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Identification of multi-input/multi-output systems from a
measured power spectrum arises in certain applications; for
example, the design of shaping filters for noise processes.

A practical application is the modeling of stochastic road
disturbances experienced by a vehicle moving forward.

Model road spectrum by a rational transfer function of
reasonably low order and to use this approximation for a
design of a linear shaping filter with a white noise input.
Formulate the vehicle control problem in standard form.
The algorithm of this paper determines a state-space
realization of road spectrum.

Other applications : modeling of acoustic power spectra
and modeling of passenger sensitivity for car accelerations
(Van Overschee etal.:1997).
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A parametric approach uses a non-linear least-squares
criterion optimized by an iterative search in the parameter
space (Kay:1988,Priestley:1989,Stoica and Moses:1997):

Convergence problems and difficulty of parameterizing
MIMO systems to determine the canonical models.

The subspace approach does not suffer from any of these
inconveniences:

No explicit need for parameterization since full state-space
models are used and the only parameter is the order of the
system.
Non-iterative.
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A subspace algorithm using spectrum samples at
uniformly spaced frequencies was presented in Van
Overschee etal.:1997.

It is based on McKelvey etal.:1996 and uses biased impulse
response coefficients; however, it generates strongly
consistent power spectrum estimates.

A related work is Verhaegen:1996, where a subspace
algorithm for the time domain identification of mixed causal
and anti-causal systems was proposed. Its frequency
domain extension was given in Fraanje etal.:2003.
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Current work The restriction on the frequencies are removed.

A subspace-based algorithm to identify MIMO systems
from power spectrum samples measured at nonuniformly
spaced frequencies is developed.

This algorithm is shown not only strongly consistent but
also recovers finite-dimensional rational spectra given a
finite number of noise-free data (depending on the model
order).
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Consider a multi-input/multi-output square linear-time invariant
discrete-time system represented by the state-space equations:

x(t + 1) = Ax(t) + Bu(t)
(1)

y(t) = Cx(t) + Du(t)

where x(t) ∈ Rn is the state, u(t) ∈ Rm and y(t) ∈ Rm are,
respectively, the input and the output of the system.

The transfer function of the system:

G(z) = D + C(zIn − A)−1B.
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Assumption 1 The system (1) is stable and strictly minimum
phase: all eigenvalues of A and A− BD−1C lie strictly inside
the unit circle. The pairs {A,B} and {A,C} are controllable and
observable, respectively. All eigenvalues of A are nonzero and
distinct.

The system (1) is a minimal stochastic system.

Since the Jordan canonical form is not numerically stable,
a slight perturbation of A will lead to distinct eigenvalues if
A has repeated eigenvalues.

Hüseyin Akçay Frequency Domain Subspace-Based Identification



Introduction
Problem Formulation

Identification Algorithm
Examples

Conclusions

Assume u(t) is zero-mean, unity-variance white noise process.
Then, the power spectrum associated with (1) is defined as

S(z) = G(z)GT (z−1). (2)

The system (1) is called the innovation form, unity
variance, minimum phase spectral factor associated with
the power spectrum S(z).

From (2) and Assumption 1,

S(ejθ) > 0, for all θ. (3)

The positive realness condition imposing a constraint on
the given spectrum samples Sk , i.e., Sk > 0 for each k , as
well as on the identified power spectrum ŜN(z).
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Noise assumptions

The noise η corrupting the spectrum samples is a zero-mean,
complex, white-noise process with a covariance function
satisfying

E
[

Re ηk
Im ηk

]
[Re ηT

s Im ηT
s ] =

[ 1
2Rk 0

0 1
2Rk

]
δks. (4)

Furthermore, we assume that the fourth order moments are
bounded above by some Mη <∞ as

E ‖ηk‖4
F ≤ Mη, for all k . (5)
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Assumption on the frequencies

C(X ): the number of elements in a given set X .

" C({θk}N
k=1 ∩ [a,b]) is the number of frequencies contained in

[a,b] ⊆ [0,2π] ".

