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Subspace identification algorithms are often based on
geometric concepts. Some system characteristics can be
revealed by geometric manipulation of the row spaces of
certain matrices.

Let us assume that the three matrices

A ∈ Rp×j , B ∈ Rq×j , C ∈ Rr×j

are given.

Orthogonal projections

The operator that projects the row space of a matrix onto the
row space of B ∈ Rq×j is defined by

ΠB
∆
= BT (BBT )†B

where † denotes the the Moore-Penrose pseudo inverse.
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Thus,

A/B ∆
= AΠB = ABT (BBT )†B

is shorthand for the projection of the row space of A ∈ Rp×j on
the row space of B.

ΠB⊥ is the geometric operator that projects the row space of a
matrix onto the orthogonal complement of the row space of B:

A/B⊥ ∆
= AΠB⊥ ,

where
ΠB⊥ = Ij − ΠB.

A = AΠB + AΠB⊥ .
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Alternatively, the projections decompose A as linear
combination of the rows of B and of the rows of the orthogonal
complement of B. With

LBB ∆
= A/B,

LB⊥B⊥ ∆
= A/B⊥

where B⊥ is a basis for the orthogonal complement of the row
space of B, we find

A = LBB + LB⊥B⊥.

A decomposition of A into a sum of linear combinations of
the rows of B and B⊥.
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Instead of decomposing A as linear combinatons of two
orthogonal matrices B and B⊥, it can also be decomposed as
linear combination of two non-orthogonal matrices B and C and
of the orthogonal complement f B and C. Thus,

A = LBB + LCC︸︷︷︸
A/BC

+LB⊥,C⊥

(
B
C

)⊥
.

Definition Oblique projections

The oblique projection of the row space A ∈ Rp×j along the row
spaces of C ∈ Rr×j is defined as:

A/BC ∆
= A

(
CT BT

) [(
CCT CBT

BCT BBT

)†]
first r columns

C.
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Some properties of the oblique projections are:

B/BC = 0,

C/BC = C,

A/BC = [A/B⊥][C/B⊥]†C.

Orthogonal projections can be easily expressed in functions of
the RQ decomposition. Let us first treat the case A/B where A
and B can be expressed as linear combinations of the
orthonormal matrix QT as:

A = RAQT ,

B = RBQT .

Here, A and B are lower triangular matrices.
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Then,

A/B = ABT (BBT )†B
= [RAQT QRT

B ]RBQT QRT
B ]†RBQT

= RART
B [RBRT

B ]†RBQT .

The oblique projections can also be written as functions of
the RQ decompositions by noting that

A/B⊥ = A− A/B = RAQT − RART
B [RBRT

B ]†RBQT

= RA[I − RT
B [RBRT

B ]†RB]QT .

Hüseyin Akçay Subspace identification algorithms:



Review of projections
Deterministic time-domain identification problem

Continuous-time frequency domain subspace-based identification

Problem formulation
Notation
Algorithm

Outline

1 Review of projections

2 Deterministic time-domain identification problem
Problem formulation
Notation
Algorithm

3 Continuous-time frequency domain subspace-based
identification

Problem description
A simple subspace identification algorithm

Hüseyin Akçay Subspace identification algorithms:



Review of projections
Deterministic time-domain identification problem

Continuous-time frequency domain subspace-based identification

Problem formulation
Notation
Algorithm

Given:

s measurements of the input uk ∈ Rm and the output yk ∈ Rl

generated by the unknown system of order n:

xk+1 = Axk + Buk ,

yk = Cxk + Duk .

Determine:

The order of the unknown system
The system matrices A ∈ Rn×n, B ∈ Rn×m, C ∈ Rl×n (up to
within a similarity transformation).
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U0|2i−1
∆
=



u0 u1 · · · uj−1
u1 u2 · · · uj
...

...
. . .

...
ui−1 ui · · · ui+j−2
ui ui+1 · · · ui+j−1

ui+1 ui+2 · · · ui+j
...

...
. . .

