number of fre-
quencies contained in [a; b] ⊆ [0; 2�]. We will assume that
the frequencies satisfy

lim
N→∞

inf
1
N

C({�k}Nk=1 ∩ [a; b])¿ �(b− a) (7)

for every [a; b] ⊆ [0; 2�] and some "xed �¿ 0. This means
that every point on the unit circle has a nonzero asymptotic
density of frequencies relative to N .
For a complex measurable function G(z), we de"ne the

supremum norm by

‖G‖∞ , sup
06�¡2�

 max(G(ej�));

where  max denotes the largest singular value.
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The problem studied in this paper can be stated as follows:
Given: N noisy samples Sk ∈Cm×m of the power spectrum

S(z) evaluated at N points on the unit circle:

Sk = S(ej�k ) + �k ; k = 1; 2; : : : ; N: (8)

Find: A quadruplet (Â; B̂; Ĉ; D̂) such that the estimated
power spectrum

ŜN (z) = Ĝ(z)ĜT(z−1) (9)

is strongly consistent, i.e.

lim
N→∞

‖ŜN − S‖∞ = 0; w:p:1:; (10)

where

Ĝ(z), Ĉ(zIn − Â)−1B̂+ D̂: (11)

We also require the algorithm to produce the true model if
the noise is zero given a "nite amount of data N , i.e. there
exists an N0 ¡∞ such that

‖ŜN − S‖∞ = 0 for all N¿N0: (12)

An identi"cation algorithm which satis"es (12) is called
correct algorithm. In this paper, we present an algorithm
which has these properties. Strong consistency is a most
natural requirement for any useful algorithm. As the amount
of data increases, asymptotically the correct model should
be obtained. In practice, any algorithm has to use a "nite
amount of data. Then, correctness of an algorithm becomes
important. This is particularly important for spectra with
sharp peaks.
The above identi"cation problem can be thought as the

design of a linear shaping "lter (A; B; C; D) from (corrupted)
power spectrum measurements. In this procedure, the zeros
of G(z) can be restricted, without loss of generality, to be
minimum phase.

3. Identi�cation algorithm

Let us "rst consider the noise-free case to motivate the
derivation of the identi"cation algorithm. We begin by split-
ting S(z) into the so-called spectral summands as follows.

Theorem 1. Consider the power spectrum S(z) in (3). Sup-
pose that Assumption 2.1 holds. Let P be the solution of
the discrete-time Lyapunov equation:

P = APAT + BBT: (13)

Let

E , CPCT + DDT; (14)

F , APCT + BDT: (15)

Then S(z) can be split into the sum of two system transfer
matrices as follows:

S(z) = H (z) + HT(z−1) (16)

with

H (z),
1
2
E + C(zIn − A)−1F: (17)

Proof. See, for example, Caines (1988).

This splitting of S(z) into the sum of a causal transfer
function H (z) and an anti-causal transfer function HT(z−1)
is the "rst step of our subspace-based identi"cation algo-
rithm. It is also the starting point of the subspace algo-
rithm in Van Overschee et al. (1997). As in Van Overschee
et al. (1997), from the samples Sk we identify a quadruplet
(A; F; C; 12 E) which describes the spectral summand H (z).
The algorithm proposed in Van Overschee et al. (1997)
uses biased Markov parameters of S(z) as in McKelvey
et al. (1996a); and requires the discrete frequencies �k ,
k=1; 2; : : : ; N be uniformly spaced in the interval [0; �]. The
contribution of this paper is to remove this restriction on the
frequencies.
Next, from (16) and (17) we write a state-representation

of S(z) as follows:

xc(t + 1) = Axc(t) + Fu(t); (18)

xac(t − 1) = ATxac(t) + CTu(t); (19)

ys(t) = Cxc(t) + FTxac(t) + Eu(t): (20)

These equations are the special cases of the equations con-
sidered in Verhaegen (1996) for the time-domain subspace
identi"cation of mixed causal and anti-causal linear-time in-
variant systems.
Following Fraanje et al. (2003), we take the discrete

Fourier transforms of Eqs. (18)–(20), where we shift Eq.
(19) by p− 1 samples forward in time:

ej�X c(�) = AX c(�) + FU (�);

e−j�X ac;p(�) = ATX ac;p(�) + CTej(p−1)�U (�);

Y s(�) = CX c(�) + FTe−j(p−1)�X ac;p(�) + EU (�);

where X c(�), X ac;p(�), U (�), and Y s(�) denote the discrete
Fourier transforms of xc(t), xac(t + p − 1), u(t), and y(t),
respectively, and p¿ 2n. Let X c

i (�) be the resulting state
transform when U (�) = ei, the unit vector with 1 on the ith
position; and X ac;p

i (�) is de"ned similarly. By de"ning the
compound state matrices:

X c
C(�), [X c

1 (�) X c
2 (�) · · · X c

m(�)];

X ac;p
C (�), [X ac;p

1 (�) X ac;p
2 (�) · · · X ac;p

m (�)]; (21)

S(ej�) can be implicitly described as

S(ej�) = CX c
C(�) + FTe−j(p−1)�X ac;p

C (�) + E

with

ej�X c
C(�) = AX c

C(�) + F;

e−j�X ac;p
C (�) = ATX ac;p

C (�) + CTej(p−1)�: (22)
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By iteratively substituting the state-equations, we obtain the
relation

S(ej�)

ej�S(ej�)

...

ej(p−2)�S(ej�)

ej(p−1)�S(ej�)


=)p



Im

ej�Im

...

ej(p−2)�Im

ej(p−1)�Im


+Op

[
X c
C(�)

X ac;p
C (�)

]
; (23)

where

Op ,



C FT(AT)p−1

CA FT(AT)p−2

...
...

CAp−2 FTAT

CAp−1 FT


(24)

and

)p ,



E FTCT · · · FT(AT)p−2CT

CF E · · · ...

...
...

. . . FTCT

CAp−2F · · · CF E


:

(25)

By repeating (23) for �k , k = 1; 2; : : : ; N , we get

SC = OpXC + )pWC (26)

where zk = ej�k , k = 1; 2; : : : ; N and

SC ,
1√
N



S(z1) · · · S(zN )

ej�1S(z1) · · · ej�N S(zN )

...
. . .

...

ej(p−1)�1S(z1) · · · ej(p−1)�N S(zN )

 ;

(27)

WC ,
1√
N



Im · · · Im

ej�1 Im · · · ej�N Im

...
. . .

