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Synthesis of Complete Orthonormal Fractional Basis
Functions With Prescribed Poles

Hüseyin Akçay

Abstract—In this paper, fractional orthonormal basis functions
that generalize the well-known fixed pole rational basis functions
are synthesized. For a range of noninteger differentiation orders
and under mild restrictions on the choice of the basis poles, the
synthesized basis functions are shown to be complete in the space
of functions which are analytic on the open right-half plane and
square-integrable on the imaginary axis. This presents an exten-
sion of the completeness results for the fractional Laguerre and
Kautz bases to fractional orthonormal bases with prescribed pole
locations.

Index Terms—Completeness, fractional calculus, orthonormal
basis.

I. INTRODUCTION

T HE fractional calculus is a generalization of the tradi-
tional calculus that leads to similar concepts and tools

but with a much wider applicability. The mathematical concept
and formalism of fractional calculus originate from the works
of Liouville [1] and Riemann [2]. For almost 300 years, it has
remained an interesting, but abstract, mathematical concept. In
recent years, fractional calculus has been taken up by scientists
and engineers and applied in an increasing number of fields,
namely, in the areas of thermal engineering, acoustics, electro-
magnetism, control, robotics, viscoelasticity, diffusion, turbu-
lence, signal processing, and many others.

There are many linear systems with transfer functions that
can be represented as fractional differential systems, that is, as
functions that involve fractional powers of the Laplace
variable . For instance, in the field of diffusion, recent work
[3] generalized diffusion equations based on noninteger deriva-
tives. In thermal diffusion, it was shown in [4] that in a semi-infi-
nite homogeneous medium, the exact solution of the heat equa-
tion links thermal flux to a half-order derivative of the surface
temperature on which the flux is applied. Expressing such a
relation by the use of rational models would require a much
higher number of parameters. Diffusion phenomena were inves-
tigated in semi-infinite planar, spherical, and cylindrical media
in [5]–[7], where it was shown that the involved transfer func-
tions use exponents of that are multiples of 0.5. In electro-
chemical diffusion of charges in the electrode and the elec-
trolyte, the most common physical model used in the literature is
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the Randles model [8], which uses Warburg impedance that in-
volves an integrator of order 0.5. A fractal model for anomalous
losses in ferromagnetic materials was used in [9]. In rheology,
stress in a viscoelastic material is proportional to a noninteger
derivative of deformation [10].

In the area of control, the idea of using fractional systems for
modeling ideal loop transfer functions dates back to Bode [11].
He showed that the loop gain must have a frequency behavior
described as a fractional order transfer function to reduce the
effects of disturbances and uncertainties on the closed-loop
system performance. Recently, in [12], the advantages of a
fractional order controller known as commande robust d’ordre
non entier (CRONE) with respect to classical devices were
shown. Fractional proportional-integral-derivative controller
applications were reported in [13]. System identification with
fractional models was initiated in [14]. Recently, in [15], frac-
tional models were used to identify thermal diffusive systems.
An overview of system identification methods based on frac-
tional models is presented in [16].

In signal processing, noninteger derivative was used in the
synthesis of fractal noise [17]. The works of Mandelbrot on
fractals led to a significant impact in several scientific areas.
Presently, new themes are the object of active research such as
fractional delay filtering [18], fractional splines, and wavelets
[19]–[21]. In a similar line of thought, the concept of fractional
Fourier transform [22] can be mentioned. This tool has mostly
been applied in the field of optics. But, some applications to
filtering, encoding, watermarking, and phase retrieval have ap-
peared in the literature on signal analysis.

Of the greatest interest to the signal processing and control
engineering communities is the fact that the fractional sys-
tems have both short- and long-term memories. Some basic
properties of fractional systems such as stability [23], [24],
observability, and controllability [25], the -norm [26], and
the -norm [27] have been investigated over the last ten
years.

A fundamental idea in various areas of applied mathematics,
control theory, signal processing, and system analysis is that
of decomposing (perhaps infinite dimensional) descriptions of
linear-time-invariant dynamics in terms of an orthonormal basis.
This approach is of greatest utility when accurate system de-
scriptions are achieved with only a small number of basis func-
tions. In recognition of this, there has been much work [28], [29]
over the past several decades and, with renewed interest, more
recently [30]–[34] on the construction, analysis, and applica-
tion of rational orthonormal bases suitable for providing linear
system characterizations.

An important motivation for the consideration of orthonormal
parameterizations is for approximation purposes. In this setting,
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a dominant question must arise as the quality of the approxima-
tion. Pertaining to this, one of the most fundamental properties
that might be required is completeness. Formally, a model set
is complete in a space if the closure of the linear span of
under the norm on equals .

In Laguerre model structures, prior knowledge of the rela-
tive stability of a transfer function is encoded in terms of a
single basis pole. In the case of systems for which prior knowl-
edge of a resonant mode exists, it is more appropriate to em-
ploy two-parameter Kautz bases. The well-known Laguerre and
Kautz bases [31] are special cases of the general orthonormal
bases [30] where the basis poles are again restricted to a fi-
nite set. In [33] and [34], model sets spanned by fixed pole
orthonormal bases that generalize the Laguerre, two-parameter
Kautz, and general orthonormal bases were investigated. These
model sets were shown to be complete in , the space of
functions that are analytic on the open right-half plane denoted
by and square integrable on the imaginary axis, provided that
the chosen basis poles satisfy a mild condition. This generaliza-
tion enjoys increased flexibility of pole location. As a result, a
fewer number of basis functions may be used without sacrificing
model accuracy.