Assumption 2

lim
N→∞

inf
1
N
C({θk}N

k=1 ∩ [a,b]) ≥ δ(b − a) (6)

for every [a,b] ⊆ [0,2π] and some fixed δ > 0.

Every point on the unit circle has a nonzero asymptotic
density of frequencies relative to N.
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Given: N noisy samples Sk ∈ Cm×m of the power spectrum
S(z) evaluated at N points on the unit circle:

Sk = S(ejθk ) + ηk , k = 1,2, · · · ,N, (7)

Find: (Â, B̂, Ĉ, D̂) such that the estimated power spectrum

ŜN(z) = Ĝ(z)ĜT (z−1)

is strongly consistent, i.e.,

lim
N→∞

‖ŜN − S‖∞ = 0, w.p.1.

where

Ĝ(z) = Ĉ(zIn − Â)−1B̂ + D̂,
‖G‖∞ = sup

0≤θ<2π
σmax(G(ejθ)).
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We also require the algorithm to produce the true model if the
noise is zero given a finite amount of data N, i.e., there exists
an N0 <∞ such that

‖ŜN − S‖∞ = 0, for all N ≥ N0. (8)

An identification algorithm which satisfies (8) is called
correct algorithm. Strong consistency is a most natural
requirement for any useful algorithm. The correctness is
particularly important for spectra with sharp peaks.

This identification problem can be thought as the design of
a linear shaping filter (A,B,C,D) from (corrupted) power
spectrum measurements where the zeros of G(z) can be
restricted, without loss generality, to be minimum phase.
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Theorem 1 [Caines:1988] Consider the power spectrum S(z)
in (2). Suppose that Assumption 1 holds. Let P be the solution
of the discrete-time Lyapunov equation:

P = APAT + BBT .

Let
E = CPCT + DDT ,

F = APCT + BDT ,

Then S(z) can be split into the sum of two system transfer
matrices as follows

S(z) = H(z) + HT (z−1)

with
H(z) =

1
2

E + C(zIn − A)−1F .
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This splitting of S(z) into the sum of a causal transfer
function H(z) and an anti-causal transfer function HT (z−1)
is the first step of our algorithm. (It is also the starting point
of the algorithm of Van Overschee etal.:1997).
From the spectrum samples, (A,F ,C, 1

2E) describing the
spectral summand H(z) is estimated.
The algorithm proposed in Van Overschee etal.:1997 uses
biased Markov parameters of S(z) as in McKelvey
etal.:1996; and requires the discrete frequencies θk ,
k = 1,2, · · · ,N be uniformly spaced.
The restriction on the frequencies is removed in this work.
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From Theorem 1, we write a state-representation of S(z) as
follows:

xc(t + 1) = Axc(t) + Fu(t) (9)
xac(t − 1) = AT xac(t) + CT u(t) (10)

y s(t) = Cxc(t) + F T xac(t) + Eu(t). (11)

These equations are the special cases of the equations
considered in Verhaegen:96 for the time-domain subspace
identification of mixed causal and anti-causal linear-time
invariant systems.

We take the discrete Fourier transforms of equations (9)–(11)
where we shift equation (10) by p − 1 samples forward in time:
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ejθX c(θ) = AX c(θ) + FU(θ)

e−jθX ac,p(θ) = AT X ac,p(θ) + CT ej(p−1)θU(θ)

Y s(θ) = CX c(θ) + F T e−j(p−1)θX ac,p(θ) + EU(θ)

where X c(θ), X ac,p(θ), U(θ), and Y s(θ) denote the discrete
Fourier transforms of xc(t), xac(t + p − 1), u(t), and y(t),
respectively, and p > 2n.

