Subspace-based Identification of Infinite-dimensional Multivariable Systems from Frequency-response Data

Hüseyin Akçay

Department of Electrical and Electronics Engineering
Anadolu University, Eskişehir, Turkey
October 12, 2008

Outline

(9) Introduction
(2) Problem Formulation
(3) Subspace-based algorithm
(4) Convergence analysis

- Noise-free data case
- Consistency analysis
- Two related consistent algorithms
(5) identification Examples

6 Conclusions

A subspace-based identification algorithm, which takes samples of an infinite-dimensional transfer function, is shown to produce estimates which converge to a balanced truncation of the system.

- Identification of infinite-dimensional systems studied in time-domain in Ljung and Yuan: 1985; Huang and Guo: 1990, Hjalmarsson: 1993.
- In frequency-domain studied in Helmicki etal.: 1991; Mäkilä and Partington: 1991; Gu and Khargonekar: 1992.
- Despite that low-order nominal models are preferred in most practical applications as in the design of model-based controllers, the true systems are usually of high or infinite order with unmodeled dynamics and random/deterministic noise.
- Thus, the basic task of system identification is to construct a simple nominal model based on the measured data generated from a complex system.

Based on how the disturbances are characterized, problem formulations can be divided into two categories:
(1) Stochastic formulation leading to instrumental variable and prediction error methods (Ljung: 1997, Södestrom and Stoica: 1989). "The least-squares method".
(2) Deterministic formulation leading to "robustly convergent" non-linear algorithms (Helmicki etal.: 1991, Gu and Khargonekar: 1992).

- In both approaches, a prejudice-free model set of high complexity is the underlying model structure.
- In most practical applications, the model is required to be of restricted complexity despite the fact that the true system might have infinite order. Thus, model reduction is a complementary step to the black-box identification.
- Besides the computational complexity, this step induces large approximation errors.
- An alternative method is to directly realize low complexity models from the experimental data.
- Nonlinear parametric optimization (Ljung: 1993, Pintelon et al.: 1994b) where the solution is obtained by iterations.
- Non-iterative subspace-based algorithms delivering state-space models without any parametric optimization (Verhaegen and Dewilde: 1992, Van Overschee and De Moor: 1994).
- Models in canonical minimal parametrizations are numerically sensitive for high-order models, in comparison with state-space models in a balanced realization.
- Subspace-based algorithms are more robust to numerical inaccuracies than the canonically parametrized models since the model obtained is normally close to being balanced.
- Frequency-domain subspace algorithms (Juang and Suziki: 1988, Liu etal.: 1994, McKelvey etal.,: 1996 based on the realization algorithms by Ho and Kalman (1966) and Kung (1978).
- Ho and Kalman: 1966 and Kung: 1978 find a minimal state-space realization given a finite sequence of the Markov parameters estimated from the inverse discrete Fourier transform (DFT) of the frequency-response data.
- Juang and Suziki: 1988 is exact only if the system has a finite impulse response, therefore for lightly damped systems yields very poor estimates.
- In McKelvey etal.: 1994, the inverse DFT technique is combined with a subspace identification step yielding the true finite-dimensional system in spite of this aliasing effect.
- Current work reporting extensions of McKelvey etal.: 1996 to infinite-dimensional systems.
- G stable, MIMO, linear-time invariant, discrete-time system with input-output properties characterized by the impulse response coefficients g_{k} through the equation:

$$
\begin{equation*}
y(t)=\sum_{k=0}^{\infty} g_{k} u(t-k) \tag{1}
\end{equation*}
$$

where $y(t) \in \mathbf{R}^{p}, u(t) \in \mathbf{R}^{m}$, and $g_{k} \in \mathbf{R}^{p \times m}$.

$$
\begin{array}{cc}
G\left(e^{j \omega}\right)=\sum_{k=1}^{\infty} g_{k} e^{-j \omega k}, & 0 \leq \omega \leq \pi \\
G\left(e^{-j \omega}\right)=G^{*}\left(e^{j \omega}\right), & 0 \leq \omega \leq \pi
\end{array}
$$

- For engineering purposes, a more practical model is a state-space model:

$$
\begin{aligned}
x(k+1) & =A x(k)+B u(k) \\
y(k) & =C x(k)+D u(k)
\end{aligned}
$$

where $x(t) \in \mathbf{R}^{n}$.