...

ej(p−1)�1Im · · · ej(p−1)�N Im

 ; (28)

XC ,
1√
N

[
X c
C(�1) · · · X c

C(�N )

X ac;p
C (�1) · · · X ac;p

C (�N )

]
: (29)

Now, we consider the noisy data case. From (8), (26), and
(27), we get

ŜC = OpXC + )pWC +NC; (30)

where

ŜC ,
1√
N



S1 · · · SN

ej�1S1 · · · ej�N SN

...
...

. . .
...

ej(p−1)�1S1 · · · ej(p−1)�N SN

 ; (31)

NC ,
1√
N



�1 · · · �N

ej�1�1 · · · ej�N �N

...
. . .

...

ej(p−1)�1�1 · · · ej(p−1)�N �N

 : (32)

Since Op is a real matrix and we are interested in the real
range space, we convert (26) into a relation involving only
real valued matrices:

Ŝ = OpX + )pW +N

= S+N;
(33)

where

Ŝ, [Re ŜC Im ŜC]; (34)

S, [ReSC ImSC]; (35)

X, [ReXC ImXC]; (36)

W, [ReWC ImWC]; (37)

N, [ReNC ImNC]: (38)

Let W⊥ be the projection matrix onto the null space of W
given by

W⊥ , I2mN −WH(WWH)−1W: (39)

The term )pW in (33) is canceled when multiplied from
right by W⊥. Thus,

ŜW⊥ =OpXW⊥ +NW⊥

=SW⊥ +NW⊥: (40)

The range space of SW⊥ equals the range space of Op

unless rank cancelations occur. A suDcient condition for
the range spaces to be equal is that the intersection between
the row spaces of W and X is empty. In the following,
we present suDcient conditions in terms of the data and the
system.

Lemma 2. Let N¿ (p=2) + n + 1, WC, and XC be given
by (28) and (29) with distinct frequencies �k such that zk
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is not an eigenvalue of A. Then

rank

[
W

X

]
= pm+ 2n ⇔ (A; B; C; D) minimal: (41)

Proof. See Appendix A.

If the frequencies are distinct, the number of data satis"es
N¿ (p=2) + n + 1, and (A; B; C; D) is minimal, then the
two row spaces of W and X do not intersect and the range
space of SW⊥ coincides with the range space of Op. Now,
a study of the relation between the column range spaces of
SW⊥ and ŜW⊥ for large N is in order.
In Moor (1993), it was shown that by using the singular

value decomposition of ŜW⊥, the 2n left singular vec-
tors corresponding to the 2n largest singular values form a
strongly consistent estimate of the range space of SW⊥ if
the following conditions hold w.p.1

(i) lim
N→∞

SW⊥(NW⊥)T = 0; (42)

(ii) lim
N→∞

NW⊥(NW⊥)T = +Ipm (43)

for some scalar +¿ 0. In McKelvey et al. (1996a), it was
shown under assumption (6) that (42) holds and

lim
N→∞

NW⊥(NW⊥)T =KKT; w:p:1:; (44)

where K∈Rpm×pm is a matrix de"ned by

KKT , Re(WCRWH
C );

R,



R1 0 · · · 0

0 R2 · · · 0

...
...

. . .
...

0 0 · · · RN

 : (45)

The matrix K can be found by a Cholesky decomposition.
Thus, from (40) we have the weighted version

K−1ŜW⊥ =K−1SW⊥ +K−1NW⊥ (46)

satisfying (42) and (43) with += 1. Hence, the 2n left sin-
gular vectors corresponding to the 2n largest singular values
of K−1ŜW⊥ will form a strongly consistent estimate of
the range space of K−1SW⊥ which equals to the range
space of K−1Op.
A numerically eDcient way of forming ŜW⊥ is to use

the QR-factorization:[
W

Ŝ

]
=

[
R11 0

R21 R22

][
QT

1

QT
2

]
: (47)

A simple derivation yields

ŜW⊥ = R22QT
2 (48)

and it suDces to use R22 since QT
2 is a matrix of full rank.

Thus, the 2n left singular vectors corresponding to the 2n
largest singular values ofK−1ŜW⊥ are obtained from the
singular value decomposition:

K−1R22 = [Û2n Ũ ]

[
.̂2n 0

0 .̃

][
V̂2n

Ṽ

]
; (49)

where this decomposition is partitioned such that .̂2n con-
tains the 2n largest singular values.
Our consistency analysis has shown that

lim
N→∞

KÛ2n = OpT; w:p:1 (50)

for some nonsingular matrix T . In the calculation of Û2n,
2n elements with "xed indices can be chosen freely, subject
to the constraint that magnitudes are not greater than unity.
Thus, by "xing values of those elements for all N , we see
from (50) that Û2n converges to a matrix denoted by U2n

w.p.1 as N → ∞. Hence,

KU2n = OpT: (51)

This asymptotic formula (in the number of data) will be the
key in the development of our algorithm. Before undertaking
this study, let us record the following result which will be
used later.

Lemma 3. Let Sk , k=1; : : : ; N be noise-free samples of the
power spectrum of a discrete-time system of order n sat-
isfying Assumption 2.1 at N distinct frequencies �k . Fur-
thermore, let N¿ (p=2) + n+ 1 andK∈Rpm×pm be any
nonsingular matrix. Then, for some nonsingular T

KÛ2n = OpT: (52)

Thus, the equations derived from the asymptotic formula
are also valid for a "nite number of data under the conditions
stated in Lemma 3.
Let Ju and Jd be the upward and downward shift matrices

de"ned by

JuOp ,



CA FT(AT)p−2

...
...

CAp−2 FTAT

CAp−1 FT

 ; (53)

JdOp ,


C FT(AT)p−1

...
...

CAp−2 FTAT

 : (54)

Then,

JuOp = JdOpA′; (55)



1338 H. Akc�ay, S. T*urkay / Automatica 40 (2004) 1333–1347

where

A′ ,

[
A 0

0 (AT)−1

]
: (56)

Hence,

A′ = (JdOp)†JuOp = TA′′T−1; (57)

where M † , (MTM)−1MT is the Moore–Penrose inverse
of full column-rank matrix M and

A′′ , (JdKU2n)†JuKU2n: (58)

From (57), we see that A′ and A′′ are similar matrices. This
means that they have the same Jordan blocks in their Jor-
dan canonical representations. Likewise, we have from (24)
and (51),

C′ , [C FT(AT)p−1] = JfOp = C′′T−1; (59)

where

Jf , [Im 0m×(p−1)]; (60)

C′′ , JfKU2n: (61)

Let us put A′′ into the following Jordan canonical form:

A′′ = [2c 2ac]

[
.c 0

0 .ac

]
[2c 2ac]−1; (62)

where the eigenvalues of .c lie inside the unit circle. Since
H (z) is invariant to similarity transformations, we may let

A, .c (63)

in (1). The canonical form (62) is invariant to the ordering of
eigenvalues as long as the eigenvalues and the corresponding
eigenvectors of .c are permuted accordingly, in complex
pairs. Moreover, from the similarity of A′′ to A′, in (1) we
may let

.ac = (.T
c )

−1: (64)

This, of course, imposes a certain structure on T . Let

2 = [2c 2ac]: (65)

Then, (62) can be written as

A′ =2−1A′′2: (66)

Hence from (57) and (66),

A′ = TA′′T−1 =2−1A′′2: (67)

The relations among ., 2, and T are captured in the fol-
lowing lemma. Recall that A has distinct eigenvalues.