...
u2i−1 u2i · · · u2i+j−2


∆
=

(
U0|i−1
Ui|2i−1

)
∆
=

(
Up
Uf

)
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∆
=



u0 u1 · · · uj−1
u1 u2 · · · uj
...

...
. . .

...
ui−1 ui · · · ui+j−2
ui ui+1 · · · ui+j−1

ui+1 ui+2 · · · ui+j
...

...
. . .

...
u2i−1 u2i · · · u2i+j−2


∆
=

(
U0|i

Ui+1|2i−1

)
∆
=

(
U+

p
U−

f

)
.

The output block Hankel matrices Y0|2i−1, Yp, Yf , Y +
p , Y−

f
are defined in a similar way.
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W0|i
∆
=

(
U0|i−1
Y0|i−1

)
=

(
Up
Yp

)
= Wp.

Similarly as before, W +
p is defined as

W +
p

∆
=

(
U+

p
Y +

p

)
.

The state sequence Xi is defined as

Xi
∆
= (xi · · · xi+j−1) ∈ Rn×j .

Analogous to the past inputs and outputs,

Xp = X0, Xf = Xi .
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System related matrices

The extended (i > n) observability matrix

Γi
∆
=

 C
...

CAi−1

 ∈ Rli×n.

We assume that the pair {A, C} to be observable, which implies
that the rank of Γi is equal to n.

The reversed extended controllability matrix

∆i
∆
=

(
Ai−1B · · · B

)
∈ Rn×mi .
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We assume that the pair {A, B} to be controllable, which
implies that the rank of ∆i is equal to n.

The lower block triangular Toeplitz matrix

Hi
∆
=


D 0 · · · 0

CB D · · · 0
...

...
. . .

...
CAi−2B CAi−3B · · · D

 ∈ Rli×mi .

Definition The input sequence uk ∈ Rm is persistently exciting
of order 2i if the input covariance matrix

Ruu ∆
= lim

j→∞

1
j
U0|2i−1UT

0|2i−1

has full rank, which is 2mi .
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Theorem Matrix input-output equations.

Yp = ΓiXp + HiUp,

Yf = ΓiXf + HiUf ,

Xf = AiXp + ∆iUp.

Theorem Deterministic time-domain identification.

Under the assumptions that:

1. The input uk is persistently exciting of order 2i .
2. The intersection of the row space of Uf (the future
inputs) and the row space of Xp (the past states) is empty.
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3. The user defined weighting matrices W1 ∈ Rli×li and
W2 ∈ Rj×j are such that W1 is of full rank and W2 obeys:
rank(Wp) = rank(WpW2), where Wp is the block Hankel
matrix containing the past inputs and outputs.

And with Oi defined as the oblique projection:

Oi
∆
= Yf /Uf Wp,

and the singular value decomposition:

W1OiW2 = (U1 U2)

(
S1 0
0 0

) (
V T

1
V T

2

)
= U1S1V T

1 ,
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we have:
1 Oi is equal to the product of the extended observability

matrix and the states:

Oi = ΓiXf .

2 n is equal to the number of non-zero singular values.
3 The extended observability matrix Γi is equal to:

Γi = W−1
1 U1S1/2

1 T .

4 The part of the state sequence Xf that lies in the column
space of W2 can be recovered from:

Xf W2 = T−1S1/2
1 V T

1 .

5 The state sequence Xf is equal to

Xf = Γ†i Oi .
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Proof

From matrix input-output equations,

Xf = AiXp + ∆iUp

= Ai [Γ†i Yp − Γ†i HiUp] + ∆iUp

= [∆i − AiΓ†i Hi ]Up + [AiΓ†i ]Yp

= LpWp

with
Lp = (∆i − AiΓ†i Hi AiΓ†i ).

Thus,

Yf = ΓiLpWp + HiUf ,

Yf ΠU⊥f
= ΓiLpWpΠU⊥f

,
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Yf /U⊥
f = ΓiLpWp/U⊥

f ,

[Yf /U⊥
f ][Wp/U⊥

f ]†Wp = ΓiLpWp,

Oi = ΓiXf

where we have used the fact that [Wp/U⊥
f ][Wp/U⊥

f ]†Wp = Wp
to be shown shortly.