Let X c
i (θ) be the resulting state transform when U(θ) = ei , the

unit vector with 1 on the i th position; and X ac,p
i (θ) is defined

similarly.
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By defining the compound state matrices:

X c
C(θ)

∆
= [X c

1(θ) X c
2(θ) · · · X c

m(θ)] ,

X ac,p
C (θ)

∆
=

[
X ac,p

1 (θ) X ac,p
2 (θ) · · · X ac,p

m (θ)
]
,

S(ejθ) can be implicitly described as

S(ejθ) = CX c
C(θ) + F T e−j(p−1)θX ac,p

C (θ) + E

with

ejθX c
C(θ) = AX c

C(θ) + F ,
e−jθX ac,p

C (θ) = AT X ac,p
C (θ) + CT ej(p−1)θ.
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By iteratively substituting the state-equations, we obtain the
relation

S(ejθ)
ejθS(ejθ)

...
ej(p−2)θS(ejθ)

ej(p−1)θS(ejθ)

 = Γp


Im

ejθIm
...

ej(p−2)θIm
ej(p−1)θIm

+Op

[
X c

C(θ)
X ac,p

C (θ)

]

where

Op =


C F T (AT )p−1

CA F T (AT )p−2

...
...

CAp−2 F T AT

CAp−1 F T
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and

Γp =


E F T CT · · · F T (AT )p−2CT

CF E · · ·
...

...
...

. . . F T CT

CAp−2F · · · CF E


By repeating for θk , k = 1,2, · · · ,N, we get

SC = OpXC + ΓpWC (12)

where zk = ejθk , k = 1,2, · · · ,N and
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SC =
1√
N


S(z1) · · · S(zN)

ejθ1S(z1) · · · ejθN S(zN)
...

. . .
...

ej(p−1)θ1S(z1) · · · ej(p−1)θN S(zN)

 ,

WC =
1√
N


Im · · · Im

ejθ1 Im · · · ejθN Im
...

. . .
...

ej(p−1)θ1 Im · · · ej(p−1)θN Im

 ,

XC =
1√
N

[
X c

C(θ1) · · · X c
C(θN)

X ac,p
C (θ1) · · · X ac,p

C (θN)

]
.
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From (7) and (12),

ŜC = OpXC + ΓpWC +NC (13)

where

ŜC =
1√
N


S1 · · · SN

ejθ1S1 · · · ejθN SN
...

...
. . .

...
ej(p−1)θ1S1 · · · ej(p−1)θN SN

 ,

NC =
1√
N


η1 · · · ηN

ejθ1η1 · · · ejθNηN
...

. . .
...

ej(p−1)θ1η1 · · · ej(p−1)θNηN

 .
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Since Op is a real matrix and we are interested in the real
range space, we convert (13) into a relation involving only real
valued matrices:

Ŝ = OpX + ΓpW +N
= S +N

where

Ŝ =
[
Re ŜC Im ŜC

]
,

S = [ReSC ImSC ] ,

X = [ReXC ImXC ] ,

W = [ReWC ImWC ]

N = [ReNC ImNC ] .
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Let W⊥ be the projection matrix onto the null space of W:

W⊥ ∆
= I2mN −WH(WWH)−1W.

The term ΓpW is cancelled when multiplied from right by W⊥:

ŜW⊥ = OpXW⊥ +NW⊥

= SW⊥ +NW⊥.

The range space of SW⊥ equals the range space of Op
unless rank cancellations occur. A sufficient condition for
the range spaces to be equal is that the intersection
between the row spaces of W and X is empty.
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Lemma Let N ≥ (p/2) + n + 1. Suppose that the frequencies
θk are distinct and zk is not an eigenvalue of A for all k . Then

rank
[
W
X

]
= pm + 2n ⇐⇒ (A,B,C,D) minimal.

If the frequencies are distinct, the number of data satisfies
N ≥ (p/2) + n + 1, and (A,B,C,D) is minimal, then the
two row spaces of W and X do not intersect and the range
space of SW⊥ coincides with the range space of Op.
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In De Moor:93, it was shown that by using the SVD of ŜW⊥,
the 2n left singular vectors corresponding to the 2n largest
singular values form a strongly consistent estimate of
range(SW⊥) if the following conditions hold w.p.1

(i) lim
N→∞

SW⊥(NW⊥)T = 0; (14)

(ii) lim
N→∞

NW⊥(NW⊥)T = αIpm (15)

for some scalar α ≥ 0.