Lemma 4. Let A′′ be as in (58). Consider the Jordan
canonical form of A′′ given by (62) where A and .ac satisfy
(63) and (64). Then, .c is a block diagonal matrix

.c =



.1 0 · · · 0

0 .2 · · · 0

...
...

. . .
...

0 0 · · · .k

 ; .i ∈Rni ;×ni ; (68)

where ni ∈{1; 2}, 3i �= 0, and

.i ,


4i if ni = 1;[
4i 3i

−3i 4i

]
if ni = 2:

(69)

Also, .ac is a block diagonal matrix with block types and
sizes compatible with .c. For some 5c and 5ac compatible
with .c, the following holds:

2 = T−15; (70)

where

5,

[
5c 0

0 5ac

]
: (71)

Let X and Y be two block diagonal matrices with block
sizes and types compatible with .c, then X T, XY and X−1

are also compatible with .c and XY = YX .

Proof. See Appendix B.

Now, multiplying (51) from right by 2, we get

KU2n2 = Op5: (72)

Hence, from (24), (65), and (71)

KU2n2c =



C5c

C.c5c

...

C.p−2
c 5c

C.p−1
c 5c


;

KU2n2ac =



FT(.T
c )

p−15ac

FT(.T
c )

p−25ac

...

FT.T
c5ac

FT5ac


:

Thus,

C5c = JfKU2n2c; FT5ac = JlKU2n2ac; (73)

where

Jl , [0m×(p−1) Im]: (74)

The problem of "nding the state-space matrices C, F , and
E is now reduced to estimating E, 5c, and 5ac from the
spectral data (8).
From Lemma 4, S(z) in (16) can be written as

S(z) = E + C5c(z5T
ac5c − 5T

ac.c5c)−15T
acF

+FT5ac(z−15T
c5ac − 5T

c.
T
c5ac)−15T

cC
T
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= E + C5c(zIn − .c)−15−1
c F

+FT(5T
c )

−1(z−1In − .T
c )

−15T
cC

T

= E + 6(z)Z + ZT 6T(z−1); (75)

where

6(z), JfKU2n2c (zIn − .c)−1; (76)

Z , 5−1
c F: (77)

Thus, E and Z can be estimated from data (8) by solving
the following linear least-squares problem:

E]; Z], argmin
QE; QZ

N∑
k=1

‖R−1=2
k (6(zk) QZ + QZT 6T(z−1

k )

+ QE − S(zk))‖2F : (78)

Formula (78) is nonasymptotic in N though asymptotic
quantities are used in it. However, it suggests a scheme to
consistently estimate the state-space parameters A, C, E, and
F .
Recall that when the spectrum samples are noise-free, we

can replace U2n with Û2n in the above formulae. Thus, we
have the following result.

Lemma 5. Let S(z) be the power spectrum of a discrete-time
system of order n satisfying Assumption 2.1. Let 6(z) and
Z be as in (76) and (77), respectively. Consider the linear
least-squares problem (78). If N¿ (p=2) + n+ 1, then

E] = E; Z] = Z: (79)

Proof. The proof of this lemma is contained in the proof of
Theorem 7.

Once we "nd Z , we calculate C and F from the "rst
equation in (73) and (77) as

C = JfKU2n2c; F = Z (80)

which is due to the fact thatH (z) de"ned by (17) is invariant
to post-multiplication ofC by5c and pre-multiplication of F
by 5−1

c since from Lemma 4, we have 5−1
c (zIn−.c)−15c=

(zIn − .c)−1.
We are left with the determination of the system matrices

B and D. To this end, we "rst solve the following Riccati
equation for P:

P = APAT + (F − APCT)(E − CPCT)−1 · (F − APCT)T:
(81)

Then, we compute B and D as follows:

B= (F − APCT)(E − CPCT)−1=2; (82)

D = (E − CPCT)1=2: (83)

Now, we return to the normal case to outline the proposed
algorithm. Let

Ã, (JdKÛ2n)†JuKÛ2n (84)

and put Ã into the Jordan canonical form:

Ã, [2̂c 2̂ac]

[
.̂c 0

0 .̂ac

]
[2̂c 2̂ac]−1; (85)

where the eigenvalues of .̂c lie inside the unit circle. Let

Â, .̂c; (86)

Ĉ , JfKÛ2n2̂c: (87)

From (50) and (58), we have

lim
N→∞

Ã= A′′; w:p:1: (88)

As in the calculation of Û2n, we can freely choose 2n ele-
ments of 2̂c and 2̂ac with "xed indices, subject to the con-
straint that magnitudes are not greater than unity. Then, by
"xing values of those elements equal to the values of the
corresponding elements in 2c and 2ac for all N , we see
from (88) and (85) that

lim
N→∞

.̂c = .c and lim
N→∞

.̂ac = .ac; w:p:1;

lim
N→∞

2̂c =2c and lim
N→∞

2̂ac =2ac; w:p:1: (89)

Let

6̂(z), Ĉ(zIn − .̂c)−1: (90)

Then, from (89) and the fact that Û2n → U2n w.p.1 as
N → ∞ we have

lim
N→∞

‖6̂ − 6‖∞; w:p:1: (91)

The uniform convergence is due to the fact that the spectral
radius of the limit matrix .c is less than one.

The estimates of E and F are obtained by solving the
following linear least-squares problem:

Ê; F̂, argmin
QE; QF

N∑
k=1

‖R−1=2
k (6̂(zk) QF + QFT 6̂T(z−1

k )

+ QE − Sk)‖2F : (92)

Before concluding the consistency analysis, let us summa-
rize the "nal algorithm in the following.

