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Review of projections

Subspace identification algorithms are often based on
geometric concepts. Some system characteristics can be
revealed by geometric manipulation of the row spaces of
certain matrices.

Let us assume that the three matrices
Ac RPY. B e R, CeR™
are given.

Orthogonal projections

The operator that projects the row space of a matrix onto the
row space of B € R9*/ is defined by

Ng 2 BT(BBT)'B

where T denotes the the Moore-Penrose pseudo inverse.
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Review of projections

Thus,

A/B2 Ang = ABT(BBT)'B

is shorthand for the projection of the row space of A € RP*/ on
the row space of B.

Mg. is the geometric operator that projects the row space of a
matrix onto the orthogonal complement of the row space of B:

A/B-2 Ang.,
where

Mg = | — Mg

A= A|_|B+A|_|BJ_.
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Review of projections

Alternatively, the projections decompose A as linear
combination of the rows of B and of the rows of the orthogonal
complement of B. With

>

LgB
Lg B+

A/B,
2 A/Bt

where B is a basis for the orthogonal complement of the row
space of B, we find

A=LgB+ Lg B*

@ A decomposition of A into a sum of linear combinations of
the rows of B and B*.
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Review of projections

Instead of decomposing A as linear combinatons of two
orthogonal matrices B and B*, it can also be decomposed as
linear combination of two non-orthogonal matrices B and C and
of the orthogonal complement f B and C. Thus,

B 1

A=LgB+ LCC+LBL7CL < C ) .
S~
A/sC

Definition Oblique projections

The oblique projection of the row space A € RP*/ along the row
spaces of C € R™/ is defined as:

C.

first r columns

( ccT cBT )T

A/BCéA@T BT) BCT BBT
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Review of projections

Some properties of the oblique projections are:

@ B/gC=0,

@ C/gC=20C,

e A/gC = [A/B*][C/B*]TC.
Orthogonal projections can be easily expressed in functions of
the RQ decomposition. Let us first treat the case A/B where A

and B can be expressed as linear combinations of the
orthonormal matrix Q' as:

A = R,Q7,
B = RgQ'.

Here, A and B are lower triangular matrices.
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Review of projections

Then,

A/B = ABT(BBT)'B
= [RaQ" QR}IRsQT QRLIRsQT
— RaRL[RsRL]'ReQ.

@ The oblique projections can also be written as functions of
the RQ decompositions by noting that

A/B*=A—A/B = RuQ" - RARL[RsR]]'RsQT
= Rall - R}[RsRE]'RE]Q.
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Problem formulation
Deterministic time-domain identification problem Notation
Algorithm

Outline

e Deterministic time-domain identification problem
@ Problem formulation
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Problem formulation

Deterministic time-domain identification problem Notation
Algorithm

Given:
s measurements of the input ux € R™ and the output y, € R/
generated by the unknown system of order n:
Xkr1 = Axx + Bug,
Yk = Cxx + Du.

Determine:

@ The order of the unknown system
@ The system matrices A € R™", B R™™, C « R™*" (up to
within a similarity transformation).
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Problem formulation
Deterministic time-domain identification problem Notation
Algorithm
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Problem formulation

Deterministic time-domain identification problem Notation
Algorithm
Up U Uj_q
U4 uo Uj
U A Uj—1 Ui Uiyj—2
0]2i-1 — ) ) .
Ui U - U/+/—1
U1 Ug2 - Uiy

Ugj—1 Ui -+ Ugjtj 2
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Problem formulation

Deterministic time-domain identification problem Notation
Algorithm

Uo - Uj—1

uq Uo u/-
A Uty - U2

Ui Ui - Uigjo
Uit Uiy2 - Uiy

Ugj—1  Uzj -+ U2jyj2
Uiy1)2i—1 U )

@ The output block Hankel matrices Yopi_1, Yp, Y5, Y5, Y;
are defined in a similar way.
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Problem formulation
Deterministic time-domain identification problem Notation
Algorithm

The state sequence X; is defined as
X 2 (x, L R"<J
i = (X/ t X/+/—1) € .

Analogous to the past inputs and outputs,

X=Xy, X=X
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Problem formulation
Deterministic time-domain identification problem Notation

Algorithm

System related matrices

The extended (i > n) observability matrix

C
I é . S R/i><n.

CAi—1

We assume that the pair {A, C} to be observable, which implies
that the rank of I'; is equal to n.

The reversed extended controllability matrix

A2 (A"—1B B) e RMi,
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Problem formulation
Deterministic time-domain identification problem Notation

Algorithm

We assume that the pair {A, B} to be controllable, which
implies that the rank of A, is equal to n.

The lower block triangular Toeplitz matrix

D 0 o0
H; A CIB D - 0 c Rlixmi
CA—2B CA3B ... D

Definition The input sequence ux € R™ is persistently exciting
of order 2i if the input covariance matrix

uu A 1 T
AR —jllfgo 7U0|2i—1 Upjai—1

has full rank, which is 2mi.
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Problem formulation
Deterministic time-domain identification problem Notation
Algorithm
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Problem formulation
Deterministic time-domain identification problem Notation

Algorithm

Theorem Matrix input-output equations.
Y = [iXe+ HiU,
Xr = AXp+ AU

Theorem Deterministic time-domain identification.