In McKelvey etal.:1996, it was shown under the noise
assumptions that (14) holds and

lim
N→∞

NW⊥(NW⊥)T = KKT , w.p.1.
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where K ∈ Rpm×pm is a matrix defined by

KKT = Re
(
WCRWH

C

)
,

R =


R1 0 · · · 0
0 R2 · · · 0
...

...
. . .

...
0 0 · · · RN

 .
The matrix K can be found by a Cholesky decomposition.
Thus, from (14) we have the weighted version

K−1ŜW⊥ = K−1SW⊥ +K−1NW⊥ (16)

satisfying (14) and (15) with α = 1.
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Hence, the 2n left singular vectors corresponding to the 2n
largest singular values of K−1ŜW⊥ will form a strongly
consistent estimate of the range space of K−1SW⊥ which
equals to the range space of K−1Op.

A numerically efficient way of forming ŜW⊥ is to use the
QR-factorization:[

W
Ŝ

]
=

[
R11 0
R21 R22

] [
QT

1
QT

2

]
.
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A simple derivation yields

ŜW⊥ = R22QT
2

and it suffices to use R22 since QT
2 is a matrix of full rank.

Thus, the 2n left singular vectors corresponding to the 2n
largest singular values of K−1ŜW⊥ are obtained from the SVD:

K−1R22 =
[
Û2n Ũ

] [ Σ̂2n 0
0 Σ̃

][
V̂2n

Ṽ

]

where this decomposition is partitioned such that Σ̂2n contains
the 2n largest singular values.
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Our consistency analysis has shown that

lim
N→∞

KÛ2n = OpT , w.p.1

for some nonsingular matrix T . In the calculation of Û2n, 2n
elements with fixed indices can be chosen freely subject to
the constraint that magnitudes are not greater than unity.
Thus, by fixing values of those elements for all N, Û2n
converges to a matrix denoted by U2n w.p.1 as N →∞:

KU2n = OpT . (17)

This asymptotic formula (in the number of data) will be the
key in the development of our algorithm.
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Lemma Let Sk , k = 1, · · · ,N be noise-free samples of the
power spectrum of a discrete-time system of order n satisfying
Assumption 1 at N distinct frequencies θk . Furthermore, let
N ≥ (p/2) + n + 1 and K ∈ Rpm×pm be any nonsingular matrix.
Then, for some nonsingular T

KÛ2n = OpT .

Thus, the equations derived from the asymptotic formula
are also valid for a finite number of data.

Hüseyin Akçay Frequency Domain Subspace-Based Identification



Introduction
Problem Formulation

Identification Algorithm
Examples

Conclusions

Noise-free case
Noisy data case
Outline of the algorithm
Main results

Let Ju and Jd be the upward and downward shift matrices
defined by

JuOp
∆
=


CA F T (AT )p−2

...
...

CAp−2 F T AT

CAp−1 F T


JdOp

∆
=

 C F T (AT )p−1

...
...

CAp−2 F T AT


Then,

JuOp = JdOpA′
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where

A′ =
[

A 0
0 (AT )−1

]
.

Hence,
A′ = (JdOp)†JuOp = TA′′T−1

where
A′′ ∆

= (JdKU2n)
†JuKU2n.

A′ and A′′ are similar matrices, i.e., they have the same
Jordan blocks in their Jordan canonical representations.
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Likewise,

C′ ∆
= [C F T (AT )p−1] = JfOp = C′′T−1

where

Jf = [Im 0m×(p−1)],

C′′ = JfKU2n.

Put A′′ into the following Jordan canonical form:

A′′ = [Πc Πac]

[
Σc 0
0 Σac

]
[Πc Πac]

−1 (18)

where the eigenvalues of Σc lie inside the unit circle.
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Since H(z) is invariant to similarity transformations, let

A = Σc (19)

The canonical form is invariant to ordering of eigenvalues
as long as the eigenvalues and the corresponding
eigenvectors of Σc are permuted accordingly, in complex
pairs.
From the similarity of A′′ to A′, we may also let

Σac = (ΣT
c )−1. (20)

imposing of course a certain structure on T !
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Let
Π = [Πc Πac] .

Then,

A′ = TA′′T−1 = Π−1A′′Π.