- The state-space model is a special case of (1) with

$$
g_{k}= \begin{cases}D, & k=0 \\ C A^{k-1} B, & k>0\end{cases}
$$

- Identify a finite-dimensional model which is a good approximation of the infinite-dimensional system (1).

System assumptions

Some further assumptions must be imposed on the system to obtain good approximations.

The Hankel operator of $G(z)$ with symbol Γ is defined on ℓ_{2}^{m} by

$$
(\Gamma u)(t)=\sum_{i=0}^{\infty} g_{t+i+1} u(i), \quad t \geq 0
$$

is a mapping into ℓ_{2}^{p}. Let Γ^{*} be the adjoint of Γ.
The Hankel singular values $\Gamma_{i}(G)$ are defined to be the square roots of the eigenvalues of $\Gamma \Gamma^{*}$.

Let u_{i} and v_{i} be the corresponding normalized eigenvectors of $\Gamma \Gamma^{*}$ and $\Gamma^{*} \Gamma$, respectively.

The pair $\left(v_{i}, u_{i}\right)$ is called the Schmidt pair and satisfies

$$
\begin{aligned}
\Gamma v_{i} & =\Gamma_{i}(G) u_{i}, \\
\Gamma^{*} u_{i} & =\Gamma_{i}(G) v_{i}
\end{aligned}
$$

A system G is said to be Hilbert-Schmidt if its Hankel singular values satisfy

$$
\sum_{k=1}^{\infty} \Gamma_{k}^{2}(G)<\infty
$$

and nuclear if

$$
\sum_{k=1}^{\infty} \Gamma_{k}(G)<\infty
$$

- All finite-dimensional linear systems form a subset of nuclear systems and nuclear systems themselves are contained in the set of Hilbert-Schmidt systems.

These classes can be identified with impulse-response decay rates.

- G has Hilbert-Schmidt Hankel operator if

$$
\left\|g_{k}\right\|=O\left(k^{-\alpha}\right), \quad \alpha>1
$$

or

$$
\left\|g_{k}\right\|=O(1 /(k \log k))
$$

which follows from the identity

$$
\sum_{k=1}^{\infty} \Gamma_{k}^{2}(G)=\sum_{k=1}^{\infty} k\left\|g_{k}\right\|^{2}
$$

- A sufficient condition for the nuclearity (Bonnet: 1993)

$$
\left\|g_{k}\right\|=O\left(k^{-\alpha}\right), \quad \alpha>3 / 2
$$

- Conversely, sufficient conditions for a system to have a Hilbert-Schmidt or nuclear Hankel operator can be stated in terms of boundary behavior of the system transfer function and its derivatives (Curtain:1985)

Assumption 1 The system $G \in \mathcal{H}_{\infty}$ has a continuous transfer function and a Hilbert-Schmidt Hankel operator Γ. For a fixed n, the Hankel singular values satisfy

$$
\Gamma_{n}(G)>\Gamma_{n+1}(G)
$$

- Let f be a complex-valued periodic function on the unit circle. Its modulus of continuity is defined by

$$
\omega_{f}(t)=\sup _{|x-y| \leq t}\left\|f\left(e^{i x}\right)-f\left(e^{i y}\right)\right\|
$$

- f is of class $\Lambda_{\alpha}(0<\alpha \leq 1)$ if $\omega_{f}(t)=O\left(t^{\alpha}\right)$ as $t \rightarrow 0$.
- Optimal Hankel norm and balanced truncations are two popular model reduction techniques for nuclear systems:

$$
\begin{equation*}
\left\|G_{n}-G\right\|_{\infty} \leq 2 \sum_{k=n+1}^{\infty} \Gamma_{k}(G) \tag{2}
\end{equation*}
$$

where repeated singular values are omitted in the sum and G_{n} is nth-order balanced truncation of G (Hinrichsen and Pritchard: 1990).

Noise assumptions

Data: $G_{k}=G\left(e^{j \pi k / M}\right)+e_{k}, \quad k=0, \cdots, M$. Assumption 2 The noise $e_{k}, k=0, \cdots, M$ are independent zero-mean complex random variables with uniformly-bounded second moments

$$
R_{k}=\mathrm{E}\left\{e_{k} e_{k}^{H}\right\} \leq \bar{R}, \quad \forall k
$$

(1) Objective: to achieve (2) with probability one:

$$
\begin{equation*}
\lim _{M \rightarrow \infty}\left\|\hat{G}_{n, M}-G\right\|_{\infty} \leq 2 \sum_{k=n+1}^{\infty} \Gamma_{k}(G) \quad \text { w.p.1, } \tag{3}
\end{equation*}
$$

where $\hat{G}_{n, M}$ is the nth-order identified model.