Algorithm 1. Subspace algorithm with nonuniformly
spaced spectrum samples:

(1) Given the data Sk , �k , and the covariance dataRk , form
matrices S, WC, W, and K de"ned by (34), (28),
(37), and (45).

(2) Calculate the QR-factorization in (47).
(3) Calculate the SVD in (49).
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(4) Determine the system order n by inspecting the singu-

lar values and partition the SVD such that .̂2n contains
the 2n largest singular values.

(5) With Ju, Jd, and Û2n de"ned by (53), (54), and (49),
calculate Ã from (84).

(6) Block-diagonalize Ã as in (85) and let 2̂c and Â be as
in (85) and (86).

(7) With Jf de"ned by (60), let Ĉ be as in (87).
(8) Solve the least-squares problem (92) for Ê and F̂ where

6̂ is de"ned by (90).
(9) Solve the Riccati equation for P̂:

P̂ = ÂP̂ÂT + (F̂ − ÂP̂ĈT)(Ê − ĈP̂ĈT)−1

·(F̂ − ÂP̂ĈT)T (93)

and calculate B̂ and D̂ from

B̂= (F̂ − ÂP̂ĈT)(Ê − ĈP̂ĈT)−1=2; (94)

D̂ = (Ê − ĈP̂ĈT)1=2: (95)

(10) Calculate Ĝ(z) and ŜN (z) from (11) and (9).

Combination of Lemmas 3 and 5 yields our "rst result
captured in the following.

Theorem 6. Consider Algorithm 1 with N noise-free sam-
ples of the power spectrum of a discrete-time system of
order n satisfying Assumption 2.1 at N distinct frequen-
cies �k . Let K∈Rpm×pm be any nonsingular matrix. If
N¿ (p=2) + n+ 1, then Algorithm 1 is correct.

Now, we "nish the consistency analysis of Algorithm 1.

Theorem 7. Consider Algorithm 1 with corrupted mea-
surements of the power spectrum of a discrete-time system
of order n satisfying Assumption 2.1 where the corruptions
and the frequencies satisfy assumptions (5)–(7). Then,
Algorithm 1 is strongly consistent.

Proof. See Appendix C.

The algorithm described in Van Overschee et al. (1997)
is a special case of Algorithm 1. The only diIerence be-
tween the algorithms is the choice of the annihilatorW⊥. In
Algorithm 1, a maximal rank annihilator is used whereas in
Van Overschee et al. (1997) an annihilator of much smaller
rank is used. In the nonuniform case, we cannot a priori de-
rive a smaller matrix to cancel )pW in (33) since there is
a risk of canceling some of the row space of X. The details
can be found in McKelvey et al. (1996a).
Another issue to be addressed is the positivity of the power

spectrum. Any physically meaningful power spectrum must
be positive real. The power spectrum estimated by the above
algorithm may not satisfy this requirement due to noise and
undermodeling. This requirement manifests itself as the ex-
istence of a positive de"nite solution of (81). If a positive

de"nite solution fails to exist, then the spectral factor cannot
be computed. Thus, the positivity of the spectrum should be
enforced after the identi"cation. There are many possibili-
ties. Two methods enforcing the positivity condition (4) are
outlined in Van Overschee et al. (1997). These methods can
be integrated into Algorithm 1 without modi"cation.

4. Examples

In this section, we use two identi"cation examples to il-
lustrate the properties of the developed algorithm. The "rst
example is based on simulated data. This example will show
us the role played by the noise covariance information. The
second example deals with the design of a linear shaping
"lter from measured road data.

4.1. Simulation example

Let the true system G(z) = C(zI4 − A)−1B + D be a
fourth-order system described by the state-space model:

A=


0:8876 0:4494 0 0

−0:4494 0:7978 0 0

0 0 −0:6129 0:0645

0 0 −6:4516 −0:7419

 ;

B=


0:2247

0:8989

0:0323

0:1290

 ;

C = [0:4719 0:1124 9:6774 1:6129];

D = 0:9626:

We assume N noisy samples Sk of the power spectrum S(z)
evaluated at N points on the unit circle are given as

Sk = S(ej�k ) + S̃(ej�k )3k ; k = 1; : : : ; N;

where the noise term S̃(ej�k )3k is composed of a noise trans-
fer function S̃(z), given by a second-order state-space model:

S̃(z) = C̃(zI2 − Ã)−1B̃+ D̃

with

Ã=

[
0:6296 0:0741

−7:4074 0:4815

]
; B̃=

[
0:04

0:9

]
;

C̃ = [1:6300 0:0740] ; D̃ = 0:2

and 3k being independent complex identically distributed
normal random variables with zero mean and unit variance.
The variance of the noise process at each frequency equals
Rk = |S̃(zk)|2. We picked the frequencies randomly and
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Fig. 1. The results from Monte Carlo simulations for the 100 estimated
models using the covariance information.

independently from the intervals[
�
N

(
k − 1

2

)
;
�
N

(
k +

1
2

)]
; k = 1; : : : ; N:

Thus, each �k has a uniform distribution.
To examine the consistency properties of Algorithm 1, we

performed Monte Carlo simulations estimating the power
spectrum, given the samples Sk , using diIerent noise real-
izations of 3k . For N = 400 and "xed frequencies, 100 dif-
ferent noise realizations were generated, and Algorithm 1
with p=50 estimated 100 models. To assess the quality of
the resulting model, both the (measured) supremum norm

‖Ŝn − S‖m;∞ , max
16k6N

|ŜN (zk)− S(zk)|

and the (measured) H2 norm

‖Ŝn − S‖m;2 ,

(
1
N

N∑
k=1

|ŜN (zk)− S(zk)|2
)1=2

of the estimation error were determined for each estimated
model and averaged over the 100 estimatedmodels. In Fig. 1,
the results for the 100 estimated models using the covariance
information are shown. We computed ‖Ŝn − S‖m;2 = 0:3307
and ‖Ŝn − S‖m;∞ = 2:4208.
In Fig. 2, the results for the 100 estimated models with-

out using the covariance information, i.e. Rk = 1 for all
k, are shown. We computed ‖Ŝn − S‖m;2 = 0:4500 and
‖Ŝn − S‖m;∞ = 2:6240.
Comparing H2 errors, as predicted by the analysis, using

the noise covariance information in Algorithm 1 reduces the
estimation error by about 30%.
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Fig. 2. The results from Monte Carlo simulations for the 100 estimated
models without using the covariance information.
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Fig. 3. The road power spectrum (Dodds & Robson, 1973) and its
approximate modeling by the split power law and the integrated white
noise.

