
Introduction
Problem Formulation

Subspace-based algorithm
Convergence analysis

identification Examples
Conclusions

Subspace-based Identification
of Infinite-dimensional Multivariable Systems from

Frequency-response Data

Hüseyin Akçay

Department of Electrical and Electronics Engineering
Anadolu University, Eskişehir, Turkey
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A subspace-based identification algorithm, which takes
samples of an infinite-dimensional transfer function, is shown to
produce estimates which converge to a balanced truncation of
the system.

Identification of infinite-dimensional systems studied in
time-domain in Ljung and Yuan: 1985; Huang and Guo:
1990, Hjalmarsson: 1993.

In frequency-domain studied in Helmicki etal.: 1991;
Mäkilä and Partington: 1991; Gu and Khargonekar: 1992.

Despite that low-order nominal models are preferred in
most practical applications as in the design of
model-based controllers, the true systems are usually of
high or infinite order with unmodeled dynamics and
random/deterministic noise.
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Thus, the basic task of system identification is to construct
a simple nominal model based on the measured data
generated from a complex system.

Based on how the disturbances are characterized, problem
formulations can be divided into two categories:

1 Stochastic formulation leading to instrumental variable and
prediction error methods (Ljung: 1997, Södestrom and
Stoica: 1989). "The least-squares method".

2 Deterministic formulation leading to "robustly convergent"
non-linear algorithms (Helmicki etal.: 1991, Gu and
Khargonekar: 1992).
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In both approaches, a prejudice-free model set of high
complexity is the underlying model structure.

In most practical applications, the model is required to be
of restricted complexity despite the fact that the true
system might have infinite order. Thus, model reduction is
a complementary step to the black-box identification.

Besides the computational complexity, this step induces
large approximation errors.
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An alternative method is to directly realize low complexity
models from the experimental data.

Nonlinear parametric optimization (Ljung: 1993, Pintelon et
al.: 1994b) where the solution is obtained by iterations.
Non-iterative subspace-based algorithms delivering
state-space models without any parametric optimization
(Verhaegen and Dewilde: 1992, Van Overschee and De
Moor: 1994).

Models in canonical minimal parametrizations are
numerically sensitive for high-order models, in comparison
with state-space models in a balanced realization.
Subspace-based algorithms are more robust to numerical
inaccuracies than the canonically parametrized models
since the model obtained is normally close to being
balanced.
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Frequency-domain subspace algorithms (Juang and
Suziki: 1988, Liu etal.: 1994, McKelvey etal.,: 1996 based
on the realization algorithms by Ho and Kalman (1966) and
Kung (1978).

Ho and Kalman: 1966 and Kung: 1978 find a minimal
state-space realization given a finite sequence of the
Markov parameters estimated from the inverse discrete
Fourier transform (DFT) of the frequency-response data.
Juang and Suziki: 1988 is exact only if the system has a
finite impulse response, therefore for lightly damped
systems yields very poor estimates.
In McKelvey etal.: 1994, the inverse DFT technique is
combined with a subspace identification step yielding the
true finite-dimensional system in spite of this aliasing effect.
Current work reporting extensions of McKelvey etal.: 1996
to infinite-dimensional systems.
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G stable, MIMO, linear-time invariant, discrete-time system
with input-output properties characterized by the impulse
response coefficients gk through the equation:

y(t) =
∞∑

k=0

gku(t − k) (1)

where y(t) ∈ Rp, u(t) ∈ Rm, and gk ∈ Rp×m.

G(ejω) =
∞∑

k=1

gke−jωk , 0 ≤ ω ≤ π.

G(e−jω) = G∗(ejω), 0 ≤ ω ≤ π.
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For engineering purposes, a more practical model is a
state-space model:

x(k + 1) = Ax(k) + Bu(k),

y(k) = Cx(k) + Du(k)

where x(t) ∈ Rn.
The state-space model is a special case of (1) with

gk =

{
D, k = 0,

CAk−1B, k > 0.