Intuitively, one is led to the conclusion that the Laguerre
functions can be extended to fractional differentiation orders
by simply allowing their differentiation orders to be positive
real numbers [35]. However, the classical Laguerre functions
are divergent whenever their differentiation orders are nonin-
teger [36]. The first complete fractional orthonormal basis, the
so-called fractional Laguerre basis, was synthesized in [37].
This extension from the rational Laguerre basis to a fractional
one provides a new class of fixed denominator models for
system approximation and identification. A fractional orthog-
onal Kautz basis, which happens to be complete from the
completeness of the fractional Laguerre functions in [37], was
synthesized in [38].

The purpose of this paper is to generalize the results in [37]
and [38] to fractional bases with infinitely many prescribed
poles subject to mild restrictions on the choice of poles. This
generalization is not straightforward. The key idea in [32]–[34]
in showing completeness of the basis functions was to repa-
rameterize the chosen model structures into a new one with
equivalent fixed poles but for which the basis functions are
orthonormal in . Then, it was possible to derive analytic
expressions for approximation errors of the rational basis
functions in terms of the Blaschke products [39] formed by
the basis poles. These analytic expressions yielded necessary
and sufficient conditions for the completeness of the basis
functions not only in but also in many spaces. It was
also possible to express each basis function as a product of a
Blaschke product with a first-order system.

This approach cannot be utilized in the synthesis of fixed
pole fractional bases with infinitely many poles since fractional
analogs of the Blaschke products cannot simply be defined by
inserting in place of due to the branch cut along the neg-
ative real line. The deficiency in defining fractional Blaschke
products makes completeness study significantly harder for the
fractional rationals because the orthonormality cannot be em-
ployed either as an implementional tool or as an analysis tool.

The use of the conformal mapping technique in [37] is limited
only to the synthesis of fractional Laguerre bases.

This paper is organized as follows. In Section II, mathemat-
ical background on the fractional derivatives and the fractional
transfer functions is briefly reviewed. In Section III, fractional
basis functions with prescribed poles are synthesized and shown
to be complete in . The orthonormalization of the synthe-
sized basis functions is carried out in Section IV. In Section V,
the impulse responses of the synthesized basis functions are
studied. In Section VI, a numerical example is used to illustrate
the basis synthesis scheme, and the impulse responses of the
synthesized basis functions are computed. Section VII outlines
future research directions and concludes this paper.

Notation

The field of the real and the complex numbers is denoted,
respectively, by and . The set of the positive numbers and
its complement in are denoted, respectively, by and .
The real and the imaginary parts of are denoted, respectively,
by and . The complex conjugate of is denoted
by . The upper and the lower open half-planes are denoted,
respectively, by and , , and denotes the open
left half-plane.

Let denote the open sector defined by

Thus, and . As increases, decreases.
Let denote the open disk with center and radius

.
The Hardy spaces of functions analytic on and such

that are denoted by , where

II. FRACTIONAL LINEAR SYSTEMS

In this section, we will review definitions and results of frac-
tional calculus pertinent to our analysis. The readers are referred
to [40] and the references therein for details.

A. Fractional Differential Equations

The inverse Laplace transform of denoted by is
defined by

(1)

where is inside the region of convergence. It is related
to by the Laplace transformation

(2)

Note the following relation:

(3)

where denotes the (direct) Grünwald-Letnikov frac-
tional derivative of order of [41].
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The multivalued function becomes an analytic function
in the complement of its branch cut line as soon as a branch
cut line, i.e., , is specified. This choice is made for a causal
system.

Let us define a linear system through a fractional differential
equation in the form

(4)

where the differentiation orders are all positive and
. Applying (2) to (4) and using (3), we obtain the

transfer function of the system

(5)

The transfer function is said to be commensurable of
order if , in (5) are integer multiples of and
is the largest number with this property. Thus, a commensurable
transfer function is a rational function in ; and, assuming

, by partial fraction expansion it can be decomposed as

(6)

for some complex numbers and positive integers , where
.

B. Stability of -Rational Functions

A system with transfer function is said to be stable
if . This means that the system defined by (4)
with for all maps bounded energy inputs to
bounded energy outputs . In fact, if this happens, then (4)
maps magnitude bounded inputs to magnitude bounded outputs
as well, that is, the fractional linear system (4) is bounded-input/
bounded-output (BIBO) stable.

The stability of the fractional system defined by (4) with
for all can be checked by checking and the arguments

of denoted by in the partial fraction expansion of
. Matignon [23] showed that (4) with for all is

BIBO stable if and only if

(7)

Henceforth, we will restrict to the interval (0,2). In the course
of deriving the completeness results, we will revisit this issue.

C. Fractional Orthonormal Bases

The partial fraction expansion (6) of a fractional linear
system (4) with for all suggests approximating
arbitrary functions in by linear combinations of the
functions , ; . There are several
degrees of freedom and constraints in doing so. First of all, the
stability constraint (7) has to be taken into account, which can
be dealt with easily by suitably selecting the sequence for a
fixed satisfying . Another degree of freedom comes
from the choice of the parameters .