4.2. Stochastic road modeling example

In this subsection, we consider one practical application
of Algorithm 1. Provided that occasional large irregularities
such as potholes are removed from the analysis, the road
surface may be described as a realization of a stationary ran-
dom process. This assumption enables one to determine the
response of a vehicle traversing a road by accepted tech-
niques of the theory of random vibration. If the road surface
is further assumed to be homogenous and isotrophic, then a
road pro"le can be completely described by a single power
spectral density evaluated from any single track.
In Fig. 3 (Dodds & Robson, 1973), the spectral density

of a typical road and its split power law
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Power Spectrum of Model, Data, and Estimation Error
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Fig. 4. The spectral data and its modeling by a rational model of order
one produced by Algorithm 1 with R = IN .

approximation:

Ŝ(j2�ñ) =

{
C|ñ=ñ0|−2�1 ; 0¡ |ñ|¡ñ0;

C|ñ=ñ0|−2�2 ; ñ06 |ñ|¡∞
obtained by trial and error for ñ0=0:15708 cycles/m, �1=1:6,
�2 = 1:1, and C =0:76× 10−5 are plotted. In the "gure, we
also show the integrated white noise approximation to the
data: C|ñ=ñ0|−2 which is commonly used in stochastic road
modeling. It is clear that the "t by the integrated white-noise
modeling is rather poor, in particular at the frequencies be-
low ñ0. The problem with the split power approximation is
that it cannot be generated by shape "lters. Hence, it is not
suitable for simulating the response of vehicle. Besides, it
is unbounded at ñ= 0.
In this application, we seek a low order shape "lter whose

output spectrummatches the spectral data in Fig. 3 as closely
as possible. The continuous-time estimation problem is con-
verted to a discrete one by using the bilinear map:

s=  (z) = ;
z − 1
z + 1

(;¿ 0):

The number of data is N = 63. We picked ; = 0:2 and
p=32 in Algorithm 1. In the "rst trial, we choose n=1 and
RN = IN . The continuous-time spectral factor was obtained
by substituting z= −1(s) in the discrete-time spectral factor.
Thus,

ĜN (s) = 0:0122
s+ 1:1154
s+ 0:0404

:

In Fig. 4, the output spectrum and the estimation error of
this transfer function are compared with the road data. This
"gure tells us that the "rst order rational "lter produced by
Algorithm 1 is accurate up to 0:02 cycles/m.
To interpret this result, assume that the bandwidth of the

vehicle suspension is 10 Hz and the forward velocity of the
vehicle is 30 m=s. (The vehicle frequency response rolls
oI at least 20 decibels per decade.) This corresponds to

Power Spectrum of Model, Data, and Estimation Error
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Fig. 5. The spectral data and its modeling by a rational model of order
7 produced by Algorithm 1 with R = IN .
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Fig. 6. The spectral data and its modeling by a rational model of order
7 produced by Algorithm 1 with Rk = Sk .

a spectral bandwidth of 1
3 cycles/m in Fig. 3. Since the

road power spectrum rapidly rolls oI, we conclude that the
"rst order model is a good "rst-degree approximation. It
should be noted that the power spectrum of this model is
not integrable. A convergence factor rolling the frequency
response oI at high frequencies may be introduced.
Next, we tried higher model orders with R as a design

variable. In Figs. 5 and 6, the output spectra and the esti-
mation errors are compared with the road data for n = 7,
p = 32, and the two cases R = IN and Rk = Sk . Clearly,
Fig. 6 indicates improvement in the high frequency rolling
caused by weighting.
The purpose of modeling a power spectrum by a rational

function of reasonably low order is to use this approximation
for the design of a linear shaping "lter with a white noise
input. Then, the identi"ed road spectrum is used, for example
in a quarter-car model, to study the response of the vehicle
to random road inputs (T%urkay & Ak'cay, 2004).
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5. Conclusions

In this paper, we presented a strongly consistent
subspace algorithm for the identi"cation of square
multi-input/multi-output, discrete-time, linear-time invari-
ant systems from nonuniformly spaced power spectrum
measurements. The algorithm was illustrated with one
practical example that solves a stochastic road modeling
problem.
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Appendix A. Proof of Lemma 2

Eq. (22) implies that

X c
C(�) = (ej�In − A)−1F;

X ac;p
C (�) = ej(p−1)�(e−j�In − AT)−1CT:

The matrix

[
WC

XC

]
is rank de"cient if and only if there

exists a row vector

[+1 · · · +p < =] �= 0 (A.1)

with +Tk ∈Rm, k = 1; : : : ; p and <T; =T ∈Rn such that

[+1 · · · +p < =]

[
WC

XC

]
= 0

⇔

J(zk) = 0; k = 1; : : : ; N; (A.2)

where

J(z) =
p∑

k=1

+kzk−1 + =zp(In − zAT)−1CT

+<(zIn − A)−1F: (A.3)

Since J(z) is a real-rational matrix, zk is a zero of it if and
only if z∗k is a zero of it. Thus, each element of J(z) has at
least 2N − 2 zeros whenever (A.2) holds. (If zk �∈ R for all
k, then the number of zeros is precisely 2N .)
Let >(A) be the spectral radius of A, i.e. the largest of the

magnitudes of the eigenvalues of A. The Laurent series of
J(z) converges in the annulus

DA , {z ∈C : >(A)¡ |z|¡ [>(A)]−1}: (A.4)

Each element in the rational vectorJ(z) is either identically
zero or has at least 2N − 2 zeros at e±j�k ; but each element
ofJ(z) can have at most p+2n−1 zeros. Since 2N¿p+
2n + 2, we then have J(z) ≡ 0. This implies that all the

coeDcients in the Laurent expansion ofJ(z) are zero. Since
the Laurent series of =zp(In − zAT)−1CT starts with =CTzp

and converges in the disk

D> , {z ∈C : |z|¡ [>(A)]−1} (A.5)

the three terms on the right-hand side of (A.3) are indepen-
dent; and therefore they are identically zero. Hence,

+k = 0; k = 1; : : : ; p;

=(z−1In − AT)−1CT ≡ 0;

<(zIn − A)−1F ≡ 0:

The minimality of (A; B; C; D) implies the minimality of
(A; F; C; 12 E). Thus, from the controllability of the pairs
(A; F) and (AT; CT) we have <= ==0. Hence, (A.1) is vio-

lated. Finally, note that

[
WC

XC

]
is rank de"cient if and only[

W

X

]
is rank de"cient. The last assertion is due to the fact

that for any complex matrix Z ,

xTZ = 0 ⇔ x [ReZ Im Z] = 0:

Appendix B. Proof of Lemma 4

The "rst two claims are obvious. From (67),

A′′T−1 = T−1A′; A′′2 =2A′: (B.1)

Now, partition T−1 and 2 as

T−1 = [t1 · · · t2n]; 2 = [�1 · · · �2n]:

If ni = 1, put l= n1 + · · ·+ ni. Then, from (67)

A′′tl = 4itl; A′′�l = 4i�l

which shows that tl is an eigenvector of .c associated with
the eigenvalue 4i. Thus, for some 5ni ∈R

�l = 5ni tl:

This equality is due to the fact that eigenvectors correspond-
ing to a simple real eigenvalue span a one dimensional sub-
space of Rn. If ni = 2, again putting l= n1 + · · ·+ ni, from
(67) we get

A′′[tl tl+1] = [tl tl+1].i;

A′′[�l �l+1] = [�l �l+1].i

which shows that tl and tl+1 are eigenvectors of .c associ-
ated with the eigenvalues 4i±j3i. It is known that eigenvec-
tors corresponding to a pair of simple complex eigenvalues
form a two dimensional subspace of Rn. Hence, for some
<∈R2×2

�l = <11tl + <12tl+1;

�l+1 = <21tl + <22tl+1: (B.2)
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Multiplying both sides of the "rst equation in (B.2) with A′′

and using the equations in (B.2), we get

(<12 + <21)3itl + (<22 − <11)3itl+1 = 0:

Since 3i �= 0 and tl and tl+1 are linearly independent vectors,
we then must have

<11 = <22; <21 =−<12:

It follows that

[�l �l+1] = 5i[tl tl+1];

where

5i ,

[
<11 <12

−<12 <11

]
:

Let

5c ,



51 0 · · · 0

0 52 · · · 0

...
...

. . .
...

0 0 · · · 5k

 :

Then, 5c is compatible with .c and

[�1 · · · �n] = 5c [t1 · · · tn] : (B.3)

Likewise, for some 5ac compatible with .ac we get

[�n+1 · · · �2n] = 5ac[tn+1 · · · t2n]: (B.4)

Since .ac is compatible with .c, 5ac is compatible with
.c. Thus, combining (B.3) and (B.4), we get (70). The last
claims are easy to verify.

Appendix C. Proof of Theorem 7

Let

S̃N (z), 6̂(z) QF + QFT 6̂T(z−1) + QE:

The least-squares problem (92) can be written as

Ê; F̂ = argmin
QE; QF

(Q̂N − T̂N + DN ); (C.1)

where

Q̂N ,
1
N

N∑
k=1

‖R−1=2
k S̃N (zk)‖2F ;

T̂N ,
1
N

N∑
k=1

Tr{SH
k R

−1
k S̃N (zk) + S̃

H
N (zk)R

−1
k Sk};

DN ,
1
N

N∑
k=1

‖R−1=2
k Sk‖2F :

In the derivation of (C.1), we have used the facts that
Tr(AB) = Tr(BA) and Tr(A) = Tr(AT) for any matrices A
and B of compatible sizes. The boundedness of fourth-order

moments means the boundedness of second order moments.
More precisely, E‖�k‖2F 6 [E‖�k‖4F ]1=2. Hence from (6) and
the chain of (in)equalities

[ 1=2
max(Rk)]2 =  2

max(R
1=2
k )

6 ‖R1=2
k ‖2F = Tr(Rk) = E‖�k‖2F ;

we get  max(Rk)6M 1=2
� . Let  min denote the smallest singu-

lar value. The inequality ‖XY‖F ¿  min(X )‖Y‖F valid for
any matrices of X and Y of compatible sizes then yields

Q̂N ¿
1

M 1=2
� N

N∑
k=1

‖S̃N (zk)‖2F : (C.2)

From (91), we have for each QE and QF

lim
N→∞

‖S̃N − QS‖∞ = 0; w:p:1; (C.3)

where

QS(z), 6(z) QF + QFT 6T(z−1) + QE: (C.4)

Hence,

lim
N→∞

inf Q̂N ¿M−1=2
� lim

N→∞
inf

1
N

N∑
k=1

‖ QS(zk)‖2F ; w:p:1:

We claim that if QE and QF is a nontrivial pair, then QS(z) can
vanish only at a "nite number of points zk . To establish this
claim, suppose that

QS(zk) = 0; k = 1; : : : ; M:

Then, from QS(z−1
k )= QST(zk) we see that these inequalities are

also satis"ed with z−1
k , k = 1; : : : ; M . Thus, using the same

argument in the proof of Lemma 2, if 2M − 2¿ 2n and the
frequencies are distinct, we conclude that QS(z) is identically
zero (since its each entry can have at most 2n zeros). Let
DA and D> be as in (A.4) and (A.5), respectively. Then,
all the coeDcients in the Laurent expansion of QS(z), which
converges in DA, are zero. The Laurent series of QFT6T(z−1)
starts with z QFT[JfKU2n2c]T and converges in the disk D>.
Therefore, the three terms on the right-hand side of (C.4)
are independent; and thus they are identically zero. Hence,

QE = 0; QFT (z−1In − .T
c )

−15T
cC

T ≡ 0: (C.5)

Let x∈Rm be such that QFx , < �= 0. This is possible since
QE = 0 implies QF �= 0. Then, from the second equation in
(C.5) we have

<T (z−1In − .T
c )

−15T
cC

T ≡ 0

which means that (.T
c ; 5

T
cC

T) is not a controllable pair.
Since 5c is nonsingular, this means (AT; CT) is not control-
lable, i.e. (A; C) is not observable. Thus, we reach a contra-
diction and QS(z) is nonzero in the complement of at most 2n
points. Since ‖ QS(z)‖2F is uniformly continuous on the unit
circle, a standard compactness argument then yields

‖ QS(ej�)‖2F ¿ =; �∈
r⋃

i=1

[ai; bi]
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for some =¿ 0 and disjoint intervals [ai; bi] ⊆ [0; 2�] satis-
fying

∑r
i=1 (bi − ai)¿�. Thus, from (7) we obtain for all

suDciently large N

1
N

N∑
k=1

‖ QS(zk)‖2F ¿ �=�:

We have shown that

( QE; QF) �= 0 ⇔ lim
N→∞

inf Q̂N ¿ 0; w:p:1: (C.6)

Let vec(Sk) denote the vector formed by stacking the
columns of Sk into one long vector:

vec(Sk),



Sk;11

...

Sk;m1

Sk;12

...

Sk;m2

Sk;1m

...