The second claim follows from the fact that W1OiW2 is equal to
the product of two matrices W1Γi (n columns) and Xf W2 (n
rows). Since W1 is of full rank due to assumption 3 of the
theorem, the product W1Γi is also of rank n. Multiplying both
sides of Xf = LpWp with W2, we get Xf W2 = LpWpW2. Then,
from assumption 3, the rank of Xf W2 is equal to the rank of Xf .
Hence, W1Γi , Xf W2, and their products are all of rank n.
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Thus, the second formula in the SVD can be split into two parts
for some non-singular T ∈ Rn×n as follows:

W1Γi = U1S1/2
1 T ,

Xf W2 = T−1S1/2
1 V T

1

which leads to claim 3 and 4 of the theorem. Claim 5 easily
follows from the first claim.

The proof of [Wp/U⊥
f ][Wp/U⊥

f ]†Wp = Wp:

Let us first show that

rankWp = rankWp/U⊥
f .

Wp can be written as

Wp =

(
Imi 0
Hi Γi

) (
Up
Xp

)
,
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which implies that Wp/U⊥
f can be written as:

Wp/U⊥
f =

(
Imi 0
Hi Γi

) (
Up/U⊥

f
Xp/U⊥

f

)
,

Due to the persistency of excitation Up/U⊥
f does not lose rank

and due to the second assumption xp/U⊥
f either. Hence,

rank
(

Up
Xp

)
= rank

(
Up/U⊥

f
Xp/U⊥

f

)
proving the first claim. Now, denote the SVD of Wp/U⊥

f as:

Wp/U⊥
f = (U1 U2)

(
S1 0
0 0

) (
V T

1
V T

2

)
= U1S1V T

1 .
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Since Wp/U⊥
f is a linear combination of the columns of Wp and

since the rank of Wp and Wp/U⊥
f are equal, we find that the

column spaces of Wp and Wp/U⊥
f are equal. This implies that

Wp can be written as:

Wp = U1R.

Finally,

[Wp/U⊥
f ][Wp/U⊥

f ]†Wp = [U1S1V T
1 ][V1S−1

1 UT
1 ]U1R

= U1R = Wp.
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Remarks

rank(Yf /Uf Wp) = n

row space(Yf /Uf Wp) = row space(Xf )

column space(Yf /Uf Wp) = column space(Γi)

Summarize why these algorithms are called subspace
algorithms!
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Computing the system matrices

Similarly, we can show that

Oi−1
∆
= Y−

f /U−f
W +

p = Γi−1Xi+1.

Let Γi denote the matrix Γi without the last l rows. Then,

Γi−1 = Γi

and Xi+1 can be calculated as

Xi+1 = Γ†i−1Oi−1.

We have calculated Xi and Xi+1 using only input-output data.
The matrices A, B, C, D can be solved in an LS sense from:(

Xi+1
Yi|i

)
=

(
A B
C D

) (
Xi
Ui|i

)
.
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Deterministic algorithm

1. Calculate the oblique projections:

Oi = Yf /Uf Wp, Oi−1 = Y−
f /U−f

W +
p .

2. Calculate the SVD of the weighted oblique projection:

W1OiW2 = USV T .

3. Determine the order by inspecting the singular values in
S and partition the SVD accordingly to obtain U1 and S1.

4. Determine Γi and Γi−1 as:

Γi = W−1
1 U1S1/2

1 , Γi−1 = Γi .
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5. Determine Xi and Xi+1 as:

Xi = Γ†i Oi , Xi+1 = Γ†i−1Oi−1.

6. Solve the set of linear equations for A, B, C and D:(
Xi+1
Yi|i

)
=

(
A B
C D

) (
Xi
Ui|i

)
.
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Consider the continuous-time system with m inputs, l outputs
and n states:

ẋ(t) = Ax(t) + Bu(t),
y(t) = Cx(t) + Du(t).