For the sequence , we consider arbitrary choices and mul-
tiplicities subject to the argument restrictions in Section II-B.
Thus, for all , we assume . It remains
to satisfy so that their orthonormalized
versions span a dense subset of . Then, it suffices to let

to assure . Further details
will be supplied later. Thus the problem studied is of synthe-
sizing complete fractional orthonormal bases in . The
completeness problem boils down to deriving sufficient condi-
tions in terms of the parameters and their multiplicities.

After establishing the completeness of the set
in , the

next task is to orthonormalize this set. This is a nontrivial
process due to the branch cut along the negative real axis. Since

is a branch point, the following inner products:

(8)

are to be interpreted in a principal-value integral sense, where
the value at is defined by continuation. The inner products
(8) can be calculated explicitly by the aid of the residue method.
Note that

(9)

The final task is to obtain the impulse responses of the fractional
orthonormal basis functions, which are complicated expressions
due to the branch cut.

D. Motivation for the Completeness Study

Let us consider the simple fractional rational transfer func-
tion , . By taking its inverse Laplace trans-
form, we obtain the impulse response of this system denoted by

, as follows:

(10)

for some complex numbers . This formula will be de-
rived in a generalized setting. The above expression, as pointed
out in [37], has two terms: the first term is the sum of the ex-
ponential modes originating from the poles of and
the second term is the combination of an infinite number of ex-
ponentials originating from the branch cut. The presence of the
first term and the range of as well as the numbers ,
depend on the values of and . This term has the character
of a linear time-invariant dynamics and quickly dies out since

for all and . The second term is more profound.
In fact, from the definition of the gamma function
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we have, as

Thus, the fractional rationals appear to be more suitable than the
rationals in modeling slowly decaying impulse responses.

III. SYNTHESIS OF COMPLETE FRACTIONAL BASES

In this section, we synthesize complete fractional bases in
. As basis functions, we propose the following so-called

generator functions:

(11)

where , is a convergence factor to be fixed later;
are given complex numbers; and is a fixed

number. The case will be dealt with later in this
section, and the orthonormality issue is postponed to Section IV.
We begin with a study of the generator poles. In this paper, it
suffices to consider the complex function defined for a given

by

(12)

Lemma III.1: Let be as in (12) with . Write
and as

and (13)

Then, has a simple pole in at for
or at for if and only if

. If , is analytic on , bounded on
, and unbounded in ; and if ,

is analytic on , bounded on , and unbounded on
for all . If , is bounded

analytic on .
Proof: See Appendix A.

Suppose is bounded analytic on . This means that is
the transfer function of a bounded-input/bounded-output stable
continuous-time system. Then, can have isolated singularities
only on the open left half-plane. From Lemma III.1, there are
only two possibilities: is either analytic on or has a simple
pole with an argument for or

for . Since in the latter case , we must
then have . It follows that . Conversely,
assume . Then, from Lemma III.1, either is analytic on

or has a pole with argument satisfying . Thus,
is bounded analytic on . Hence, is the transfer function of
a BIBO stable continuous-time system if and only if ,
which is a restatement of the stability result of Matignon [23].

Let us further constrain to . When , a pole in
may exist only if ; and this happens if satisfies

. In this case, from Lemma III.1, the argument
of a pole, if any, satisfies . Hence, is analytic on

. If , then, for all , is bounded
analytic on .

The Blaschke products have played a major role in complete-
ness and approximation properties of rational basis functions
[33], [34]. Unfortunately, fractional analogs of the Blaschke
products do not exist. As a result, basis orthonormality cannot
be utilized in deriving completeness criteria for the generator
functions (11). However, rather general sufficient conditions for
the completeness of (11) in can be put forward using the
Müntz–Szász theory.

The following lemma will be instrumental in establishing the
first completeness result of this paper.

Lemma III.2: For a given , let be a fixed integer
satisfying

(14)

and . Define on by

(15)

Then

(16)

Proof: See Appendix B.
Let denote the smallest integer greater than . Pick

. Then, exists for all and (14) is satisfied
by the choice . This increase is needed to es-
tablish . Observe that . In
Section IV, we will enforce (14) in the calculation of the inner
products of (11) by the residue method.

When , it was shown in [33] that the generator functions
(11) with are complete in if and only if the chosen
basis poles satisfy the criterion

(17)

Our first result in this section establishes that under the same
criterion, the generator functions (11) are complete in if

and satisfies (14).
The completeness proof uses the fact that in the special case

for all , (11) is complete in for all .
The proof of this simple fact is detailed in [37]. There are three
ingredients in its proof. First, transforms con-
formally onto the interior of a compact subset of . Secondly,

may be replaced with a dense subset of it consists of
functions decaying faster than as . These two
steps and the change of the variables as reduce
the completeness problem on to a completeness problem on
a compact subset of in the supremum norm. In the third step,
Mergelyan theorem [49] is invoked.

Theorem III.3: Let be a fixed number and be
chosen as in (14). Consider the generator functions (11) defined
by a choice of numbers and . Then, (11) is
complete in if (17) holds.

Proof: See Appendix C.
The completeness condition (17) applies to all

. Recall that for a fixed , restricting to for
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all results in the generator functions (11) being analytic on
. This restriction might introduce some conser-

vatism on the choice of . Nevertheless, (17) does not preclude
the possibility of converging to zero slowly. For example, put

for all . Then, (17) is satisfied.
For , let us reconsider the complex function (12).

