Subspace identification algorithms:

 an introductionHüseyin Akçay

Department of Electrical and Electronics Engineering
Anadolu University, Eskişehir, Turkey
October 28, 2008

Outline

(9) Review of projections
(2) Deterministic time-domain identification problem

- Problem formulation
- Notation
- Algorithm
(3) Continuous-time frequency domain subspace-based identification
- Problem description
- A simple subspace identification algorithm

Subspace identification algorithms are often based on geometric concepts. Some system characteristics can be revealed by geometric manipulation of the row spaces of certain matrices.

Let us assume that the three matrices

$$
A \in \mathbf{R}^{p \times j}, \quad B \in \mathbf{R}^{q \times j}, \quad C \in \mathbf{R}^{r \times j}
$$

are given.

Orthogonal projections

The operator that projects the row space of a matrix onto the row space of $B \in \mathbf{R}^{q \times j}$ is defined by

$$
\Pi_{B} \triangleq B^{\top}\left(B B^{T}\right)^{\dagger} B
$$

where ${ }^{\dagger}$ denotes the the Moore-Penrose pseudo inverse.

Thus,

$$
A / B \triangleq A \Pi_{B}=A B^{T}\left(B B^{T}\right)^{\dagger} B
$$

is shorthand for the projection of the row space of $A \in \mathbf{R}^{p \times j}$ on the row space of B.
$\Pi_{B \perp}$ is the geometric operator that projects the row space of a matrix onto the orthogonal complement of the row space of B :

$$
A / B^{\perp} \triangleq A \Pi_{B^{\perp}}
$$

where

$$
\Pi_{B^{\perp}}=l_{j}-\Pi_{B}
$$

$$
A=A \Pi_{B}+A \Pi_{B^{\perp}}
$$

Alternatively, the projections decompose A as linear combination of the rows of B and of the rows of the orthogonal complement of B. With

$$
\begin{aligned}
L_{B} B & \triangleq A / B \\
L_{B^{\perp}} B^{\perp} & \triangleq A / B^{\perp}
\end{aligned}
$$

where B^{\perp} is a basis for the orthogonal complement of the row space of B, we find

$$
A=L_{B} B+L_{B^{\perp}} B^{\perp}
$$

- A decomposition of A into a sum of linear combinations of the rows of B and B^{\perp}.

Instead of decomposing A as linear combinatons of two orthogonal matrices B and B^{\perp}, it can also be decomposed as linear combination of two non-orthogonal matrices B and C and of the orthogonal complement $f B$ and C. Thus,

$$
A=L_{B} B+\underbrace{L_{C} C}_{A / B C}+L_{B^{\perp}, C^{\perp}}\binom{B}{C}^{\perp} .
$$

Definition Oblique projections
The oblique projection of the row space $A \in \mathbf{R}^{p \times j}$ along the row spaces of $C \in \mathbf{R}^{r \times j}$ is defined as:

$$
A / B_{B} C \triangleq A\left(\begin{array}{ll}
C^{T} & B^{T}
\end{array}\right)\left[\left(\begin{array}{ll}
C C^{T} & C B^{T} \\
B C^{T} & B B^{T}
\end{array}\right)^{\dagger}\right]_{\text {first r columns }} C .
$$

Some properties of the oblique projections are:

- $B /{ }_{B} C=0$,
- $C /{ }_{B} C=C$,
- $A / B_{B} C=\left[A / B^{\perp}\right]\left[C / B^{\perp}\right]^{\dagger} C$.

Orthogonal projections can be easily expressed in functions of the RQ decomposition. Let us first treat the case A / B where A and B can be expressed as linear combinations of the orthonormal matrix Q^{\top} as:

$$
\begin{aligned}
A & =R_{A} Q^{T}, \\
B & =R_{B} Q^{T} .
\end{aligned}
$$

Here, A and B are lower triangular matrices.