With the assumption x(0) = 0, the system equations can be
transformed to the Laplace domain:

sX (s) = AX (s) + BU(s),

Y (s) = CX (s) + DU(s).

The frequency domain response is given by

H(s) = D + C(sI − A)−1B.
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With an input U(s) = Im, Laplace domain equations are
rewritten as

sX H(s) = AX H(s) + BIm,

Y (s) = CX H(s) + DIm.

X H(s) is n ×m matrix where the kth column of xH(s)
contains the transformed state trajectory induced by an
impulse applied to the kth input.

Problem Given N frequency response samples H(jωk ),
k = 1, · · · , N, find the system matrices A, B, C, D.
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The extended observability matrix Γi and the block Toeplitz
matrix Θi are given by

Γi
∆
=


C

CA
...

CAi−1

 ∈ Rli×n,

Θi
∆
=


D 0 · · · 0

CB D · · · 0
...

...
. . . vdots

CAi−2B CAi−3B · · · D

 ∈ Rli×mi

with i > n, a user defined index.
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Let

Hc ∆
=


H(jω1) H(jω2) · · · H(jωN)

(jω1)H(jω1) (jω2)H(jω2) · · · (jωN)H(jωN)
...

...
. . .

...
(jω1)

i−1H(jω1) (jω2)
i−1H(jω2) · · · (jωN)i−1H(jωN)

 ,

Ic ∆
=


Im Im · · · Im

(jω1)Im (jω2)Im · · · (jωN)Im
...

...
. . .

...
(jω1)

i−1Im (jω2)
i−1Im · · · (jωN)i−1Im

 ,

X c ∆
= [X H(jω1) X H(jω2) · · ·X H(jωN)],

with H ∈ Cli×mN , I ∈ Cmi×mN and X ∈ Cn×mN .
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H ∆
= [Re(Hc) Im(Hc)] ∈ Rli×2mN ,

I ∆
= [Re(Ic) Im(Ic)] ∈ Rmi×2mN ,

X ∆
= [Re(X c) Im(X c)] ∈ Rn×2mN .

Lemma (Input-output equation)

Hc = ΓiX c + ΘiIc ,

H = ΓiX + ΘiI.

This lemma is obtained by recursive use and evaluation of
the Laplace domain equations.
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By projecting the second equation in the lemma onto the
orthogonal complement of I, we obtain:

Theorem (Orthogonal projection) If rank[X/I⊥] = n, then,

rank[H/I⊥] = n,

range[H/I⊥] = range[Γi ].

Simple frequency domain algorithm

Construct I and H from the given frequencies ωk and the
frequency response points H(jωk ).

Compute H/I⊥.
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Compute the SVD:

H/I⊥ = (U1 U2)

(
S1 0
0 0

) (
V T

1
V T

2

)
.

Determine the order from the number of singular values S1
different from zero.

Determine =U1S1/2
1 , which is one possible estimate for the

extended observability matrix Γi .

Determine A and C as:

C = Gfirst l rows, A = [G]†Ḡ

where G and Ḡ denote G without the last and first l rows.
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Determine B and D through the (least squares) solution of
the linear set: (

LR
LI

)
=

(
LR
LI

) (
B
D

)
,

where L ∈ ClN×m and M∈ ClN×(n+l) are defined as:

L = LR + jLI =

 H(jω1)
...

H(jωN)

 ,

M = MR + jMI =

 C(jω1In − A)−1 Il
...

...
C(jωN In − A)−1 Il

 .
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This algorithm is academic since it is limited to small
values of n and the frequency range:

Due to block-Vandermonde structure the condition numbers
of H and I become extremely large when n gets larger.

The larger the frequency range, the poorer numerical
conditionings of H and I.

It is possible to improve the numerical conditioning by
implicitly constructing a well-conditioned basis for the row
spaces of H and I through Forsythe recursions (Van
Overschee and De Moor:1996).
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