The results are summarized in the following.
Lemma III.4: Let be as in (12) with . Write

and as

and (18)

If , has a simple pole at
in and no others. If ,

the only pole of in is at and simple.
If , has two simple poles at and in .
If , has a simple pole at in and no others.
Moreover, is bounded in and unbounded
in for all . If , has a
simple pole at in and no others. Moreover, is bounded
in and unbounded in for
all .

If the BIBO stability is demanded on , then and/or
in Lemma III.4 must satisfy the conditions and

. These conditions are guaranteed if and only if .
We propose the generator functions for the case as

follows:

(19)

where for all and some . The following is
a key lemma to extend the conclusion of Theorem III.3 for the
case .

Lemma III.5: Let

(20)

where and . Then

(21)

Proof: See Appendix D.
Theorem III.6: Let be a fixed number. Consider

the generator functions (19) defined by a choice of the complex
numbers for all and some . Then, (19) is
complete in if

(22)

where and .
Proof: See Appendix E.

The completeness of the generator functions (19) was estab-
lished by restricting to for all . This set is a proper subset
of . It is a difficult question to answer whether it is possible
to relax this restriction. Nevertheless, as approaches one,

can be forced to approach one. Then, (22) coincides with (17),
demonstrating that the former is consistent with the boundary
case .

Lemmas III.1 and III.4 will be used in Section V to calculate
the impulse responses of the generator functions by the residue
method. In the application of the residue method, one needs to
know the residues of the poles inside the chosen contour. In
addition to this, in our problem the line integrals along the upper
and the lower edges of need to be calculated. If happens
to satisfy , Lemmas III.1 and III.4 tell
us that these line integrals cannot closely be approximated by
contour integrals just above and below the branch cut line.

If and , from the restriction
, satisfies . However, in this case, (14) is

satisfied with , which implies that for all
. Clearly, for all , . In this case, the impulse

responses of the generator functions can directly be calculated
from (1) with .

IV. ORTHONORMAL BASIS GENERATION

In this section, we study the problem of constructing an
orthonormal set from (11) or (19) with the same linear span.
Derivation of explicit formulas is cumbersome due to many
possibilities for the parameters and . Instead, we limit the
study to presentation of a scheme which has three stages. The
solution for a particular problem can be worked out using this
scheme.

A. Calculating Inner Products of the Generator Functions

Let us demonstrate that the inner product (8) can effectively
be calculated in closed form by the residue method. To this end,
first by the change of variables , we get

(23)

where , ,
, , and

(24)

In (24), is the restriction of the complex function

(25)

defined on the domain to
the upper edge of . With plugged in (24), (23) holds
for as well.

To calculate (24) by the residue method, we consider the path
shown in Fig. 1, where and denote, respectively, the cir-
cles and . Since
and or for , note that

, . If ,
which is (14) when , the contour integrals of on



AKÇAY: SYNTHESIS OF COMPLETE ORTHONORMAL FRACTIONAL BASIS FUNCTIONS 4721

Fig. 1. Path for ���� with a cut on� .

and vanish as and , and the residue the-
orem yields

(26)

The residue at is given by

(27)

The chain rule of differentiation is applied several times to eval-
uate this residue. The rest of the residue evaluations are sim-
ilar. These calculations demonstrate that (8) can be evaluated in
closed form. The other case is simpler since a con-
vergence factor is not needed.

B. Basis Functions With Real-Valued Impulse Responses

Up until this point, the generator functions have been consid-
ered with complete generality of pole location save for the com-
pleteness condition (17) or (22). However, in any application
involving the modelling of a physical process, it is necessary
that the underlying modelled impulse response be real valued.
The purpose of this section is to illustrate how to modify the
generator functions (11) and (19) to ensure the realness of the
underlying impulse response. This is achieved by requiring that,
for each , the set always contains complex con-
jugates of its elements. Since we have yet to impose orthonor-
mality, the required modification to ensure the realness of the
impulse response is simple.

To be more explicit on this, consider, for example, the gen-
erator functions (11) for some fixed , , and
positive integers , , . The discussion in the sequel covers
also the case , as can be seen by letting in
(11). Recalling , let

and (28)

Write in the polar coordinates as with
. Then, from the binomial expansion formula, we have

Now, let and . Then, and
are real-rational functions of . Hence, they have real-valued
impulse responses as desired. Moreover, linear independence of

and implies linear independence of and .
Let us enumerate the sequence or and denote the

corresponding sequence of basis functions with real-valued im-
pulse responses defined above by , . This means that
for a given index , there exists a unique pair such that
either equals or equals one of and , where and are
defined by and sat-
isfy (28) for some and in the pole parameter set. Thus, we
complete the second stage of the orthonormalization procedure.

C. Gram–Schmidt Orthonormalization

Let be the sequence of basis functions with real-valued
impulse responses constructed in Section IV-B. We apply
the iterative Gram–Schmidt procedure to orthonormalize this
sequence. It starts with defined as . As-
suming that form an orthonormal set obtained
from , the problem is to find a constructed
from and orthogonal to .
Furthermore, is constrained to have a unity norm.

These requirements can be expressed as a set of 1-linear
equations:

(29)

where , , are unknowns to be determined
in the linear combination

(30)

plus the normality condition . It is easy to see that
(29) yields the solution

(31)

Then, is determined from the normality condition and back-
substituted in (31).