Under the assumptions that:

@ 1. The input uy is persistently exciting of order 2i.

@ 2. The intersection of the row space of U; (the future
inputs) and the row space of X, (the past states) is empty.
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Problem formulation
Deterministic time-domain identification problem Notation

Algorithm

@ 3. The user defined weighting matrices W; € R/ and
W, e R/ are such that Wj is of full rank and Ws obeys:
rank(Wp) = rank( W, W>), where W, is the block Hankel
matrix containing the past inputs and outputs.

And with O; defined as the oblique projection:
A
O; = Yi/uWp,

and the singular value decomposition:

Sy 0 v
WiOiW> = (Ui Uz)( 01 0><V;T)

= UiSiV,
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Problem formulation
Deterministic time-domain identification problem Notation

Algorithm

we have:

@ O, is equal to the product of the extended observability
matrix and the states:

O; =TX;.

@ nis equal to the number of non-zero singular values.
© The extended observability matrix I'; is equal to:

=W, U S|/%T.

© The part of the state sequence X; that lies in the column
space of W, can be recovered from:

XW, = T1812v].
© The state sequence X; is equal to
X; =Trlo;.
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Problem formulation
Deterministic time-domain identification problem Notation

Algorithm

Proof

From matrix input-output equations,

Xy = AX,+ AU
=AY, - TTH:Up] + AiUp
= [Aj - ATIH)U, + [ATT]Y,
= LW,

with
Lp = (Aj— ATIH; ATH.
Thus,

Y = I‘,-Lpr+H,-Uf,
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Problem formulation
Deterministic time-domain identification problem Notation

Algorithm

Yi/ Ui =Tilp, W/ Uf,
[Yr/ Ui 1 [Wp/ UF T Wp = TiLp W,
O =TiX¢

where we have used the fact that [W,/ U ][W,/ U] W, = W
to be shown shortly.

The second claim follows from the fact that W; O; W, is equal to
the product of two matrices W;T'; (n columns) and X;W> (n
rows). Since W is of full rank due to assumption 3 of the
theorem, the product W;iT; is also of rank n. Multiplying both
sides of Xy = Lo W, with W5, we get XiW,o = L, W, W>. Then,
from assumption 3, the rank of X; W, is equal to the rank of X;.
Hence, W;T;, X;W,, and their products are all of rank n.
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Problem formulation
Deterministic time-domain identification problem Notation

Algorithm

Thus, the second formula in the SVD can be split into two parts
for some non-singular T € R™" as follows:

wir, = U;S)/°T,
XWe = T 1812y

which leads to claim 3 and 4 of the theorem. Claim 5 easily
follows from the first claim.

The proof of W/ U |[Wp/ ULt Wy = Wp:
Let us first show that

rank Wp, = rankW,/U;-.

W), can be written as

Wp_("’i r,><xp>’
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Problem formulation
Deterministic time-domain identification problem Notation

Algorithm

which implies that W,/U;- can be written as:
Imi 0\ [ Uy U+
1 _ mi P/ ~f
"o/t _< Hi rf><Xp/UfL >

Due to the persistency of excitation U,[,/Ufl does not lose rank
and due to the second assumption x,/U;- either. Hence,

U Up/ U
rank p ) :rank< pr =t >
(% Xo/ U}
proving the first claim. Now, denote the SVD of W, /U;- as:

S; 0 v
W,/ Uit = (Uy U2)< 01 0 ) ( v;T ) = U S V.
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Problem formulation
Deterministic time-domain identification problem Notation

Algorithm

Since W,/ U} is a linear combination of the columns of W, and
since the rank of W, and W,/U# are equal, we find that the
column spaces of W, and W,/U: are equal. This implies that
W), can be written as:

W, = UsR.

Finally,

[Wp/UF|[Wo/UHTW, = [UsSiVViST U UR
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Problem formulation
Deterministic time-domain identification problem Notation

Algorithm

Remarks
@ rank(Ys/y Wp) =n
@ row space( Y/ y, Wp) = row space(X)

@ column space( Yy/y, Wp) = column space(I;)

Summarize why these algorithms are called subspace
algorithms!
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Problem formulation
Deterministic time-domain identification problem Notation

Algorithm

Computing the system matrices
Similarly, we can show that

Ao
Oi1 =Y /y; Wy =Ti_1Xi1.

Let I'; denote the matrix I'; without the last / rows. Then,
Fier=Ti
and X, can be calculated as
Xip1=T1,0i4.

We have calculated X; and Xj, 1 using only input-output data.
The matrices A, B, C, D can be solved in an LS sense from:

(v )=(e0)(u)
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Problem formulation
Deterministic time-domain identification problem Notation

Algorithm

Deterministic algorithm

@ 1. Calculate the oblique projections:
O; = Yi/uy,Wp, Oj_4 = Y,‘/UF Wy .
@ 2. Calculate the SVD of the weighted oblique projection:
W, 0;W, = USVT.