Algorithm 1

- 1. Expand the transfer function samples to the full circle

$$
G_{M+k}=G_{M-k}^{*}, \quad k=1, \cdots, M-1
$$

and perform the 2 M -point inverse DFT

$$
\hat{g}_{i}=\frac{1}{2 M} \sum_{k=0}^{2 M-1} G_{k} e^{j 2 \pi i k / 2 M}, \quad i=0, \cdots, q+r-1
$$

to obtain the estimates of g_{i}.

- 2. Construct the $q \times r$-block Hankel matrix

$$
\hat{H}_{q r}=\left[\begin{array}{cccc}
\hat{g}_{1} & \hat{g}_{2} & \cdots & \hat{g}_{r} \\
\hat{g}_{2} & \hat{g}_{3} & \cdots & \hat{g}_{r+1} \\
\vdots & \vdots & \ddots & \vdots \\
\hat{g}_{q} & \hat{g}_{q+1} & \cdots & \hat{g}_{q+r-1}
\end{array}\right]
$$

and perform an SVD for $\hat{H}_{q} r$ as follows

$$
\hat{H}_{q r}=\left[\begin{array}{ll}
\hat{U}_{1} & \hat{U}_{2}
\end{array}\right]\left[\begin{array}{cc}
\hat{\Sigma}_{1} & 0 \\
0 & \hat{\Sigma}_{2}
\end{array}\right]\left[\begin{array}{c}
\hat{V}_{1}^{\top} \\
\hat{V}_{2}^{T}
\end{array}\right]
$$

where $\hat{\Sigma}_{1}$ contains the n dominant singular values.

- 3. Determine the system matrices as

$$
\hat{A}=\left(J_{1}^{a} \hat{U}_{1}\right)^{\dagger} J_{2}^{q} \hat{U}_{1}
$$

$$
\begin{aligned}
& \hat{C}=J_{3}^{q} \hat{U}_{1}, \\
& \hat{B}=\left(I-\hat{A}^{2 M}\right) \hat{\Sigma}_{1} \hat{V}_{1}^{T} J_{4}^{r}, \\
& \hat{D}=\hat{g}_{0}-\hat{C} \hat{A}^{2 M-1}\left(I-\hat{A}^{2 M}\right)^{-1} \hat{B},
\end{aligned}
$$

where

$$
\begin{aligned}
J_{1}^{q} & =\left[\begin{array}{ll}
I_{(q-1) p} & 0_{(q-1) p \times p}
\end{array}\right], \\
J_{2}^{q} & =\left[\begin{array}{ll}
0_{(q-1) p \times p} & I_{(q-1) p}
\end{array}\right], \\
J_{3}^{q} & =\left[\begin{array}{ll}
I_{p} & 0_{p \times(q-1) p}
\end{array}\right], \\
J_{4}^{r} & =\left[\begin{array}{c}
I_{m} \\
0_{(r-1) m \times m}
\end{array}\right] .
\end{aligned}
$$

- 4. The estimated transfer function is

$$
\hat{G}_{q, r, n, M}(z)=\hat{D}+\hat{C}(z I-\hat{A})^{-1} \hat{B}
$$

Theorem 1 Let G be a stable system of order n. Assume $q>n, r \geq n$ and $2 M \geq q+r$. Suppose that $M+1$ equidistant noise-free frequency-response measurements of G on $[O, \pi$] are available and let $\hat{G}_{q, r, n, M}$ be given by Algorithm 1. Then

$$
\left\|\hat{G}_{q, r, n, M}-G\right\|_{\infty}=0
$$

- Let $q=n+1$ and $r=n$ to meet the requirements on r and q which imply that $M=n+1$, and consequently $n+2$ equidistant samples of the frequency-response function on $[0, \pi]$ are required.
- Algorithm 1 is in the class of correct algorithms when applied to data from systems of finite dimension and uses a minimum amount of data among all such algorithms.
- Remarkable advantage with respect to black-box identification algorithms which use linearly parametrized model structures and satify (3).