Thus, the problem of orthonormalizing the sequence is re-
duced to the problem of computing the inner products ,
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Fig. 2. Bromwich path for � ��� with a cut on� .

, in (31). But the recursive formula (30) ex-
presses each as a linear combination of . Hence,
the problem of orthonormalizing is equivalent to evaluating
the inner products for all . Recall that a given

equals to one of (or ), , and . Then, is the
sum of at most four inner products of the generators functions
(11) or (19); and the formulas derived in Section IV to calculate
such inner products can be used. This completes the third stage
of the scheme to orthonormalize the generator functions.

V. IMPULSE RESPONSES OF THE BASIS FUNCTIONS

The aim of this section is to discuss how to obtain analytically
the impulse responses of the orthonormal basis functions
constructed in Section IV.

Recall that the impulse response of denoted by is
defined by

(32)

where and is the vertical line segment from
to shown in Fig. 2. We will not at-

tempt to obtain explicitly for two reasons: first, is a linear
combination of complex functions with real-valued impulse
responses, which themselves are linear combinations of either
one or two generator functions of type (11) or (19), secondly
and most compelling, even simple fractional systems such as

have impulse responses that can only be expressed
in the integral form (10). Time-domain simulation of fractional
systems is currently an active research area [42]–[48]. We limit
the discussion to calculating only the complex-valued generator
impulse response of a fractional system with transfer func-
tion .

The calculation of by the residue method will be studied
for the case . In the application of the residue method,
the so-called Bromwich path for with a cut on is
shown in Fig. 2. Since and , from Lemma III.1,

either has no pole in or has a pole at
with multiplicity . It is also assumed that

. From Lemma III.1, this implies that is bounded on the
horizontal slit for some .

It is easy to show that as and , the contour
integrals on , , and vanish. Assuming that
has poles in , then an application of the residue theorem and
the definition (32) yields

(33)

The boundedness of on was
used in obtaining the second and the third terms in (33) by letting

and approach to the negative real axis. If has no poles
in , the residue term in (33) is dropped.

Putting in (33) and assuming , after some
algebra the sum of the second and the third terms in (33) is
seen to be the second term in (10). Therefore, the second and
third terms in (33) are in the simplest possible form. Note from
Lemma III.1 that if , then has no
singularities inside the Bromwich path; and equals the
sum of the second and third terms in (33).

The residue at is calculated as follows:

(34)

which is a linear combination of the exponential functions
, , thus verifying the presence of the first term in

(10). The evaluation of the above derivatives is quite involved.
Recall that implies , ,

and . Then, can be calculated from (32)
with . The case is simpler since there is
no need for a convergence factor; and the above formulas are
still valid under the assumption . The
number and location of the poles are specified in Lemma III.4.
If , it is necessary to evaluate the residue
at and . Since there is no convergence problem when

, alternatively (32) with can be used to calculate
the impulse response. However, (32) is the only option when

.
An interesting approach to analytically calculate the inverse

Laplace transforms of the basis functions is suggested in [43]. In
[43], first is expanded in descending powers of by long
division. Then, this series is term-by-term inverse transformed
to calculate the impulse response of denoted by . The
series representation is not unique. For example, in [42],
is obtained as a series of Mittag–Leffler functions.
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VI. NUMERICAL EXAMPLE

In this section, we illustrate the basis synthesis scheme out-
lined in Section IV by a numerical example. Let

be two given generator functions. We are to construct two or-
thonormal basis functions from and and compute their
impulse responses as well. The basis functions with real-valued
impulse responses are easily found as

The difficult part is the orthonormalization of and . To this
end, first we compute the inner products , .
Proceeding as in the derivation of (23)–(25), we get

From (26) and (27), we have the equation at the bottom of the
page. Likewise

The Gram–Schmidt procedure applied to and yields two
basis functions that are orthogonal to each other

The inner products of and are computed as

Thus

It follows that the following basis functions:

(35)

are orthonormal and their linear span equals the linear span of
and . More explicitly, and can be written as

If the impulse responses of and are known, then the
impulse responses of and denoted by and , respec-
tively, can be computed from (35) by superposition. The former
impulse responses are also computed by superposition from the
impulse responses of and denoted, respectively, by
and . From Lemma III.4, notice that has two poles in
at , ; and has two poles at the
conjugate points , . For , the
residue term in (33) is computed from (34) as

A similar computation is made for . Thus

Hence
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Fig. 3. Impulse responses of the synthesized basis functions.

The periodic modes in both responses are linear combinations
of two damped sinusoids, which quickly die off. Fig. 3 shows
the impulse responses of and . As expected from the initial
value theorem, both responses start at zero. Note that

VII. CONCLUSION

In this paper, fractional orthonormal basis functions with
prescribed poles were synthesized. These basis functions were
shown to be complete in under mild restrictions on the
choice of the basis poles. This result enables one to approxi-
mate systems in —in particular, the systems with both
short and long memories, by convergent Fourier series of the
fractional orthonormal basis functions of this paper.

The work initiated in this paper can be continued in sev-
eral directions. First, completeness properties of the synthesized
bases in different spaces—for example, the spaces in which
the rational orthonormal bases have been shown to be com-
plete—should be investigated. The convergence and the approx-
imation properties of the Fourier series formed by the fractional
orthonormal basis functions over some known subsets of these
spaces need to be explored. It is worth studying the complete-
ness problem for fractional incommensurable rationals with pre-
scribed poles. Fast and reliable numerical methods are needed
to evaluate the so-called memory integrals in (33). Then, it will
be possible to quickly calculate time responses of the synthe-
sized basis functions to arbitrary inputs.