@ 3. Determine the order by inspecting the singular values in
S and partition the SVD accordingly to obtain U; and S;.

@ 4. Determine I'; and I';_¢ as:

= W;1 Uy 811/2, Fio1 =T
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Problem formulation
Deterministic time-domain identification problem Notation

Algorithm

@ 5. Determine X; and X;, 1 as:
X =Tl0;, X =T]_,0iy.

@ 6. Solve the set of linear equations for A, B, C and D:

(v )=(e0)(u)
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Problem description
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Problem description
A simple subspace identification algorithm

Continuous-time frequency domain subspace-based identification

Consider the continuous-time system with m inputs, / outputs
and n states:

x(t) = Ax(t)+ Bu(t),
y(t) = Cx(t)+ Du(t).
With the assumption x(0) = 0, the system equations can be

transformed to the Laplace domain:

sX(s) = AX(s)+ BU(s),
Y(s) = CX(s)+ DU(s).

The frequency domain response is given by

H(s)= D+ C(sl - A) "B,
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Problem description
A simple subspace identification algorithm

Continuous-time frequency domain subspace-based identification

With an input U(s) = I, Laplace domain equations are
rewritten as

sXH(s) = AXH(s)+ Bln,
Y(s) = CXH(s)+ Dip.

@ X"(s)is n x m matrix where the kth column of x"(s)
contains the transformed state trajectory induced by an
impulse applied to the kth input.

Problem Given N frequency response samples H(jwy),
k=1,--- N, find the system matrices A, B, C, D.

Huseyin Akgay Subspace identification algorithms:



Problem description
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Problem description
A simple subspace identification algorithm

Continuous-time frequency domain subspace-based identification

The extended observability matrix I'; and the block Toeplitz
matrix ©; are given by

C
I_i é CA e Rlixn’
CA.i—1
i D 0 0
o 2 CB b 0 c Rlixmi
: : vdots
i CA—2B CA-3B ... D

with / > n, a user defined index.
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Problem description
A simple subspace identification algorithm

Continuous-time frequency domain subspace-based identification

Let
C Her) Hies) o Hion)
o & | GSOMIS) (el GewHGen) |
:(/'W1)"_1:H(/'w1) o) Hjiz) - (o)~ Hjion)
| e Wl G |
o) G o)

X 2 XHwr) XH(we) - XH(jw)],

with H € C*mN 7 ¢ ¢mixmN gand x ¢ C"*MN,
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Problem description
A simple subspace identification algorithm

Continuous-time frequency domain subspace-based identification

H 2 [Re(H) Im(HC)] € RI*2mN,
T 2 [Re(Z°) Im(Z°)] e RMx2mN,
X 2 [Re(X°) Im(X°)] € R™2MN.

Lemma (Input-output equation)
HE = F,XC + @,’IC,
H = TI;X+06/1.

@ This lemma is obtained by recursive use and evaluation of
the Laplace domain equations.

Huseyin Akgay Subspace identification algorithms:



Problem description
A simple subspace identification algorithm

Continuous-time frequency domain subspace-based identification

By projecting the second equation in the lemma onto the
orthogonal complement of Z, we obtain:

Theorem (Orthogonal projection) If rank[X' /Z+] = n, then,

rank[H/Z+] = n,
range[H/Z1] = range[l}].

Simple frequency domain algorithm

@ Construct Z and H from the given frequencies wy and the
frequency response points H(jwg).

e Compute H/Z+.
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Problem description
A simple subspace identification algorithm

Continuous-time frequency domain subspace-based identification

@ Compute the SVD:
S 0 vy
HIL:UU(1 ><1)
/ ( 1 2) 0 0 V2T

@ Determine the order from the number of singular values S;
different from zero.

@ Determine =U, 811 /2 which is one possible estimate for the
extended observability matrix I';.

@ Determine A and C as:
C= gﬁrst1r0w57 A= @Tg_

where G and G denote G without the last and first / rows.
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Problem description
A simple subspace identification algorithm

Continuous-time frequency domain subspace-based identification

@ Determine B and D through the (least squares) solution of

the linear set:
Lr\ ([ Lr B
L)\ L D /)’

where £ € CNxm gand M e CNx(n+]) gre defined as:

H(jw1)
L = Lr+jL= : ;
H(jwn)
Cliwwrln— A"
M = Mg+ jM,;= : :
Cljwnln — A~ )
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Problem description
A simple subspace identification algorithm

Continuous-time frequency domain subspace-based identification

@ This algorithm is academic since it is limited to small
values of n and the frequency range:

@ Due to block-Vandermonde structure the condition numbers
of H and Z become extremely large when n gets larger.

e The larger the frequency range, the poorer numerical
conditionings of H and Z.

@ |t is possible to improve the numerical conditioning by
implicitly constructing a well-conditioned basis for the row
spaces of H and Z through Forsythe recursions (Van
Overschee and De Moor:1996).
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