Identify a finite-dimensional model which is a good
approximation of the infinite-dimensional system (1).
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System assumptions

Some further assumptions must be imposed on the system to
obtain good approximations.

The Hankel operator of G(z) with symbol Γ is defined on `m
2 by

(Γu)(t) =
∞∑

i=0

gt+i+1u(i), t ≥ 0

is a mapping into `p
2. Let Γ∗ be the adjoint of Γ.

The Hankel singular values Γi(G) are defined to be the square
roots of the eigenvalues of ΓΓ∗.

Let ui and vi be the corresponding normalized eigenvectors of
ΓΓ∗ and Γ∗Γ, respectively.
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The pair (vi , ui) is called the Schmidt pair and satisfies

Γvi = Γi(G)ui ,

Γ∗ui = Γi(G)vi .

A system G is said to be Hilbert-Schmidt if its Hankel singular
values satisfy

∞∑
k=1

Γ2
k (G) < ∞

and nuclear if
∞∑

k=1

Γk (G) < ∞.

All finite-dimensional linear systems form a subset of
nuclear systems and nuclear systems themselves are
contained in the set of Hilbert-Schmidt systems.
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These classes can be identified with impulse-response decay
rates.

G has Hilbert-Schmidt Hankel operator if

‖gk‖ = O(k−α), α > 1

or
‖gk‖ = O(1/(k log k))

which follows from the identity
∞∑

k=1

Γ2
k (G) =

∞∑
k=1

k‖gk‖2.

A sufficient condition for the nuclearity (Bonnet: 1993)

‖gk‖ = O(k−α), α > 3/2.
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Conversely, sufficient conditions for a system to have a
Hilbert-Schmidt or nuclear Hankel operator can be stated
in terms of boundary behavior of the system transfer
function and its derivatives (Curtain:1985)

Assumption 1 The system G ∈ H∞ has a continuous transfer
function and a Hilbert-Schmidt Hankel operator Γ. For a fixed n,
the Hankel singular values satisfy

Γn(G) > Γn+1(G).

Let f be a complex-valued periodic function on the unit
circle. Its modulus of continuity is defined by

ωf (t) = sup
|x−y |≤t

‖f (eix)− f (eiy )‖.
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f is of class Λα (0 < α ≤ 1) if ωf (t) = O(tα) as t → 0.

Optimal Hankel norm and balanced truncations are two
popular model reduction techniques for nuclear systems:

‖Gn −G‖∞ ≤ 2
∞∑

k=n+1

Γk (G) (2)

where repeated singular values are omitted in the sum and
Gn is nth-order balanced truncation of G (Hinrichsen and
Pritchard: 1990).
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Noise assumptions

Data: Gk = G(ejπk/M) + ek , k = 0, · · · , M.
Assumption 2 The noise ek , k = 0, · · · , M are independent
zero-mean complex random variables with uniformly-bounded
second moments

Rk = E{ekeH
k } ≤ R̄, ∀k .

1 Objective: to achieve (2) with probability one:

lim
M→∞

‖Ĝn,M −G‖∞ ≤ 2
∞∑

k=n+1

Γk (G) w.p.1, (3)

where Ĝn,M is the nth-order identified model.
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Algorithm 1
1. Expand the transfer function samples to the full circle

GM+k = G∗
M−k , k = 1, · · · , M − 1

and perform the 2M-point inverse DFT

ĝi =
1

2M

2M−1∑
k=0

Gkej2πik/2M , i = 0, · · · , q + r − 1

to obtain the estimates of gi .
2. Construct the q × r -block Hankel matrix

Ĥqr =


ĝ1 ĝ2 · · · ĝr
ĝ2 ĝ3 · · · ĝr+1
...

...
. . .