Then,

$$
\begin{aligned}
A / B & =A B^{T}\left(B B^{T}\right)^{\dagger} B \\
& \left.=\left[R_{A} Q^{T} Q R_{B}^{T}\right] R_{B} Q^{T} Q R_{B}^{T}\right]^{\dagger} R_{B} Q^{T} \\
& =R_{A} R_{B}^{T}\left[R_{B} R_{B}^{T}\right]^{\dagger} R_{B} Q^{T} .
\end{aligned}
$$

- The oblique projections can also be written as functions of the RQ decompositions by noting that

$$
\begin{aligned}
A / B^{\perp}=A-A / B & =R_{A} Q^{T}-R_{A} R_{B}^{T}\left[R_{B} R_{B}^{T}\right]^{\dagger} R_{B} Q^{T} \\
& =R_{A}\left[I-R_{B}^{T}\left[R_{B} R_{B}^{T}\right]^{\dagger} R_{B}\right] Q^{T}
\end{aligned}
$$

Outline

Review of projections

(2) Deterministic time-domain identification problem

- Problem formulation
- Notation
- Algorithm
(3) Continuous-time frequency domain subspace-based identification
- Problem description
- A simple subspace identification algorithm

Given:

s measurements of the input $u_{k} \in \mathbf{R}^{m}$ and the output $y_{k} \in \mathbf{R}^{\prime}$ generated by the unknown system of order n :

$$
\begin{aligned}
x_{k+1} & =A x_{k}+B u_{k} \\
y_{k} & =C x_{k}+D u_{k} .
\end{aligned}
$$

Determine:

- The order of the unknown system
- The system matrices $A \in \mathbf{R}^{n \times n}, B \in \mathbf{R}^{n \times m}, C \in \mathbf{R}^{1 \times n}$ (up to within a similarity transformation).

Outline

Review of projections
2 Deterministic time-domain identification problem

- Problem formulation
- Notation
- Algorithm
(3) Continuous-time frequency domain subspace-based identification
- Problem description
- A simple subspace identification algorithm

$$
\begin{aligned}
U_{0 \mid 2 i-1} & \triangleq\left(\begin{array}{cccc}
u_{0} & u_{1} & \cdots & u_{j-1} \\
u_{1} & u_{2} & \cdots & u_{j} \\
\vdots & \vdots & \ddots & \vdots \\
u_{i-1} & u_{i} & \cdots & u_{i+j-2} \\
\hline u_{i} & u_{i+1} & \cdots & u_{i+j-1} \\
u_{i+1} & u_{i+2} & \cdots & u_{i+j} \\
\vdots & \vdots & \ddots & \vdots \\
u_{2 i-1} & u_{2 i} & \cdots & u_{2 i+j-2}
\end{array}\right) \\
& \triangleq\left(\frac{U_{0 \mid i-1}}{U_{i \mid 2 i-1}}\right) \triangleq\left(\frac{U_{p}}{U_{f}}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \triangleq\left(\begin{array}{cccc}
u_{0} & u_{1} & \cdots & u_{j-1} \\
u_{1} & u_{2} & \cdots & u_{j} \\
\vdots & \vdots & \ddots & \vdots \\
u_{i-1} & u_{i} & \cdots & u_{i+j-2} \\
u_{i} & u_{i+1} & \cdots & u_{i+j-1} \\
\hline u_{i+1} & u_{i+2} & \cdots & u_{i+j} \\
\vdots & \vdots & \ddots & \vdots \\
u_{2 i-1} & u_{2 i} & \cdots & u_{2 i+j-2}
\end{array}\right) \\
& \triangleq\left(\frac{U_{0 \mid i}}{U_{i+1 \mid 2 i-1}}\right) \triangleq\left(\frac{U_{p}^{+}}{U_{f}^{-}}\right) .
\end{aligned}
$$

- The output block Hankel matrices $Y_{0 \mid 2 i-1}, Y_{p}, Y_{f}, Y_{p}^{+}, Y_{f}^{-}$ are defined in a similar way.

$$
W_{0 \mid i} \triangleq\binom{U_{0 \mid i-1}}{Y_{0 \mid i-1}}=\binom{U_{p}}{Y_{p}}=W_{p} .
$$

Similarly as before, W_{p}^{+}is defined as

$$
W_{p}^{+} \triangleq\binom{U_{p}^{+}}{Y_{p}^{+}}
$$

The state sequence X_{i} is defined as

$$
x_{i} \triangleq\left(\begin{array}{lll}
x_{i} & \cdots & x_{i+j-1}
\end{array}\right) \in \mathbf{R}^{n \times j}
$$

Analogous to the past inputs and outputs,

$$
X_{p}=X_{0}, \quad X_{f}=X_{i}
$$

System related matrices
The extended $(i>n)$ observability matrix

$$
\Gamma_{i} \triangleq\left(\begin{array}{c}
C \\
\vdots \\
C A^{i-1}
\end{array}\right) \in \mathbf{R}^{l i \times n}
$$

We assume that the pair $\{A, C\}$ to be observable, which implies that the rank of Γ_{i} is equal to n.