APPENDIX A
PROOF OF LEMMA III.1

Suppose that has a pole at in . Then

Hence, and . Since for all
, . Moreover, implies and implies

. It follows that

if
if .

(36)

Thus, if there exists a pole at , its argument must satisfy

(37)

which implies from that .
Conversely, assume that . Set .

Then, satisfies the inequalities . Therefore, it is
consistent with the phase restriction in (13). Moreover,

. It follows that is a pole. The proof of the other case
is similar. The uniqueness follows from (37).

This pole is simple since . This
completes the proof of the first claim.

For the second claim, assume first and write
as

(38)

From (38), as provided
that lies in . As in , which implies ,

. The proof of the case is similar.
To complete the proof, assume . Then, from

we conclude that is bounded in . The first part shows that
it can not have a pole in either. It follows that is bounded
analytic on .

APPENDIX B
PROOF OF LEMMA III.2

For each fixed , assuming , is well
defined since

(39)

To derive (39), first note from (9) that

Then, an application of the inequality valid
for all and to the above equation yields (39).
Suppose . For all

(40)
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Let . By the change of variables
or

, we get for all

(41)

The restriction ensures for all . If for a
given , an satisfying (14) is chosen, then from (40),
(41), and (39), we have for all

Taking supremum of the left-hand side with respect to ,
(16) is obtained.

APPENDIX C
PROOF OF THEOREM III.3

Let . The proof is by con-
tradiction. So, we assume there exists a nontrivial
orthogonal to

(42)

. Then, we define a complex function on by

(43)

By an application of the Cauchy–Schwarz inequality

Hence, for all

(44)

Thus, from Lemma III.2 and (44)

(45)

Moreover, an application of the bounded convergence the-
orem to (43) shows that is continuous on . Next, we apply
Morera’s theorem (see, for example, [49, Theorem 10.17]) to
show that is analytic on . In the application of Morera’s the-
orem, the change of the integration orders is justified by Fubini’s
theorem and the fact that (as a function of ) is
analytic on is used. Thus, from (45), we have .

Now, repeatedly differentiate

(46)

for and evaluate the derivatives at to get

(47)

Note that the orthogonality relations can be written as

Now, we are ready to finish the proof of our assertion. To this
end, let , where is the bilinear map

(48)

Let for . Then, (see, for
example, [39, Theorem 11.1]). By the chain rule of differentia-
tion, observe that is a linear combination of the first
derivatives of at and hence equals zero. Thus

Since

(49)

the zeros of satisfy . (The proof
of the inequalities in (49) is contained in the proof of Lemma
3 in [33]). This implies for all (see, for
example, the corollary to [49, Th. 15.23]). Hence, vanishes
on . In particular

(50)

The equations in (50) imply that the linear span of the functions
is not dense in , which is a contra-

diction [37]. It follows that is dense in for all
and satisfying (14).

APPENDIX D
PROOF OF LEMMA III.5

Let . Then
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Hence

(51)

Let . Then, . Rewrite (51)

(52)

Let us first consider the case in (20). In ,
1 is represented by

(53)

where satisfies . Then, from (52) and (53), we
have (54) shown at the bottom of the page, where the first in-
equality at the top is due to the symmetry of the set
with respect to and the first and the second equalities from
the top have followed from the change of variables and

, respectively.
For the case in (16), where denotes the

complement of in , first note the inequality
valid for all . Then

(55)

Thus, combining (54) and (55), we get

what we were set to prove.

APPENDIX E
PROOF OF THEOREM III.6

Let us first show the completeness of the functions

(56)

Let . The completeness of the
functions (56) is shown by contradiction. So, we assume that
there exists a nontrivial orthogonal to

(57)

(54)
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. Then, we define a complex function on by

(58)

The existence of the above integral follows from Lemma III.5 by
an application of the Cauchy–Schwarz inequality to (58). Thus

(59)

Hence, from Lemma III.5 and (59)

(60)

The same argument in the proof of Theorem III.3 can be used
to show that is analytic on . Thus, from (60), we have

.
Now, repeatedly differentiate for

(61)

and evaluate the derivatives at to obtain

(62)

where

(63)

Note from (63) that the orthogonality relations in (57) can be
written as

(64)

Since for all , (64) implies

(65)

Then, (65) and (62) imply

Let

and define a complex function as a composition of with

Then, for all and the map sends con-
formally onto . Moreover, . Since ,

has derivatives of all orders at . By the chain rule of differen-
tiation, observe that is a linear combination of the first

derivatives of at and hence equals zero. Thus

Since and , the zeros of
satisfy

(66)

Now, let and for , where is the
bilinear map (48). Then, . The argument in the
proof of Theorem III.6 shows that

Furthermore, from (66) and (49), the zeros of satisfy
. Then, the corollary to [49, Theorem

15.23] tells us that vanishes on . Consequently,
vanishes on . This implies that vanishes on . In particular,
for a fixed

(67)

The set of (62) can be solved recursively for . Then, from
(67), we have for all . This implies that the linear
span of the functions , is not dense in ,
which is a contradiction [37]. It follows that span is dense in

for all . Since 1 for all , span
equals to the linear span of the functions (19).