...
ĝq ĝq+1 · · · ĝq+r−1
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and perform an SVD for Ĥqr as follows

Ĥqr =
[
Û1 Û2

] [
Σ̂1 0
0 Σ̂2

][
V̂ T

1
V̂ T

2

]

where Σ̂1 contains the n dominant singular values.

3. Determine the system matrices as

Â = (Jq
1 Û1)

†Jq
2 Û1,
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Ĉ = Jq
3 Û1,

B̂ = (I − Â2M)Σ̂1V̂ T
1 J r

4,

D̂ = ĝ0 − ĈÂ2M−1(I − Â2M)−1B̂,

where

Jq
1 =

[
I(q−1)p 0(q−1)p×p

]
,

Jq
2 =

[
0(q−1)p×p I(q−1)p

]
,

Jq
3 =

[
Ip 0p×(q−1)p

]
,

J r
4 =

[
Im

0(r−1)m×m

]
.
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4. The estimated transfer function is

Ĝq,r ,n,M(z) = D̂ + Ĉ(zI − Â)−1B̂.

Theorem 1 Let G be a stable system of order n. Assume
q > n, r ≥ n and 2M ≥ q + r . Suppose that M + 1 equidistant
noise-free frequency-response measurements of G on [O, π]
are available and let Ĝq,r ,n,M be given by Algorithm 1. Then

‖Ĝq,r ,n,M −G‖∞ = 0.
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Let q = n + 1 and r = n to meet the requirements on r and
q which imply that M = n + 1, and consequently n + 2
equidistant samples of the frequency-response function on
[0, π] are required.

Algorithm 1 is in the class of correct algorithms when
applied to data from systems of finite dimension and uses
a minimum amount of data among all such algorithms.

Remarkable advantage with respect to black-box
identification algorithms which use linearly parametrized
model structures and satify (3).
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Noise-free data case
Consistency analysis
Two related consistent algorithms

Theorem 2 Let G be a linear system satisfying Assumption 1.
Let ωG be the modulus of continuity of G and assume that q
and r satisfy the conditions

(i) lim
q,r ,M→∞

√
qr

q + r
M

= 0,

(ii) lim
q,r ,M→∞

√
qrωG

( π

M

)
= 0.

Let Gn be the balanced truncation of G be the balanced
truncation of order n. Let Ĝq,r ,n,M be given by Algorithm 1 using
M + 1 noise-free frequency-response measurements of G
equidistantly spaced on [O, π]. Then

lim
q,r ,M→∞

‖Ĝq,r ,n,M −Gn‖∞ = 0.
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Noise-free data case
Consistency analysis
Two related consistent algorithms

The Hilbert-Schmidt assumption on G merely implies that
‖gk‖ = o(1/

√
k). The set of Hilbert-Schmidt systems is not

contained in H∞ (Duren: 1970, Exercise 6-7 in Chapter 6).

`p×m
1 is not contained in the set of Hilbert-Schmidt systems

either. Example:

gk =

{
1√
k
, for k = 1, 24, 34, · · · ,

0, otherwise.

‖g‖1 =
∑∞

k=1 k−2 < ∞ while
∑∞

k=1 k |gk |2 = ∞.

Assumption 1 imposed on the system is rather weak!
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Noise-free data case
Consistency analysis
Two related consistent algorithms

Convergence condition
√

qrωG(π/M)

Suppose ‖gk‖ = O(k−α). If α > 1, such systems are
Hilbert-Schmidt and in `1. Moreover,

Lemma Assume that ‖gk‖ = O(k−α) for some α > 1. Then,
G(ejθ) ∈ Λmin{2,α}−1.

Hence, for this class, we have a convergence requirement

qr = o(M2α−2), for 1 < α ≤ 2

which drops out for α > 2 since have M > q, r .

Lemma 5 is sharp. Thus, as α gets closer to one, more and
more data are required for the convergence to take place.
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Noise-free data case
Consistency analysis
Two related consistent algorithms

Let r = O(q). Then, condition (i) in Theorem 2 reads off
q = o(

√
M) and for the class in the lemma, condition (ii) in

Theorem 2 becomes q = O(Mα−1).

q =

{
o(
√

M), α ≥ 3/2,

o(Mα−1), 1 < α < 3/2.