Sk;mm



:

Let

Q),

[
vec( QE)

vec( QF)

]
:

The Kronecker product of two matrices X ∈Cm×n and
Y ∈Cp×q is de"ned as

X ⊗ Y ,



X11Y X12Y · · · X1nY

X21Y X22Y · · · X2nY

...
...

. . .
...

Xm1Y Xm2Y · · · XmnY

∈Cmp×nq:

For each k, we can write vec(S̃N (zk)) and vec( QSN (zk)) as
linear functions in Q):

ÃN;k Q) = vec(S̃N (zk)); QAN;k Q) = vec( QSN (zk)) (C.7)

for some matrices ÃN;k and QAN;k . To be speci"c on this,
let 6̂i(zk) and 6i(zk) denote the ith rows of 6̂ and 6(zk),
respectively. Let for each k,

B̃N;k ,


eT1 ⊗ 6̂(zk) + Im ⊗ 6̂∗1 (zk)

...

eTm ⊗ 6̂(zk) + Im ⊗ 6̂∗m(zk)

 ;

QBN;k ,


eT1 ⊗ 6(zk) + Im ⊗ 6∗1 (zk)

...

eTm ⊗ 6(zk) + Im ⊗ 6∗m(zk)

 :

Then,

ÃN;k ,

[
Im2 0

0 B̃N;k

]
; QAN;k ,

[
Im2 0

0 QBN;k

]
:

Hence,

Q̂N =
1
N

N∑
k=1

‖(Im ⊗R
−1=2
k )vec(S̃N (zk))‖2F = Q)TÂN Q);

where

ÂN ,
1
N

N∑
k=1

Ã
H
N;k(Im ⊗R−1

k )ÃN;k :

From (C.6), note that ÂN is positive de"nite for all large N
w.p.1. Likewise, we can write T̂N as

T̂N =BN Q);

where

BN ,
1
N

N∑
k=1

[vec(S∗
k )]

T(Im ⊗R−1
k )ÃN;k

+
1
N

N∑
k=1

[vec(Sk)]T(Im ⊗R−1
k )Ã

∗
N;k :

Let )̂N denote the least-squares solution of (92) in stacked
form

)̂N ,

[
vec(ÊN )

vec(F̂N )

]
:

Then,

)̂N = Re{Â−1
N } 1

N

N∑
k=1

Re{ÃH
N;k(Im ⊗R−1

k )vec(Sk)}:

Split )̂N as

)̂N = T)N + )̃N ;

where

T)N , Re{Â−1
N } 1

N

N∑
k=1

Re{ÃH
N;k(Im ⊗R−1

k )vec(S(zk))};

)̃N , Re{Â−1
N } 1

N

N∑
k=1

Re{ÃH
N;k(Im ⊗R−1

k )vec(�k)}:

Let ) denote the unknowns in stacked form:

),

[
vec(E)

vec(F)

]
:

Observe that if N¿ (p=2)+ n+1 and �k =0 for all k, then
6̂(z) = 6(z) for all z and from (C.7)we have

vec(S(zk)) = QAN;k) = ÃN;k) for all k:
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Hence,

)̂N =Re{Â−1
N } 1

N

N∑
k=1

Re {ÃH
N;k(Im ⊗R−1

k )ÃN;k )}

=Re{Â−1
N }Re {ÂN}) = ):

This proves Lemma 5.
Now, from (91) we have uniformly in k

lim
N→∞

‖ÃN;k − QAN;k‖F ; w:p:1: (C.8)

Recall that Â−1
N is bounded away from zero w.p.1 for all

large N ; and ÃN;k is also uniformly bounded in k w.p.1 for
all large N . Thus, the following series

T)N =) + Re{Â−1
N } 1

N

N∑
k=1

Re {ÃH
N;k(Im ⊗R−1

k )

·(ÃN;k − QAN;k)})
converges w.p.1 to ) as N tends to in"nity.
Finally, we study the noise term )̃N . Let

cN;k , Re{Â−1
N }Re {ÃH

N;k(Im ⊗R−1
k )};

dN;k , Re{Â−1
N }Im {ÃH

N;k(Im ⊗R−1
k )};

Ek , vec(Re(�k));

Fk , vec(Im(�k)):

Then, we can write )̃N as

)̃N =
1
N

N∑
k=1

cN;kEk +
1
N

N∑
k=1

dN;kFk :

Let us assume for a moment that cN;k and dN;k are bounded
sequences of deterministic matrices denoted by TcN;k and
TdN;k . Then, TcN;kEk and TdN;kFk are sequences of indepen-
dent zero mean random variables with uniformly bounded
fourth-order moments. Thus, from the strong law of large
numbers (Chung, 1968) each series above tends to zero
w.p.1 as N tends to in"nity. Now, let

QAN ,
1
N

N∑
k=1

QAH
N;k(Im ⊗R−1

k ) QAN;k

and

TcN;k , Re{Â−1
N }Re { QAT

N;k(Im ⊗R−1
k )};

TdN;k , Re{Â−1
N }Im { QAT

N;k(Im ⊗R−1
k )}:

From (C.8),

lim
N→∞

‖ÂN − QAN‖F ; w:p:1;

and thus

lim
N→∞

‖cN − TcN‖∞ = 0; w:p:1;

lim
N→∞

‖dN − TdN‖∞ = 0; w:p:1; (C.9)

where ‖cN‖∞ , sup16k6N  max(cN;k). The series

#̃N =
1
N

N∑
k=1

(cN;k − TcN;k)Ek − 1
N

N∑
k=1

(dN;k − TdN;k)Fk

is dominated (absolutely) by the series

‖cN − TcN‖∞ 1
N

N∑
k=1

‖Ek‖2 + ‖dN − TdN‖∞ 1
N

N∑
k=1

‖Fk‖2;

where ‖x‖2 is the Euclidean norm of x∈Rn de"ned by
‖x‖2 , (

∑n
j=1 |xj|2)1=2. From the strong law of large num-

bers, we have

lim
N→∞

[
1
N

N∑
k=1

‖Ek‖2 − 1
N

N∑
k=1

E‖Ek‖2
]
= 0; w:p:1;

lim
N→∞

[
1
N

N∑
k=1

‖Fk‖2 − 1
N

N∑
k=1

E ‖Fk‖2
]
= 0; w:p:1:

From (5), we have

1
N

N∑
k=1

E‖Ek‖2 = 1
N

N∑
k=1

E ‖Re �k‖F =
1
2N

N∑
k=1

Tr(Rk)

6
m
2N

N∑
k=1

 max(Rk)6
m
2
M 1=2

� :

Thus,

lim
N→∞

sup
1
N

N∑
k=1

‖Ek‖26 m
2

M 1=2
� ; w:p:1:

Likewise,

lim
N→∞

sup
1
N

N∑
k=1

‖Fk‖26 m
2

M 1=2
� ; w:p:1:

Hence, from (C.9) #̃N converges to zero w.p.1 as N tends
to in"nity; and therefore )̃N converges to zero w.p.1 as N
tends to in"nity. It follows that )̂N converges to ) w.p.1 as
N tends to in"nity.