REFERENCES

[1] J. Liouville, “Mémoire sur quelques questions de géométrie et de mé-
canique,” J. Ecole Polytech., vol. 13, pp. 1–69.

[2] B. Riemann, Gesammelte Werke. Frankfurt, Germany: Gutenberg,
1892.

[3] V. R. Schneider, “Fractional diffusion,” in Proc. Dyn. Stochast.
Process, Theory Applicat. Workshop, 1990, pp. 276–286.

[4] J. L. Battaglia, O. Cois, L. Puigsegur, and A. Oustaloup, “Solving
an inverse heat conduction problem using a non-integer identified
model,” International Journal of Heat and Mass Transfer, vol. 44, pp.
2671–2680, 2001.

[5] K. B. Oldham and J. Spanier, “The replacement of Fick’s laws by a
formulation involving semidifferentiation,” J. Electroanal. Chem. In-
terfacial Electrochem., vol. 26, pp. 331–341, 1970.

[6] K. B. Oldham and J. Spanier, “A general solution of the diffusive equa-
tion for semiinfinite geometries,” J. Math. Anal. Applicat., vol. 39, pp.
655–669, 1972.

[7] K. B. Oldham, “Diffusive transport to planar, cylindrical and spherical
electrodes,” J. Electroanal. Chem. Interfacial Electrochem., vol. 41, pp.
351–358, 1973.

[8] S. Rodrigues, N. Munichandraiah, and A. K. Shukla, “A review of state
of charge indication of batteries by means of A.C. impedance measure-
ments,” J. Power Sources, vol. 87, pp. 12–20, 2000.

[9] V. Vorperian, “A fractal model of anomalous losses in ferromagnetic
materials,” in 23rd Annu. IEEE Power Electron. Special. Conf. Rec.
(PESC’92), 1992, vol. 2, pp. 1277–1283.

[10] N. Heymans and J. C. Bauwens, “Fractal rheological models and
fractional differential equations for viscoelastic behavior,” Rheologica
Acta, vol. 33, pp. 219–219, 1994.

[11] H. W. Bode, Network Analysis and Feedback Amplifier Design. New
York, Van Nostrand: , 1945.



4728 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 56, NO. 10, OCTOBER 2008

[12] A. Oustaloup and B. Mathieu, La commande CRONE: Du Scalaire au
Multivariable. Paris, France: Hermés, 1999.

[13] I. Podlubny, “Fractional-order systems and PID-controllers,” IEEE
Trans. Autom. Contr., vol. 44, pp. 208–214, 1999.

[14] L. L. Lay, A. Oustaloup, and J. C. Trigeassou, “Frequency identifica-
tion by implicit derivative models,” in Proc. Int. Conf. Adv. Veh. Contr.
Safety (AVCS’98), Amiens, France, 1998, pp. 351–356.

[15] A. Benchellal, T. Poinot, and J. C. Trigeassou, “Advances in fractional
calculus. Theoretical developments and applications in physics and en-
gineering,” in Modelling and Identification of Diffusive Systems Using
Fractional Models, J. Sabatier, O. M. Agrawal, and J. A. T. Machado,
Eds. Berlin, Germany: Springer, 2007, pp. 213–225.

[16] R. Malti, M. Aoun, J. Sabatier, and A. Oustaloup, “Tutorial on system
identification using fractional differentiation models,” in Proc. 14th
IFAC Symp. Syst. Ident., Newcastle, Australia, 2006, pp. 606–611.

[17] B. Mandelbrot and J. W. V. Ness, “Fractional Brownian motions, frac-
tional noises and applications,” SIAM Rev., vol. 10, 1968.

[18] C. C. Tseng, “Designs of fractional delay filter, Nyquist filter, lowpass
filter and diamond shaped filter,” Signal Process., vol. 87, pp. 584–601,
2007.

[19] M. Unser, A. Aldroubi, and M. Eden, “A family of polynomial spline
wavelet transforms,” Signal Process., vol. 30, pp. 141–162, 1993.

[20] M. Unser and T. Blu, “Fractional splines and wavelets,” SIAM Rev.,
vol. 42, pp. 43–67, 2000.

[21] T. Blu and M. Unser, “Wavelets, fractals, and radial basis functions,”
IEEE Trans. Signal Process., vol. 50, pp. 543–553.

[22] V. Namias, “The fractional order Fourier transform and its applica-
tion to quantum mechanics,” J. Inst. Appl. Math., vol. 25, pp. 241–265,
1980.

[23] D. Matignon, “Stability properties for generalized fractional differen-
tial systems,” in Proc. Systémes Différentiels Fractionnaires—Modéles,
Méthodes et Applicat. (ESAIM), 1998, vol. 5, pp. 145–158.

[24] C. Bonnet and J. R. Partington, “Coprime factorizations and stability of
fractional differential systems,” Syst. Contr. Lett., vol. 41, pp. 167–174,
2000.

[25] D. Matignon and B. D’Andrea-Novel, “Some results on controllability
and observability of finite-dimensional fractional differential systems,”
in Proc. IEEE-SMC Comput. Eng. Syst. Applicat. (IMACS), 1996, vol.
2, pp. 952–956.