Outline

(1) Introduction
2) Problem Formulation
(3. Subspace-based algorithm

4 Convergence analysis

- Noise-free data case
- Consistency analysis
- Two related consistent algorithmsidentification ExamplesConclusions

Theorem 2 Let G be a linear system satisfying Assumption 1. Let ω_{G} be the modulus of continuity of G and assume that q and r satisfy the conditions

> (i) $\quad \lim _{q, r, M \rightarrow \infty} \sqrt{q r} \frac{q+r}{M}=0$,
> (ii) $\quad \lim _{q, r, M \rightarrow \infty} \sqrt{q r} \omega_{G}\left(\frac{\pi}{M}\right)=0$.

Let G_{n} be the balanced truncation of G be the balanced truncation of order n. Let $\hat{G}_{q, r, n, M}$ be given by Algorithm 1 using $M+1$ noise-free frequency-response measurements of G equidistantly spaced on $[O, \pi]$. Then

$$
\lim _{q, r, M \rightarrow \infty}\left\|\hat{G}_{q, r, n, M}-G_{n}\right\|_{\infty}=0
$$

- The Hilbert-Schmidt assumption on G merely implies that $\left\|g_{k}\right\|=o(1 / \sqrt{k})$. The set of Hilbert-Schmidt systems is not contained in \mathcal{H}_{∞} (Duren: 1970, Exercise 6-7 in Chapter 6).
- $\ell_{1}^{p \times m}$ is not contained in the set of Hilbert-Schmidt systems either. Example:

$$
\begin{gathered}
g_{k}=\left\{\begin{array}{cc}
\frac{1}{\sqrt{k}}, & \text { for } k=1,2^{4}, 3^{4}, \cdots, \\
0, & \text { otherwise } .
\end{array}\right. \\
\|g\|_{1}=\sum_{k=1}^{\infty} k^{-2}<\infty \text { while } \sum_{k=1}^{\infty} k\left|g_{k}\right|^{2}=\infty
\end{gathered}
$$

- Assumption 1 imposed on the system is rather weak!

Convergence condition $\sqrt{q r} \omega_{G}(\pi / M)$

Suppose $\left\|g_{k}\right\|=O\left(k^{-\alpha}\right)$. If $\alpha>1$, such systems are Hilbert-Schmidt and in ℓ_{1}. Moreover,

Lemma Assume that $\left\|g_{k}\right\|=O\left(k^{-\alpha}\right)$ for some $\alpha>1$. Then, $G\left(e^{j \theta}\right) \in \Lambda_{\min \{2, \alpha\}-1}$.

- Hence, for this class, we have a convergence requirement

$$
q r=o\left(M^{2 \alpha-2}\right), \quad \text { for } 1<\alpha \leq 2
$$

which drops out for $\alpha>2$ since have $M>q, r$.

- Lemma 5 is sharp. Thus, as α gets closer to one, more and more data are required for the convergence to take place.
- Let $r=O(q)$. Then, condition (i) in Theorem 2 reads off $q=o(\sqrt{M})$ and for the class in the lemma, condition (ii) in Theorem 2 becomes $q=O\left(M^{\alpha-1}\right)$.

$$
q=\left\{\begin{array}{lr}
o(\sqrt{M}), & \alpha \geq 3 / 2, \\
o\left(M^{\alpha-1}\right), & 1<\alpha<3 / 2 .
\end{array}\right.
$$

- For nuclear systems characterized by $\alpha>3 / 2$, the only convergence requirement is $q=o(\sqrt{M})$ if $q=O(r)$.

Noise-free data case
Consistency analysis
Two related consistent algorithms

Outline

(1) Introduction
(2) Problem Formulation
(3) Subspace-based algorithm
(4) Convergence analysis

- Noise-free data case
- Consistency analysis
- Two related consistent algorithmsidentification ExamplesConclusions

Theorem 3 Let G be a system satisfying Assumption 1. Let ω_{G} be the modulus of continuity of G. Assume q, r satisfy condition (ii) in Theorem 2 and be at most $O\left(\sqrt{M}(\log M)^{-\beta}\right)$ for some $\beta>1 / 2$. Let G_{n} be the balanced truncation of G of order n. Let $\hat{G}_{g, r, n, M}$ be given by Algorithm 1 using equidistantly spaced $M+1$ frequency-response measurements of G on $[0, \pi]$. Let e_{k} satisfy Assumption 2. Then

$$
\lim _{q, r, M \rightarrow \infty}\left\|\hat{G}_{q, r, r, M}-G_{n}\right\|_{\infty}=0, \quad \text { w.p.1. }
$$