The relations among Σ, Π, and T are captured in the following
lemma. Recall that A has distinct eigenvalues.

Lemma Consider the Jordan canonical form of A′′ given by (18)
where A and Σac satisfy (19) and (20). Then, Σc is a block
diagonal matrix:
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Σc =


Σ1 0 · · · 0
0 Σ2 · · · 0
...

...
. . .

...
0 0 · · · Σk

 , Σi ∈ Rni×ni

where ni ∈ {1,2}, νi 6= 0, and

Σi
∆
=


µi , if ni = 1[

µi νi
−νi µi

]
, if ni = 2.

Also, Σac is a block diagonal matrix with block types and sizes
compatible with Σc.
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For some Λc and Λac compatible with Σc, the following holds

Π = T−1Λ

where

Λ
∆
=

[
Λc 0
0 Λac

]
.

Let X and Y be two block diagonal matrices with block sizes
and types compatible with Σc, then X T , XY and X−1 are also
compatible with Σc and XY = YX .
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Now, multiplying (17) from right by Π, we get

KU2nΠ = OpΛ.

Hence,

KU2nΠc =


CΛc

...
CΣp−2

c Λc

CΣp−1
c Λc

 ,

KU2nΠac =


F T (ΣT

c )p−1Λac
...

F T ΣT
c Λac

F T Λac

 .
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Thus,
CΛc = JfKU2nΠc, F T Λac = JlKU2nΠac

where
Jl

∆
= [0m×(p−1) Im].

The problem of finding C, F , and E is now reduced to
estimating E , Λc, and Λac from the spectral data.

From the lemma, S(z) can be written as

S(z) = E + χ(z) Z + Z T χT (z−1)

where
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χ(z) = JfKU2nΠc (zIn − Σc)
−1,

Z = Λ−1
c F .

Thus, E and Z can be estimated from the data by solving the
following linear least-squares problem:

E ],Z ] = arg min
Ě ,Ž

N∑
k=1

‖R−
1
2

k (χ(zk ) Ž + Ž T χT (z−1
k )

+Ě − S(zk ))‖2
F .

The formula (21) is non-asymptotic in N though asymptotic
quantities are used in it. However, it suggests a scheme to
consistently estimate the parameters A, C, E , and F .
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When the spectrum samples are noise-free, we can
replace U2n with Û2n.

Lemma Let S(z) be the power spectrum of a discrete-time
system of order n satistying Assumption 1. If
N ≥ (p/2) + n + 1, then E ] = E , Z ] = Z .

Once we find Z , we calculate C and F as follows

C = JfKU2nΠc, F = Z

due to the fact that H(z) is invariant to post-multiplication
of C by Λc and pre-multiplication of F by Λ−1

c since
Λ−1

c (zIn − Σc)
−1Λc = (zIn − Σc)

−1.
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Determination of B and D:

Solve the following Riccati equation for P:

P = APAT + (F − APCT )(E − CPCT )−1(F − APCT )T .

Compute B and D as follows

B = (F − APCT )(E − CPCT )−
1
2 ;

D = (E − CPCT )
1
2 .

Let
Ã ∆

= (JdKÛ2n)
†JuKÛ2n
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and put Ã into the Jordan canonical form:

Ã ∆
=
[
Π̂c Π̂ac

] [ Σ̂c 0
0 Σ̂ac

] [
Π̂c Π̂ac

]−1

where the eigenvalues of Σ̂c lie inside the unit circle. Let

Â ∆
= Σ̂c,

Ĉ ∆
= JfKÛ2nΠ̂c.

Then,
lim

N→∞
Ã = A′′, w.p.1.
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We can freely choose 2n elements of Π̂c and Π̂ac with fixed
indices subject to the constraint that magnitudes are not greater
than unity. Then, by fixing values of those elements equal to the
values of the corresponding elements in Πc and Πac for all N,

lim
N→∞

Σ̂c = Σc and lim
N→∞

Σ̂ac = Σac, w.p.1;

lim
N→∞

Π̂c = Πc and lim
N→∞

Π̂ac = Πac, w.p.1.