References

Caines, P. (1988). Linear stochastic systems, Series in probability and
mathematical statistics. New York: Wiley.

Chung, K. L. (1968). A course in probability theory. New York: Harcourt,
Brace & World.

Dodds, C. J., & Robson, J. D. (1973). The description of road surface
roughness. Journal of Sound and Vibration, 31, 175–183.

Fraanje, R., Verhaegen, M., Verdult, V., & Pintelon, R. (2003). A
frequency domain subspace algorithm for mixed causal, anti-causal
LTI systems. In Proceedings CD-ROM of the 13th IFAC symposium
on system identi$cation, Rotterdam, The Netherlands, August 2003
(pp. 893–898).

Glover, K., & Willems, J. (1974). Parametrization of linear dynamical
systems: Canonical forms and identi"ability. IEEE Transactions on
Automatic Control, AC-19, 640–645.

Guidorzi, R. (1974). Canonical structures in the identi"cation of
multivariable systems. Automatica, 11, 361–374.



H. Akc�ay, S. T*urkay / Automatica 40 (2004) 1333–1347 1347

Guidorzi, R. (1981). Invariants and canonical forms for systems structural
and parametric identi"cation. Automatica, 17, 117–133.

Kay, S. (1988). Modern spectral estimation, theory & application.
Englewood CliIs, NJ: Prentice-Hall.

Larimore, W. E. (1990). Canonical variate analysis in identi"cation,
"ltering and adaptive control. In Proceedings of the 29th conference
on decision and control, Hawai, USA (pp. 596–604).

Liu, K., Jacques, R. N., & Miller, D. W. (1994). Frequency domain
structural system identi"cation by observability range space extraction.
In Proceedings of the American control conference, Vol. 1, Baltimore,
MD (pp. 107–111).

Ljung, L. (2000). System identi$cation: Theory for the user (2nd ed.).
Englewood CliIs, NJ: Prentice-Hall.

McKelvey, T., Ak'cay, H., & Ljung, L. (1996a). Subspace-based
multivariable system identi"cation from frequency response data. IEEE
Transactions on Automatic Control, 41, 960–979.

McKelvey, T., Ak'cay, H., & Ljung, L. (1996b). Subspace-based
identi"cation of in"nite-dimensional multivariable systems from
frequency response data. Automatica, 32, 885–902.

Moor, B. D. (1993). The singular value decomposition and long and short
spaces of noisy matrices. IEEE Transactions on Signal Processing,
41, 2826–2838.

Van Overbeek, A. J. M., & Ljung, L. (1982). On-line structure selection
for multivariable state space models. Automatica, 18, 529–543.

Van Overschee, P., & De Moor, B. (1996a). Subspace identi$cation for
linear systems: Theory—implementation—applications. Dordrecht:
Kluwer Academic Publishers.

Van Overschee, P., & De Moor, B. (1996b). Continuous-time frequency
domain subspace identi"cation (special issue on subspace methods for
detection and estimation). Signal Processing, 52, 179–194.

Van Overschee, P., De Moor, B., Dehandschutter, W., & Swevers, J.
(1997). A subspace algorithm for the identi"cation of discrete time
frequency domain power spectra. Automatica, 33, 2147–2157.

Priestley, M. B. (1989). Spectral analysis and time series. London,
England: Academic Press.

Schoukens, J., & Pintelon, R. (1991). Identi$cation of linear systems:
A practical guideline to accurate modeling. London: Pergamon.

Stoica, P., & Moses, R. (1997). Introduction to spectral analysis. Upper
Saddle River, NJ: Prentice-Hall.

T%urkay, S., & Ak'cay, H. (2004). A study of random vibration
characteristics of the quarter-car model. First IFAC symposium on
advances in automotive control, Salerno, Italy, to appear.

Verhaegen, M. (1994). Identi"cation of the deterministic part of MIMO
state space models given in innovations form from input-output data
(special issue on statistical signal processing and control). Automatica,
30, 61–74.

Verhaegen, M. (1996). A subspace model identi"cation solution to the
identi"cation of mixed causal, anti-causal LTI systems. SIAM Journal
on Matrix Analysis and Applications, 17, 332–347.

Viberg, M. (1995). Subspace methods in system identi"cation (special
issue on trends in system identi"cation). Automatica, 31, 1835–1852.

H*useyin Ak,cay was born in Antalya,
Turkey in 1958. He received the Engineer
degree from the Istanbul Technical Uni-
versity in 1981, the M.Sc. degree from
the Massachusetts Institute of Technol-
ogy in 1988, and the Ph.D. degree from
the University of Michigan, Ann Arbor
in 1992, all in Mechanical Engineering,
and the M.A. degree in Mathematics
from the University of Michigan, Ann
Arbor in 1991. He held visiting positions
with Link%oping, Newcastle, and Bremen

Universities. He received a research fellowship award in 1998 from the
Alexander Von Humbold Foundation. He worked at the T%ubitak, Marmara
Research Center, Gebze, Turkey as Research Scientist. He is currently
Professor of Electrical and Electronics Engineering in Anadolu University.
His research interests include system identi"cation, signal processing,
condition monitoring and fault detection.

Semiha T*urkay was born in Kircali, Bul-
garia, in 1979. She received the B.S. de-
gree from Osmangazi University and the
M.S. degree from the Anadolu Univer-
sity, Turkey, in 2001 and 2003, respec-
tively, both in Electrical and Electronics
Engineering.
Since 2001 she has been working as a Re-
search Assistant at Anadolu University and
is currently a Ph.D. student. Her research
interests include random vibrations, esti-
mation, system identi"cation and control.


	Frequency domain subspace-based identification of discrete-time power spectra from nonuniformly spaced measurements
	Introduction
	Problem formulation
	Identification algorithm
	Examples
	Simulation example
	Stochastic road modeling example

	Conclusions
	Acknowledgements
	Appendix A. Proof of Lemma 2
	Appendix B. Proof of Lemma 4
	Appendix C. Proof of Theorem 7
	References