[26] R. Malti, M. Aoun, O. Cois, and A. Oustaloup, “� norm of fractional
differential systems,” in Proc. ASME’03, Chicago, IL, USA, Sep. 2003,
vol. DETC2003/VIB-48387.

[27] J. Sabatier, M. Moze, and A. Oustaloup, “On fractional systems
� -norm computation,” in Proc. 44th IEEE CDC–ECC, Seville,
Spain, 2005, pp. 5758–5763.

[28] B. Epstein, Orthogonal Families of Analytic Functions. New York:
Macmillan, 1965.

[29] J. Mendel, “A unified approach to the synthesis of orthonormal expo-
nential functions useful in systems analysis,” IEEE Trans. Syst. Sci.
Cybern., vol. SSC-2, pp. 54–62, 1966.

[30] P. Heuberger, P. M. J. Van den Hof, and O. Bosgra, “A generalized
orthonormal basis for linear dynamical systems,” IEEE Trans. Autom.
Control, vol. 40, pp. 451–465, 1995.

[31] B. Wahlberg and P. M. Mäkilä, “On approximation of stable linear
dynamical systems using Laguerre and Kautz functions,” Automatica,
vol. 32, pp. 693–708, 1996.

[32] B. Ninness, H. Hjalmarsson, and F. Gustafsson, “Generalized Fourier
and Toeplitz results for rational orthonormal bases,” SIAM J. Contr.
Optim., vol. 37, pp. 429–460, 1998.

[33] H. Akçay and B. Ninness, “Orthonormal basis functions for modelling
continuous-time systems,” Signal Process., vol. 77, pp. 261–274, 1999.

[34] H. Akçay and B. Ninness, “Orthonormal basis functions for contin-
uous-time systems and � convergence,” Math. Contr., Signals, Syst.,
vol. 12, pp. 295–305, 1999.

[35] A. M. E. Sayed, “On the generalized Laguerre polynomials of arbitrary
(fractional) orders and quantum mechanics,” J. Phys. A: Math. General,
vol. 32, pp. 8647–8654, 1999.

[36] P. C. Abbott, “Generalized Laguerre polynomials and quantum me-
chanics,” J. Phys. A: Math. General, vol. 33, pp. 7659–7660, 2000.

[37] M. Aoun, R. Malti, F. Levron, and A. Oustaloup, “Synthesis of frac-
tional Laguerre basis for system approximation,” Automatica, vol. 43,
pp. 1640–1648, 2007.

[38] R. Malti, M. R. Aoun, and A. Oustaloup, “Synthesis of fractional
Kautz-like basis with two periodically repeating complex conjugate
modes,” in Proc. 1st Int. Symp. Contr., Commun. Signal Process.
(ISCCSP), 2004, pp. 835–839.

[39] P. L. Duren, Theory of� Spaces. New York: Academic, 1970.
[40] K. B. Oldham and J. Spanier, The Fractional Calculus. New York:

Academic, 1974.
[41] M. D. Ortigueira, “A coherent approach to non-integer order deriva-

tives,” Signal Process. (Special Section on Fractional Calculus Appli-
cations in Signals and Systems), vol. 86, pp. 2505–2515, 2006.

[42] R. L. Bagley and R. A. Calico, “Fractional order state equations for the
control of viscoelastic structures,” J. Guidance, Contr., Dyn., vol. 14,
pp. 304–311, 1991.

[43] T. T. Hartley and C. F. Lorenzo, “Dynamics and control of initialized
fractional-order systems,” Nonlinear Dyn., vol. 29, pp. 201–233, 2002.

[44] C. Trinks and P. Ruge, “Treatment of dynamic systems with fractional
derivatives without evaluating memory-integrals,” Computat. Mech.,
vol. 29, pp. 471–476, 2002.

[45] I. Schäfer and S. Kempfle, “Impulse responses of fractional damped
systems,” Nonlinear Dyn., vol. 38, pp. 61–68, 2004.

[46] G. Mainone, “Inverting fractional order transfer functions through La-
guerre approximation,” Syst. Contr. Lett., vol. 52, pp. 387–393.

[47] P. Kumar and O. P. Agrawal, “An approximate method for numerical
solution of fractional differential equations,” Signal Process. (Special
Section on Fractional Calculus Applications in Signals and Systems),
vol. 86, pp. 2602–2610, 2006.

[48] T. Hélie and D. Matignon, “Representations with poles and cuts for
the time-domain simulation of fractional systems and irrational transfer
functions,” Signal Processing (Special Section on Fractional Calculus
Applications in Signals and Systems), vol. 86, pp. 2516–2528, 2006.

[49] W. Rudin, Real and Complex Analysis, 3rd ed. New York: McGraw-
Hill, 1987.

Hüseyin Akçay was born in Antalya, Turkey, in
1958. He received the Engineer degree from the
Istanbul Technical University, Istanbul, Turkey, in
1981, the M.Sc. degree from the Massachusetts
Institute of Technology, Cambridge, in 1988, and the
Ph.D. degree from the University of Michigan, Ann
Arbor, in 1992, all in mechanical engineering, and
the M.A. degree in mathematics from the University
of Michigan in 1991.

He held visiting positions with Linköping, New-
castle, and Bremen universities. He worked at the

Tübitak, Marmara Research Center, Gebze, Turkey, as Research Scientist. He
is currently a Professor of electrical and electronics engineering at Anadolu
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