Let
χ̂(z)

∆
= Ĉ(zIn − Σ̂c)

−1.

Then, as N →∞

lim
N→∞

‖χ̂− χ‖∞, w.p.1.
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The uniform convergence is due to the fact that the
spectral radius of the limit matrix Σc is less than one.

The estimates of E and F are obtained by solving the following
linear least-squares problem:

Ê , F̂ ∆
= arg min

Ě ,F̌

N∑
k=1

‖R−1/2
k (χ̂(zk ) F̌ + F̌ T χ̂T (z−1

k ) + Ě − Sk )‖2
F
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Algorithm 1 Subspace algorithm with nonuniformly spaced
spectrum samples:

1. Given the data Sk , θk , and the covariance data Rk , form
the matrices S, WC, W, and K.
2. Calculate the QR-factorization.
3. Calculate the SVD.
4. Determine the system order n by inspecting the singular
values and partition the SVD such that Σ̂2n contains the 2n
largest singular values.
5. Calculate Ã.
6. Block-diagonalize Ã.
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7. Calculate Ĉ.
8. Solve the least-squares problem for Ê and F̂ where χ̂.
9. Solve the Riccati equation for P̂:

P̂ = ÂP̂ÂT + (F̂ − ÂP̂ĈT )(Ê − ĈP̂ĈT )−1

·(F̂ − ÂP̂ĈT )T

and calculate B̂ and D̂ from

B̂ = (F̂ − ÂP̂ĈT )(Ê − ĈP̂ĈT )−
1
2 ;

D̂ = (Ê − ĈP̂ĈT )
1
2 .

10. Calculate Ĝ(z) and ŜN(z).
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Theorem 2 Consider Algorithm 1 with N noise-free samples of
the power spectrum of a discrete-time system of order n
satisfying Assumption 1 at N distinct frequencies θk . Let
K ∈ Rpm×pm be any nonsingular matrix. If N ≥ (p/2) + n + 1,
then Algorithm 1 is correct.

Theorem 3 Consider Algorithm 1 with corrupted
measurements of the power spectrum of a discrete-time
system of order n satisfying Assumption 1 where the
corruptions and the frequencies satisfy the assumptions (4),
(5), and (6). Then, Algorithm 1 is strongly consistent.
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The algorithm in Van Overschee etal.:1997 is a special
case of Algorithm 1. The only difference between the
algorithms is the choice of the annihilator W⊥.
The power spectrum estimated by the above algorithm
may not satisfy the positivity requirement due to noise and
undermodeling. If a positive definite solution the Riccati
equation fails to exist, then the spectral factor can not be
computed. Two methods enforcing the positivity condition
outlined in VanOverschee etal.:1997 can be integrated into
Algorithm 1 without modification.
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The true system G(z) = C(zI4 − A)−1B + D:

A =


0.8876 0.4494 0 0
−0.4494 0.7978 0 0

0 0 −0.6129 0.0645
0 0 −6.4516 −0.7419



B =


0.2247
0.8989
0.0323
0.1290


C = [0.4719 0.1124 9.6774 1.6129]

D = 0.9626.
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N noisy samples of S(z):

Sk = S(ejθk ) + S̃(ejθk )νk , k = 1, · · · ,N

where the noise term S̃(ejθk )νk is composed of a noise transfer
function S̃(z), given by a second-order state-space model:

S̃(z) = C̃(zI2 − Ã)−1B̃ + D̃

with

Ã =

[
0.6296 0.0741
−7.4074 0.4815

]
, B̃ =

[
0.04
0.9

]
C̃ = [1.6300 0.0740] , D̃ = 0.2
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νk : i.i.d. complex, zero-mean, unit-variance random variables.

The variance of the noise process at each frequency
equals Rk = |S̃(zk )|2.

Frequencies randomly and independently picked from[
(2k − 1)π

2N
,
(2k + 1)π

2N

]
, k = 1, · · · ,N.

Thus, each θk has a uniform distribution.
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Consistency properties of Algorithm 1

Monte Carlo simulations performed, to estimate the power
spectrum given the samples Sk using different noise
realizations of νk .