For nuclear systems characterized by α > 3/2, the only
convergence requirement is q = o(

√
M) if q = O(r).
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Noise-free data case
Consistency analysis
Two related consistent algorithms

Theorem 3 Let G be a system satisfying Assumption 1. Let ωG
be the modulus of continuity of G. Assume q, r satisfy condition
(ii) in Theorem 2 and be at most O(

√
M(log M)−β) for some

β > 1/2. Let Gn be the balanced truncation of G of order n. Let
Ĝg,r ,n,M be given by Algorithm 1 using equidistantly spaced
M + 1 frequency-response measurements of G on [0, π]. Let ek
satisfy Assumption 2. Then

lim
q,r ,M→∞

‖Ĝq,r ,n,M −Gn‖∞ = 0, w.p.1.

Furthermore if the Hankel operator of G is nuclear, then

lim
q,r ,M→∞

‖Ĝq,r ,n,M −Gn‖∞ ≤ 2
∞∑

k=n+1

Γk (G), w.p.1.

where repeated singular values are omitted in the sum.
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Noise-free data case
Consistency analysis
Two related consistent algorithms

Corollary Let G be a system satisfying Assumption 1. Assume
that ‖gk‖ = O(k−α) for some α > 1. Let q and r be at most
O(
√

M(log M)−β) for some β > 1/2 and satisfy
qr = o(M2 min{α,2}−2). Let Ĝg,r ,n,M be given by Algorithm 1
using equidistantly spaced M + 1 frequency-response
measurements of G on [0, π]. Let ek satisfy Assumption 2. Let
Gn be the balanced truncation of G of order n. Then

lim
q,r ,M→∞

‖Ĝq,r ,n,M −Gn‖∞ = 0, w.p.1.

Furthermore, if α > 3/2 then

lim
q,r ,M→∞

‖Ĝq,r ,n,M −Gn‖∞ ≤ 2
∞∑

k=n+1

Γk (G), w.p.1.

where repeated singular values are omitted in the sum.
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Noise-free data case
Consistency analysis
Two related consistent algorithms

Assume q = O(r), then the consistency condition in
Corollary 1 is

q =

{
o(Mα−1), if α < 3/2,

O(
√

M(log M)−β);β > 1/2, if α ≥ 3/2.

If α < 3/2, rates for q and r depend on the smoothness of
the system impulse response.

For the nuclear systems characterized by α > 3/2, rates
are determined by approximation errors caused by the
measurement noise.
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Noise-free data case
Consistency analysis
Two related consistent algorithms

Let Â, Ĉ be calculated as in Algorithm 1, B̂ as

B̂ = Σ̂1V̂ T
1

[
Im

0(r−1)m×m

]
and D̂ = ĝ0. This algorithm, which we call Algorithm 2,
studied in a modal analysis context by Juang and Suziki
(1988) is a biased algorithm. Indeed, Example 1 illustrates
poor performance of Algorithm 2 on real data of finite
length when it is applied to lightly damped systems.

The bias term vanishes asymptotically and the algorithm
yields truncated balanced realizations of the identified
system under same assumptions in Theorem 3.
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Noise-free data case
Consistency analysis
Two related consistent algorithms

In the third algorithm, which we call Algorithm 3, gi are
estimated as in Algorithm 1 and a pre-identified model is
calculated by

Ĝpi(z) =
k∑

i=0

ĝiz−i .

The nth-order identified model is obtained from Ĝpi by a
recursively implemented balanced truncation technique.
Thanks to the FIR structure!