The reversed extended controllability matrix

$$
\Delta_{i} \triangleq\left(\begin{array}{lll}
A^{i-1} B & \cdots & B
\end{array}\right) \in \mathbf{R}^{n \times m i}
$$

We assume that the pair $\{A, B\}$ to be controllable, which implies that the rank of Δ_{i} is equal to n.

The lower block triangular Toeplitz matrix

$$
H_{i} \triangleq\left(\begin{array}{cccc}
D & 0 & \cdots & 0 \\
C B & D & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
C A^{i-2} B & C A^{i-3} B & \cdots & D
\end{array}\right) \in \mathbf{R}^{l i \times m i} .
$$

Definition The input sequence $u_{k} \in \mathbf{R}^{m}$ is persistently exciting of order $2 i$ if the input covariance matrix

$$
R^{u u} \triangleq \lim _{j \rightarrow \infty} \frac{1}{j} U_{0 \mid 2 i-1} U_{0 \mid 2 i-1}^{T}
$$

has full rank, which is 2 mi .

Outline

Review of projections
(2) Deterministic time-domain identification problem

- Problem formulation
- Notation
- Algorithm
(3) Continuous-time frequency domain subspace-based identification
- Problem description
- A simple subspace identification algorithm

Theorem Matrix input-output equations.

$$
\begin{aligned}
Y_{p} & =\Gamma_{i} X_{p}+H_{i} U_{p} \\
Y_{f} & =\Gamma_{i} X_{f}+H_{i} U_{f} \\
X_{f} & =A^{i} X_{p}+\Delta_{i} U_{p}
\end{aligned}
$$

Theorem Deterministic time-domain identification.
Under the assumptions that:

- 1. The input u_{k} is persistently exciting of order $2 i$.
- 2. The intersection of the row space of U_{f} (the future inputs) and the row space of X_{p} (the past states) is empty.
- 3. The user defined weighting matrices $W_{1} \in \mathbf{R}^{l i \times l i}$ and $W_{2} \in \mathbf{R}^{j \times j}$ are such that W_{1} is of full rank and W_{2} obeys: $\operatorname{rank}\left(W_{p}\right)=\operatorname{rank}\left(W_{p} W_{2}\right)$, where W_{p} is the block Hankel matrix containing the past inputs and outputs.

And with \mathcal{O}_{i} defined as the oblique projection:

$$
\mathcal{O}_{i} \triangleq Y_{f} / U_{f} W_{p}
$$

and the singular value decomposition:

$$
\begin{aligned}
W_{1} \mathcal{O}_{i} W_{2} & =\left(\begin{array}{ll}
U_{1} & U_{2}
\end{array}\right)\left(\begin{array}{cc}
S_{1} & 0 \\
0 & 0
\end{array}\right)\binom{V_{1}^{T}}{V_{2}^{T}} \\
& =U_{1} S_{1} V_{1}^{T}
\end{aligned}
$$

we have:
(1) \mathcal{O}_{i} is equal to the product of the extended observability matrix and the states:

$$
\mathcal{O}_{i}=\Gamma_{i} X_{f} .
$$

(2) n is equal to the number of non-zero singular values.
(3) The extended observability matrix Γ_{i} is equal to:

$$
\Gamma_{i}=W_{1}^{-1} U_{1} S_{1}^{1 / 2} T
$$

(4) The part of the state sequence X_{f} that lies in the column space of W_{2} can be recovered from:

$$
X_{f} W_{2}=T^{-1} S_{1}^{1 / 2} V_{1}^{T}
$$

(5) The state sequence X_{f} is equal to

$$
X_{f}=\Gamma_{i}^{\dagger} \mathcal{O}_{i}
$$

Proof

From matrix input-output equations,

$$
\begin{aligned}
X_{f} & =A^{i} X_{p}+\Delta_{i} U_{p} \\
& =A^{i}\left[\Gamma_{i}^{\dagger} Y_{p}-\Gamma_{i}^{\dagger} H_{i} U_{p}\right]+\Delta_{i} U_{p} \\
& =\left[\Delta_{i}-A^{i} \Gamma_{i}^{\dagger} H_{i}\right] U_{p}+\left[A^{i} \Gamma_{i}^{\dagger}\right] Y_{p} \\
& =L_{p} W_{p}
\end{aligned}
$$

with

$$
L_{p}=\left(\Delta_{i}-A^{i} \Gamma_{i}^{\dagger} H_{i} A^{i} \Gamma_{i}^{\dagger}\right) .
$$

Thus,

$$
\begin{aligned}
Y_{f} & =\Gamma_{i} L_{p} W_{p}+H_{i} U_{f}, \\
Y_{f} \Pi_{U_{f}^{\perp}} & =\Gamma_{i} L_{p} W_{p} \Pi_{U_{f}^{+}},
\end{aligned}
$$

$$
\begin{gathered}
Y_{f} / U_{f}^{\perp}=\Gamma_{i} L_{p} W_{p} / U_{f}^{\perp}, \\
{\left[Y_{f} / U_{f}^{\perp}\right]\left[W_{p} / U_{f}^{\perp}\right]^{\dagger} W_{p}=\Gamma_{i} L_{p} W_{p}} \\
\mathcal{O}_{i}=\Gamma_{i} X_{f}
\end{gathered}
$$

where we have used the fact that $\left[W_{p} / U_{f}^{\perp}\right]\left[W_{p} / U_{f}^{\perp}\right]^{\dagger} W_{p}=W_{p}$ to be shown shortly.

The second claim follows from the fact that $W_{1} \mathcal{O}_{i} W_{2}$ is equal to the product of two matrices $W_{1} \Gamma_{i}$ (n columns) and $X_{f} W_{2}$ (n rows). Since W_{1} is of full rank due to assumption 3 of the theorem, the product $W_{1} \Gamma_{i}$ is also of rank n. Multiplying both sides of $X_{f}=L_{p} W_{p}$ with W_{2}, we get $X_{f} W_{2}=L_{p} W_{p} W_{2}$. Then, from assumption 3, the rank of $X_{f} W_{2}$ is equal to the rank of X_{f}. Hence, $W_{1} \Gamma_{i}, X_{f} W_{2}$, and their products are all of rank n.

Thus, the second formula in the SVD can be split into two parts for some non-singular $T \in \mathbf{R}^{n \times n}$ as follows:

$$
\begin{aligned}
W_{1} \Gamma_{i} & =U_{1} S_{1}^{1 / 2} T \\
X_{f} W_{2} & =T^{-1} S_{1}^{1 / 2} V_{1}^{T}
\end{aligned}
$$

which leads to claim 3 and 4 of the theorem. Claim 5 easily follows from the first claim.

The proof of $\left[W_{p} / U_{f}^{\perp}\right]\left[W_{p} / U_{f}^{\perp}\right]^{\dagger} W_{p}=W_{p}$:
Let us first show that

$$
\operatorname{rank} W_{p}=\operatorname{rank} W_{p} / U_{f}^{\perp}
$$

W_{p} can be written as

$$
W_{p}=\left(\begin{array}{cc}
I_{m i} & 0 \\
H_{i} & \Gamma_{i}
\end{array}\right)\binom{U_{p}}{X_{p}}
$$

which implies that W_{p} / U_{f}^{\perp} can be written as:

$$
W_{p} / U_{f}^{\perp}=\left(\begin{array}{cc}
I_{m i} & 0 \\
H_{i} & \Gamma_{i}
\end{array}\right)\binom{U_{p} / U_{f}^{\perp}}{X_{p} / U_{f}^{\perp}}
$$

Due to the persistency of excitation U_{p} / U_{f}^{\perp} does not lose rank and due to the second assumption x_{p} / U_{f}^{\perp} either. Hence,

$$
\operatorname{rank}\binom{U_{p}}{X_{p}}=\operatorname{rank}\binom{U_{p} / U_{f}^{\perp}}{X_{p} / U_{f}^{\perp}}
$$

proving the first claim. Now, denote the SVD of W_{p} / U_{f}^{\perp} as:

$$
W_{p} / U_{f}^{\perp}=\left(\begin{array}{ll}
U_{1} & U_{2}
\end{array}\right)\left(\begin{array}{cc}
S_{1} & 0 \\
0 & 0
\end{array}\right)\binom{V_{1}^{T}}{V_{2}^{T}}=U_{1} S_{1} V_{1}^{T} .
$$