Furthermore if the Hankel operator of G is nuclear, then

$$
\lim _{q, r, M \rightarrow \infty}\left\|\hat{G}_{q, r, n, M}-G_{n}\right\|_{\infty} \leq 2 \sum_{k=n+1}^{\infty} \Gamma_{k}(G) \text {, w.p.1. }
$$

where repeated singular values are omitted in the sum.

Corollary Let G be a system satisfying Assumption 1. Assume that $\left\|g_{k}\right\|=O\left(k^{-\alpha}\right)$ for some $\alpha>1$. Let q and r be at most $O\left(\sqrt{M}(\log M)^{-\beta}\right)$ for some $\beta>1 / 2$ and satisfy $q r=o\left(M^{2} \min \{\alpha, 2\}-2\right)$. Let $\hat{G}_{g, r, n, M}$ be given by Algorithm 1 using equidistantly spaced $M+1$ frequency-response measurements of G on $[0, \pi]$. Let e_{k} satisfy Assumption 2. Let G_{n} be the balanced truncation of G of order n. Then

$$
\lim _{q, r, M \rightarrow \infty}\left\|\hat{G}_{q, r, r, M}-G_{n}\right\|_{\infty}=0, \quad \text { w.p.1. }
$$

Furthermore, if $\alpha>3 / 2$ then

$$
\lim _{q, r, M \rightarrow \infty}\left\|\hat{G}_{q, r, n, M}-G_{n}\right\|_{\infty} \leq 2 \sum_{k=n+1}^{\infty} \Gamma_{k}(G) \text {, w.p.1. }
$$

where repeated singular values are omitted in the sum.

- Assume $q=O(r)$, then the consistency condition in Corollary 1 is

$$
q= \begin{cases}o\left(M^{\alpha-1}\right), & \text { if } \alpha<3 / 2 \\ O\left(\sqrt{M}(\log M)^{-\beta}\right) ; \beta>1 / 2, & \text { if } \alpha \geq 3 / 2\end{cases}
$$

- If $\alpha<3 / 2$, rates for q and r depend on the smoothness of the system impulse response.
- For the nuclear systems characterized by $\alpha>3 / 2$, rates are determined by approximation errors caused by the measurement noise.

Two related consistent algorithms

Outline

(1) Introduction
2) Problem Formulation
(3. Subspace-based algorithm

4 Convergence analysis

- Noise-free data case
- Consistency analysis
- Two related consistent algorithmsidentification ExamplesConclusions
- Let \hat{A}, \hat{C} be calculated as in Algorithm $1, \hat{B}$ as

$$
\hat{B}=\hat{\Sigma}_{1} \hat{V}_{1}^{T}\left[\begin{array}{c}
I_{m} \\
0_{(r-1) m \times m}
\end{array}\right]
$$

and $\hat{D}=\hat{g}_{0}$. This algorithm, which we call Algorithm 2, studied in a modal analysis context by Juang and Suziki (1988) is a biased algorithm. Indeed, Example 1 illustrates poor performance of Algorithm 2 on real data of finite length when it is applied to lightly damped systems.

- The bias term vanishes asymptotically and the algorithm yields truncated balanced realizations of the identified system under same assumptions in Theorem 3.
- In the third algorithm, which we call Algorithm 3, g_{i} are estimated as in Algorithm 1 and a pre-identified model is calculated by

$$
\hat{G}_{\mathrm{pi}}(z)=\sum_{i=0}^{k} \hat{g}_{i} z^{-i}
$$

The nth-order identified model is obtained from \hat{G}_{pi} by a recursively implemented balanced truncation technique. Thanks to the FIR structure!

- Algorithm 1 contains Algorithm 3 as a special case. Thus, Algorithm 3 is also consistent under the assumptions of Theorem 3 though it is biased for finite data sets. (Algorithm 1 yields the nth-order balanced truncation of \hat{G}_{pi}).
- The bias error of Algorithm 3 has two components:
(1) the first-stage error $\left\|G-\hat{G}_{\mathrm{pi}}\right\|_{\infty}$
(2) approximation error: $\left\|\hat{G}_{\mathrm{pi}}-\hat{G}\right\|_{\infty}$.