For N = 400 and fixed frequencies, 100 different noise
realizations were generated, and Algorithm 1 with p = 50
estimated 100 models.

To assess the quality of the resulting model, both the
(measured) supremum norm

‖Ŝn − S‖m,∞
∆
= max

1≤k≤N
|ŜN(zk )− S(zk )|

and the (measured) H2 norm
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‖Ŝn − S‖m,2
∆
=

(
1
N

N∑
k=1

|ŜN(zk )− S(zk )|2
) 1

2

of the estimation error were determined for each estimated
model and averaged over the 100 estimated models.
Results:

1 ‖Ŝn − S‖m,2 = 0.3307 and ‖Ŝn − S‖m,∞ = 2.4208 using
the covariance information.

2 ‖Ŝn − S‖m,2 = 0.4500 and ‖Ŝn − S‖m,∞ = 2.6240 without
using the covariance information, i.e., Rk = 1 for all k .

Using noise covariance information reduces H2 error by 35%!
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The results from Monte Carlo simulations for the 100 estimated models using

the covariance information.
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The results from Monte Carlo simulations for the 100 estimated models without

using the covariance information.
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We consider one practical application of Algorithm 1. Provided
that occasional large irregularities such as potholes are
removed from the analysis,the road surface may be described
as a realization of a stationary random process.

Then, the response of a vehicle traversing a road can be
determined by accepted techniques of the theory of
random vibration. If the road surface is further assumed to
be homogenous and isotrophic, a road profile can be
completely described by a single power spectral density
evaluated from any single track.
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In the figure, plotted are the spectral density of a typical road
and its split power law approximation:

Ŝ(j2πñ) =

{
C|ñ/ñ0|−2δ1 , 0 < |ñ| < ñ0;
C|ñ/ñ0|−2δ2 , ñ0 ≤ |ñ| <∞

obtained by trial and error for ñ0 = 0.15708 cycles/m, δ1 = 1.6,
δ2 = 1.1, and C = 0.76× 10−5 and the integrated white noise
approximation to the data: C|ñ/ñ0|−2.

Clearly, the fit by the integrated white-noise modeling is
rather poor; in particular at the frequencies below ñ0.
The split power approximation can not be generated by
shape filters; hence, not suitable for simulating the
response of vehicle. Besides, it is unbounded at ñ = 0.
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The road power spectrum Dodds and Robson:73 and its approximate

modeling by the split power law and the integrated white noise.
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Objective Find a low order shape filter whose output spectrum
matches the spectral data as closely as possible.

The continuous-time estimation problem is converted to a
discrete one by using the bilinear map:

s = ψ(z) = λ
z − 1
z + 1

(λ > 0).

N = 63, λ = 0.2, p = 32, n = 1, RN = IN (chosen values).

The continuous-time spectral factor:

ĜN(s) = 0.0122
s + 1.1154
s + 0.0404

.
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The spectral data and its modeling by a rational model of order one produced

by Algorithm 1 with R = IN .
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The first order rational filter is accurate up to 0.02 cycles/m.

The power spectrum of this model is not integrable ! A
convergence factor may be introduced.

Next tried are the higher model orders with R as a design
variable. In the figures, the output spectra and the estimation
errors are compared with the road data for n = 7, p = 32, and
the two cases R = IN and Rk = Sk .

Clear improvement in the high frequency rolling by
weighting.

Hüseyin Akçay Frequency Domain Subspace-Based Identification



Introduction
Problem Formulation

Identification Algorithm
Examples

Conclusions

Simulation Example
Stochastic Road Modeling Example

The spectral data and its modeling by a rational model of order 7 produced by

Algorithm 1 with R = IN .
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The spectral data and its modeling by a rational model of order 7 produced by

Algorithm 1 with Rk = IN .
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We presented a strongly consistent subspace algorithm for
the identification of square multi-input/multi-output,
discrete-time, linear-time invariant systems from
nonuniformly spaced power spectrum measurements.

The algorithm was illustrated with one practical example
that solves a stochastic road modeling problem.
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