Lecture V
Introduction to complex networks
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Plan of the course

Networks: definitions, characteristics, basic
concepts in graph theory

Real world networks: basic properties
Models

Community structure |

Dynamic processes in networks



Problems of traditional
methods

e Graph partitioning, partitional clustering and spectral clustering:
one needs to specify the number and the size of the clusters

* Hierarchical clustering: many partitions recovered, which one is
the best?

One would like methods that can predict the number
and the size of the partition and indicate a subset of
‘good” partitions



Girvan-Newman algorithm

M. Girvan & M.E.J Newman, PNAS 99, 7821-7826 (2002)

Divisive method: one removes the links that connect the
clusters, until the |latter are isolated

How to identify inftercommunity links<e



Girvan-Newman algorithm

cdge betweenness: total number of shortest paths from any
pair of vertices that cross the edge (Anthonisse, 1971)

If there are more geodesic paths between the same pair of vertices
crossing the edge one divides the contribution of each path by their
multiplicity

Computable with algorithms based on breadth-first-search, with

complexity (Brandes 2001)

et



Girvan-Newman algorithm

Calculate the betweenness of all edges
Remove the one with highest betweenness
Recalculate the betweenness of the remaining edges

B whnNhoe

Repeat from 2

The complexity of the algorithm is O(m2n O(ng) a sparse

graph]

Recalculation step costly but important!



Girvan-Newman algorithm

The process delivers a hierarchy of partitions: which one is the
beste

The best partition is the one corresponding to the highest
modularity Q (Newman & Girvan, 2004)

The complexity may be lowered if one computes the edge
betweenness of the edges only from randomly chosen pairs of
vertices, instead of picking all of them (Tyler et al., 2003)

Variants of the method, where vertices can be split among clusters,

enable to detect overlapping communities (Pinney & Westhead, 2006;
Gregory, 2007)



New methods

Divisive algorithms

Modularity optimization

Spectral methods

Dynamic methods

Methods based on statistical inference
Methods based on model selection



Divisive algorithms

Based on edge removal (like GN)

Ex. Algorithm by Radicchi et al., 2004




Divisive algorithms

Main idea: inter-community edges have low edge
clustering coefficient

R

Steps

1. Calculate the edge clustering of all edges

2. Remove the one with lowest edge clustering

3. Recalculate the measure for the remaining edges

4, Repeat from 2 as long as clusters of partition are either LS-sets

(“strong”) or “weak” communities



Divisive algorithms

Advantage over GN: fast!

The complexity is O(m4/n2) [ on a sparse graph]
if cycles are short (e.g. tfriangles)

For long cycles the edge clustering coefficient becomes a global
measure and the complexity increases fast

: the method gives poor results on graphs with few cycles



1)
2)
3)
4)
5)

Modularity optimization

. find the maximum of
Q over all possible network
partitions

: NP-complete (Brandes et al., 2007)!

Greedy algorithms
Simulated annealing
Extremal optimization
Spectral optimization
Other strategies



Greedy algorithms

(Phys. Rev. E 69, 066133, 2004)

e Start: partition with one vertex in each community

* Merge groups of vertices so to obtain the highest increase of Q
e Continue until all vertices are in the same community

* Pick the partition with largest modularity

CPU time SJGHDY | m on a sparse graph]



Greedy algorithms

(Phys. Rev.
E 70, 066111, 2004)

Use of special data structures (max-heaps) to speed up update of sparse
matrices during computation

Complexity: O(md log n

d = depth of dendrogram

For graphs with strong hierarchical structure:

Best complexity for sparse graphs: @ (n log2 n)



1)

2)

1)
2)

3)

Greedy algorithms

Large communities are formed at the beginning at the expenses of
the small ones, so partition is quite unbalanced!

Because of 1, the method often runs at its worst-case complexity, so
the computation may be rather slow

Merging pairs of communities of similar size (Wakita & Tsurumi,
2007). Graphs with up to 107 vertices can be analyzed

Allowing for merging of more than one community pair at each
iteration (Schuetz & Caflisch, 2008)

Starting the agglomeration from some reasonable intermediate
partition (Pujol et al., 2006; Du et al., 2006; Xiang et al., 2009; Mei et
al., 2009)



1)

2)

4)

Greedy algorithms

(Blondel et al., JSTAT P10008, 2008)

Loop over the vertices: each vertex is put in the community of their
neighbors that yields the largest increase of modularity

Communities are replaced by supervertices, edges between
supervertices are weighted by the number of simple edges between
them

Repeat from 1 for the current weighted graph

Modularity is always computed with respect to the original graph,
when it cannot increase any more the process stops