The total error is bounded above by the sum of $\left\|G-\hat{G}_{\mathrm{pi}}\right\|_{\infty}$ and $\left\|\hat{G}_{\mathrm{pi}}-\hat{G}\right\|_{\infty}$. In the same example, Algorithm 3 performs poorly on the same data due to large approximation errors.

- In the choice of a potential identification algorithm, the posterior error caused by model reduction and correctness in addition to asymptotic properties must be taken into account.
- Algorithm 1 differs from McKelvey etal.: 1996, which we call Algorithm 4, only in the calculation of \hat{B} and \hat{D} :

$$
\hat{B}, \hat{D}=\arg \min _{\substack{B \in R \times m \\ D \in \mathbf{R}^{\times \times m}}} \sum_{i=0}^{2 M-1}\left\|G_{i}-\tilde{G}\left(e^{j \pi i / M}\right)\right\|_{F}^{2}
$$

where

$$
\tilde{G}(z)=D+\hat{C}(z I-\hat{C})^{-1} B .
$$

- Algorithm 4 is also correct and uses minimal data when restricted to finite-dimensional systems, In Algorithm 1, \hat{B} and \hat{D} were modified to obtain truncation error formula while maintaining correctness of Algorithm 2.
- The least-squares procedure to estimate \hat{B} and \hat{D} is a particular case of the NLS identification algorithm where \hat{A} and \hat{C} as well are estimated. The NLS is not suitable for narrow band data if model fit is measured in the \mathcal{H}_{∞}-norm.
- To reduce model mismatch, model orders should be increased. As this happens, pole-zero sensitivity of the model increases. Example 1 of this section illustrates a model error fluctuation at high orders for the NLS.
- Since Algorithm 1 and Algorithm 4 yield identical asymptotic poles, the asymptotic performance of Algorithm 4 should be expected between the NLS and Algorithm 1.

Example 1 Real data set obtained at the Jet Propulsion Laboratory, Pasadena, California originating from a frequency-response experiment on a flexible structure.

- The JPL-data consist of a total of $M=512$ complex frequency samples in the frequency range [$1.23,628$] and have several lightly damped modes.
- The discrete-time models matching the given frequency response were constructed applying zero-order hold sampling equivalence and five algorithms.
- $q=r=512$.

Plot of $\left\|\hat{G}^{M}-G\right\|_{m, \infty}=\max _{\omega_{k}}\left|\hat{G}^{M}\left(e^{j \omega_{k}}\right)-G_{k}\right|$ for different model orders and algorithms in Example 1.

- Algorithm 3 was tested by Friedman and Khargonekar: 1995 on the JPL-data.
- The pre-identified model had a finite-impulse response represented by 1024 coefficients and was reduced by a recursively implemented model reduction procedure. (With this choice of model order, the data are entirely explained by the model!)
- The use of an FIR model as an intermediate step in the identification leads to less accurate models as compared with a direct approximation of a rational model to the given data using a correct algorithm.

Example 2 Consider the problem of approximating

$$
\begin{equation*}
G(s)=\frac{1}{s+1-e^{-2-s}} \tag{4}
\end{equation*}
$$

with a finite-dimensional linear model (Gu etal.: 1989).

- 512 uniformly spaced noise-free frequency-response data on $[0, \pi]$ derived from (4) by use of the bilinear map.
- $q=r=512$ which gives the maximal size Hankel matrix.
- Aprroximation errors: 1st order: 3.1×10^{-2} of Algorithm 1 versus 3.2×10^{-2} of Gu etal.: 1989; 24th-order: 1.4×10^{-6} of Algorithm 1 versus 7.9×10^{-3} of Gu etal.: 1989; 27th-order: 2.4×10^{-12} of Algorithm 1 .

Plot of $\left\|\hat{G}^{M}-G\right\|_{m, \infty}$ for different model orders in Example 2 using Algorithm 1 with " x " and without " 0 " projecting unstable eigenvalues of \hat{A} into the unit disk.

- We presented a correct, frequency domain subspace-based algorithm yielding w.p. 1 balanced truncations of the identified system.
- Two examples were used to illustrate the properties of different algorithms and to show the practical applicability of the algorithms.