Since W_{p} / U_{f}^{\perp} is a linear combination of the columns of W_{p} and since the rank of W_{p} and W_{p} / U_{f}^{\perp} are equal, we find that the column spaces of W_{p} and W_{p} / U_{f}^{\perp} are equal. This implies that W_{p} can be written as:

$$
W_{p}=U_{1} R .
$$

Finally,

$$
\begin{aligned}
{\left[W_{p} / U_{f}^{\perp}\right]\left[W_{p} / U_{f}^{\perp}\right]^{\dagger} W_{p} } & =\left[U_{1} S_{1} V_{1}^{T}\right]\left[V_{1} S_{1}^{-1} U_{1}^{T}\right] U_{1} R \\
& =U_{1} R=W_{p} .
\end{aligned}
$$

Remarks

- $\operatorname{rank}\left(Y_{f} / U_{f} W_{p}\right)=n$
- row $\operatorname{space}\left(Y_{f} / U_{f} W_{p}\right)=$ row $\operatorname{space}\left(X_{f}\right)$
- column space $\left(Y_{f} / U_{f} W_{p}\right)=$ column $\operatorname{space}\left(\Gamma_{i}\right)$

Summarize why these algorithms are called subspace algorithms!

Computing the system matrices

Similarly, we can show that

$$
\mathcal{O}_{i-1} \triangleq Y_{f}^{-} / U_{f}^{-} W_{p}^{+}=\Gamma_{i-1} X_{i+1}
$$

Let Γ_{i} denote the matrix Γ_{i} without the last $/$ rows. Then,

$$
\Gamma_{i-1}=\underline{\Gamma_{i}}
$$

and X_{i+1} can be calculated as

$$
X_{i+1}=\Gamma_{i-1}^{\dagger} \mathcal{O}_{i-1}
$$

We have calculated X_{i} and X_{i+1} using only input-output data. The matrices A, B, C, D can be solved in an LS sense from:

$$
\binom{X_{i+1}}{Y_{i \mid i}}=\left(\begin{array}{cc}
A & B \\
C & D
\end{array}\right)\binom{X_{i}}{U_{i \mid i}} .
$$

Deterministic algorithm

- 1. Calculate the oblique projections:

$$
\mathcal{O}_{i}=Y_{f} / U_{f} W_{p}, \quad \mathcal{O}_{i-1}=Y_{f}^{-} / U_{f}^{-} W_{p}^{+}
$$

- 2. Calculate the SVD of the weighted oblique projection:

$$
W_{1} \mathcal{O}_{i} W_{2}=U S V^{\top}
$$

- 3. Determine the order by inspecting the singular values in S and partition the SVD accordingly to obtain U_{1} and S_{1}.
- 4. Determine Γ_{i} and Γ_{i-1} as:

$$
\Gamma_{i}=W_{1}^{-1} U_{1} S_{1}^{1 / 2}, \quad \Gamma_{i-1}=\underline{\Gamma_{i}} .
$$

- 5. Determine X_{i} and X_{i+1} as:

$$
X_{i}=\Gamma_{i}^{\dagger} \mathcal{O}_{i}, \quad X_{i+1}=\Gamma_{i-1}^{\dagger} \mathcal{O}_{i-1}
$$

- 6. Solve the set of linear equations for A, B, C and D :

$$
\binom{X_{i+1}}{Y_{i \mid i}}=\left(\begin{array}{cc}
A & B \\
C & D
\end{array}\right)\binom{X_{i}}{U_{i \mid i}}
$$

Outline

Review of projections

(2)

Deterministic time-domain identification problem

- Problem formulation
- Notation
- Algorithm
(3) Continuous-time frequency domain subspace-based identification
- Problem description
- A simple subspace identification algorithm

Consider the continuous-time system with m inputs, / outputs and n states:

$$
\begin{aligned}
\dot{x}(t) & =A x(t)+B u(t), \\
y(t) & =C x(t)+D u(t) .
\end{aligned}
$$