Algorithm 1 contains Algorithm 3 as a special case. Thus,
Algorithm 3 is also consistent under the assumptions of
Theorem 3 though it is biased for finite data sets. (Algorithm
1 yields the nth-order balanced truncation of Ĝpi).
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Noise-free data case
Consistency analysis
Two related consistent algorithms

The bias error of Algorithm 3 has two components:
1 the first-stage error ‖G − Ĝpi‖∞
2 approximation error: ‖Ĝpi − Ĝ‖∞.

The total error is bounded above by the sum of ‖G− Ĝpi‖∞
and ‖Ĝpi − Ĝ‖∞. In the same example, Algorithm 3
performs poorly on the same data due to large
approximation errors.
In the choice of a potential identification algorithm, the
posterior error caused by model reduction and correctness
in addition to asymptotic properties must be taken into
account.
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Algorithm 1 differs from McKelvey etal.: 1996, which we
call Algorithm 4, only in the calculation of B̂ and D̂:

B̂, D̂ = arg min
B∈Rn×m

D∈Rp×m

2M−1∑
i=0

‖Gi − G̃(ejπi/M)‖2
F

where
G̃(z) = D + Ĉ(zI − Ĉ)−1B.

Algorithm 4 is also correct and uses minimal data when
restricted to finite-dimensional systems, In Algorithm 1, B̂
and D̂ were modified to obtain truncation error formula
while maintaining correctness of Algorithm 2.
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The least-squares procedure to estimate B̂ and D̂ is a
particular case of the NLS identification algorithm where Â
and Ĉ as well are estimated. The NLS is not suitable for
narrow band data if model fit is measured in the H∞-norm.

To reduce model mismatch, model orders should be
increased. As this happens, pole-zero sensitivity of the
model increases. Example 1 of this section illustrates a
model error fluctuation at high orders for the NLS.

Since Algorithm 1 and Algorithm 4 yield identical
asymptotic poles, the asymptotic performance of Algorithm
4 should be expected between the NLS and Algorithm 1.
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Example 1 Real data set obtained at the Jet Propulsion
Laboratory, Pasadena, California originating from a
frequency-response experiment on a flexible structure.

• The JPL-data consist of a total of M = 512 complex
frequency samples in the frequency range [ 1.23,628] and have
several lightly damped modes.

• The discrete-time models matching the given frequency
response were constructed applying zero-order hold sampling
equivalence and five algorithms.

• q = r = 512.
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Plot of ‖ĜM −G‖m,∞ = maxωk |ĜM(ejωk )−Gk | for different model orders and

algorithms in Example 1.
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Algorithm 3 was tested by Friedman and Khargonekar:
1995 on the JPL-data.

The pre-identified model had a finite-impulse response
represented by 1024 coefficients and was reduced by a
recursively implemented model reduction procedure. (With
this choice of model order, the data are entirely explained
by the model!)

The use of an FIR model as an intermediate step in the
identification leads to less accurate models as compared
with a direct approximation of a rational model to the given
data using a correct algorithm.
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Example 2 Consider the problem of approximating

G(s) =
1

s + 1− e−2−s (4)

with a finite-dimensional linear model (Gu etal.: 1989).

512 uniformly spaced noise-free frequency-response data
on [0, π] derived from (4) by use of the bilinear map.
q = r = 512 which gives the maximal size Hankel matrix.
Aprroximation errors: 1st order: 3.1× 10−2 of Algorithm 1
versus 3.2× 10−2 of Gu etal.: 1989; 24th-order:
1.4× 10−6 of Algorithm 1 versus 7.9× 10−3 of Gu etal.:
1989; 27th-order: 2.4× 10−12 of Algorithm 1.
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Plot of ‖ĜM −G‖m,∞ for different model orders in Example 2 using Algorithm 1

with "x" and without "o" projecting unstable eigenvalues of Â into the unit disk.
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We presented a correct, frequency domain
subspace-based algorithm yielding w.p.1 balanced
truncations of the identified system.

Two examples were used to illustrate the properties of
different algorithms and to show the practical applicability
of the algorithms.
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