With the assumption $x(0)=0$, the system equations can be transformed to the Laplace domain:

$$
\begin{aligned}
s X(s) & =A X(s)+B U(s), \\
Y(s) & =C X(s)+D U(s) .
\end{aligned}
$$

The frequency domain response is given by

$$
H(s)=D+C(s I-A)^{-1} B .
$$

With an input $U(s)=I_{m}$, Laplace domain equations are rewritten as

$$
\begin{aligned}
s X^{H}(s) & =A X^{H}(s)+B I_{m}, \\
Y(s) & =C X^{H}(s)+D I_{m} .
\end{aligned}
$$

- $X^{H}(s)$ is $n \times m$ matrix where the kth column of $x^{H}(s)$ contains the transformed state trajectory induced by an impulse applied to the kth input.

Problem Given N frequency response samples $H\left(j \omega_{k}\right)$, $k=1, \cdots, N$, find the system matrices A, B, C, D.

Outline

Review of projections

(2)

Deterministic time-domain identification problem

- Problem formulation
- Notation
- Algorithm
(3) Continuous-time frequency domain subspace-based identification
- Problem description
- A simple subspace identification algorithm

The extended observability matrix Γ_{i} and the block Toeplitz matrix Θ_{i} are given by

$$
\begin{aligned}
& \Gamma_{i} \triangleq\left[\begin{array}{c}
C \\
C A \\
\vdots \\
C A^{i-1}
\end{array}\right] \in \mathbf{R}^{l i \times n}, \\
& \Theta_{i} \triangleq\left[\begin{array}{cccc}
D & 0 & \cdots & 0 \\
C B & D & \cdots & 0 \\
\vdots & \vdots & \ddots & v d o t s \\
C A^{i-2} B & C A^{i-3} B & \cdots & D
\end{array}\right] \in \mathbf{R}^{l i \times m i}
\end{aligned}
$$

with $i>n$, a user defined index.

Let

$$
\begin{aligned}
\mathcal{H}^{c} & \triangleq\left[\begin{array}{cccc}
H\left(j \omega_{1}\right) & H\left(j \omega_{2}\right) & \cdots & H\left(j \omega_{N}\right) \\
\left(j \omega_{1}\right) H\left(j \omega_{1}\right) & \left(j \omega_{2}\right) H\left(j \omega_{2}\right) & \cdots & \left(j \omega_{N}\right) H\left(j \omega_{N}\right) \\
\vdots & \vdots & \ddots & \vdots \\
\left(j \omega_{1}\right)^{i-1} H\left(j \omega_{1}\right) & \left(j \omega_{2}\right)^{i-1} H\left(j \omega_{2}\right) & \cdots & \left(j \omega_{N}\right)^{i-1} H\left(j \omega_{N}\right)
\end{array}\right] \\
\mathcal{I}^{c} & \triangleq\left[\begin{array}{cccc}
I_{m} & I_{m} & \cdots & I_{m} \\
\left(j \omega_{1}\right) I_{m} & \left(j \omega_{2}\right) I_{m} & \cdots & \left(j \omega_{N}\right) I_{m} \\
\vdots & \vdots & \ddots & \vdots \\
\left(j \omega_{1}\right)^{i-1} I_{m} & \left(j \omega_{2}\right)^{i-1} I_{m} & \cdots & \left(j \omega_{N}\right)^{i-1} I_{m}
\end{array}\right] \\
\mathcal{X}^{c} & \triangleq\left[\begin{array}{ccc}
X^{H}\left(j \omega_{1}\right) & X^{H}\left(j \omega_{2}\right) & \left.\cdots X^{H}\left(j \omega_{N}\right)\right]
\end{array}\right.
\end{aligned}
$$

with $\mathcal{H} \in \mathbf{C}^{l i \times m N}, \mathcal{I} \in \mathbf{C}^{m i \times m N}$ and $\mathcal{X} \in \mathbf{C}^{n \times m N}$.

$$
\begin{aligned}
\mathcal{H} & \triangleq\left[\operatorname{Re}\left(\mathcal{H}^{c}\right) \operatorname{Im}\left(\mathcal{H}^{c}\right)\right] \in \mathbf{R}^{l i \times 2 m N} \\
\mathcal{I} & \triangleq\left[\operatorname{Re}\left(\mathcal{I}^{c}\right) \operatorname{Im}\left(\mathcal{I}^{c}\right)\right] \in \mathbf{R}^{m i \times 2 m N} \\
\mathcal{X} & \triangleq\left[\operatorname{Re}\left(\mathcal{X}^{c}\right) \operatorname{Im}\left(\mathcal{X}^{c}\right)\right] \in \mathbf{R}^{n \times 2 m N}
\end{aligned}
$$

Lemma (Input-output equation)

$$
\begin{aligned}
\mathcal{H}^{c} & =\Gamma_{i} \mathcal{X}^{c}+\Theta_{i} \mathcal{I}^{c} \\
\mathcal{H} & =\Gamma_{i} \mathcal{X}+\Theta_{i} \mathcal{I}
\end{aligned}
$$

- This lemma is obtained by recursive use and evaluation of the Laplace domain equations.

By projecting the second equation in the lemma onto the orthogonal complement of \mathcal{I}, we obtain:

Theorem (Orthogonal projection) If $\operatorname{rank}\left[\mathcal{X} / \mathcal{I}^{\perp}\right]=n$, then,

$$
\begin{aligned}
\operatorname{rank}\left[\mathcal{H} / \mathcal{I}^{\perp}\right] & =n, \\
\operatorname{range}\left[\mathcal{H} / \mathcal{I}^{\perp}\right] & =\operatorname{range}\left[\Gamma_{i}\right] .
\end{aligned}
$$

Simple frequency domain algorithm

- Construct \mathcal{I} and \mathcal{H} from the given frequencies ω_{k} and the frequency response points $H\left(j \omega_{k}\right)$.
- Compute $\mathcal{H} / \mathcal{I}^{\perp}$.
- Compute the SVD:

$$
\mathcal{H} / \mathcal{I}^{\perp}=\left(\begin{array}{ll}
U_{1} & U_{2}
\end{array}\right)\left(\begin{array}{cc}
S_{1} & 0 \\
0 & 0
\end{array}\right)\binom{V_{1}^{T}}{V_{2}^{T}} .
$$

- Determine the order from the number of singular values S_{1} different from zero.
- Determine $=U_{1} S_{1}^{1 / 2}$, which is one possible estimate for the extended observability matrix Γ_{i}.
- Determine A and C as:

$$
C=\mathcal{G}_{\text {first } 1 \text { rows }}, \quad A=[\mathcal{G}]^{\dagger} \overline{\mathcal{G}}
$$

where $\underline{\mathcal{G}}$ and $\overline{\mathcal{G}}$ denote \mathcal{G} without the last and first / rows.

- Determine B and D through the (least squares) solution of the linear set:

$$
\binom{\mathcal{L}_{R}}{\mathcal{L}_{I}}=\binom{\mathcal{L}_{R}}{\mathcal{L}_{I}}\binom{B}{D}
$$

where $\mathcal{L} \in \mathbf{C}^{I N \times m}$ and $\mathcal{M} \in \mathbf{C}^{I N \times(n+l)}$ are defined as:

$$
\begin{aligned}
\mathcal{L} & =\mathcal{L}_{R}+j \mathcal{L}_{I}=\left(\begin{array}{c}
H\left(j \omega_{1}\right) \\
\vdots \\
H\left(j \omega_{N}\right)
\end{array}\right) \\
\mathcal{M} & =\mathcal{M}_{R}+j \mathcal{M}_{I}=\left(\begin{array}{cc}
C\left(j \omega_{1} I_{n}-A\right)^{-1} & I_{I} \\
\vdots & \vdots \\
C\left(j \omega_{N} I_{n}-A\right)^{-1} & I_{I}
\end{array}\right) .
\end{aligned}
$$

- This algorithm is academic since it is limited to small values of n and the frequency range:
- Due to block-Vandermonde structure the condition numbers of \mathcal{H} and \mathcal{I} become extremely large when n gets larger.
- The larger the frequency range, the poorer numerical conditionings of \mathcal{H} and \mathcal{I}.
- It is possible to improve the numerical conditioning by implicitly constructing a well-conditioned basis for the row spaces of \mathcal{H} and \mathcal{I} through Forsythe recursions (Van Overschee and De Moor:1996).