O(m)



Louvain method

Modularity
Optimization

Problems
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Simulated annealing

Guimera et al., 2004

Steps:

1) Start from a random partition

2) Local moves: single vertices are shifted from one cluster to another
3) Global moves: clusters are split and merged

4) If modularity increases, move is accepted

5) If modularity decreases, move is accepted with probability exp(BAQ)

Complexity: parameter-dependent, very high! Only graphs with up to
about 10* vertices can be studied



Duch & Arenas, 2005

: modularity can be written as a sum over the vertices =
the of a vertex is the ratio between the local modularity of the
vertex and its degree

1) Start from random partition in two clusters

2) The vertex with the lowest fitness is shifted to the other community
3) Fitness values are recalculated (as partition has changed)

4) Process stops when modularity cannot be improved any more

5) Process is repeated for each of the clusters, taken as an isolated graph

O(n*logn)



Spectral optimization

Newman, 2006

Modularity matrix:

Graph
partitioning?




Spectral optimization

8% Eigenvectors of modularity matrix




2)
3)

5)

Spectral optimization

Eigenvalue O with eigenvector (1,1,1,1...,1)

Other eigenvalues both positive and negative

If eigenvalues are non-positive, the “best” partition corresponds to
null modularity and to all vertices in the same cluster

If there are positive eigenvalues, maximum modularity is positive

If there are negative eigenvalues, minimum modularity is negative
(bipartite structure!)



Spectral optimization

Maximum  modularity: index vector parallel to eigenvector
corresponding to largest eigenvalue of modularity matrix

: modularity eigenvector components are not integer!

. separate vertices whose components of the largest
modularity eigenvector are positive from the vertices with negative
components

: one needs not specify cluster sizes!



Spectral optimization

: shifting vertices from one cluster to the other, to have
the highest increase (smallest decrease) of modularity

To find the modularity maximum over all partitions, one proceeds with
iterative bisectioning, as long as modularity increases at each bisection

O(n®logn)

More modularity eigenvectors (with positive eigenvalues) can be used
=>» spectral clustering

. iterative bisectioning not good!



Modifications of modularity

Weighted modularity (Newman, 2004)

Null model term can be understood if one considers multiple edges
between vertices!



Modifications of modularity

Directed modularity (Arenas et al., 2007)
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Modifications of modularity

Modularity for covers? No unique definition!

Ex. Definition by Shen et al. (2009)

OB Number of communities vertex i belongs to



Modifications of modularity

Localized modularity (Muff et al., 2005)

: in modularity’s null model each vertex can be attached to any
other, in real systems clusters are linked to a few others

E Number of edges in subgraph made by cluster ¢ and
) its neighbors



Modifications of modularity

Spin glass formulation (Reichardt & Bornholdt, 2006)

. edges should be between vertices of the same cluster, non-edges
should be between vertices of different clusters

(irrelevant) constant, v > 0, 2% Null model term

The parameter 7Y can be tuned and so the size of the clusters can be
regulated ( )



Modifications of modularity

Motif modularity (Arenas et al., 2008)

. clusters do not only contain more edges than expected but also
more motifs than expected




Limits of modularity

: does high modularity imply that a partition is good?

: no! Random graphs may have large values of the modularity
maximum, due to fluctuations!

: modularity’s null model term is expected (average) value, it does
not consider fluctuations

; computing both the average maximum
modularity and the standard deviation out of a large
number of null model graphs




Limits of modularity

Modularity in random graphs (Reichardt & Bornholdt, 2006; 2007)

Random graphs with arbitrary degree distribution P(k)

Largest modularity for an equipartition!

Relation between modularity and cut size

g =mi(qg —1)/q — Q

Bipartition:

Modularity maximum the larger, the sparser the graph:



Limits of modularity

Resolution limit (Fortunato & Barthélemy, 2007)

: what is the expected number of edges between the two
subgraphs in modularity’s null model?




Limits of modularity

Modularity higher if the subgraphs are put in
the same cluster

Resolution limit
of modularity




Limits of modularity

) —M—— -
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Origin of resolution limit: modularity’s null model is global, each vertex
can in principle be attached to any other vertex of the graph (global
information) =2 unrealistic!



Limits of modularity

High degeneracy of large modularity partitions (Good et al., 2009)

Modularity, Q

1) Problem particularly severe on graphs with hierarchical structure

2) It explains why many heuristics give good estimates for the
modularity maximum



Spectral methods

Finding communities from spectral properties of graph matrices:
adjacency matrix, Laplacian matrix, etc.

Ex. Algorithm by Donetti & Munoz (JSTAT, P10012, 2004)

1) First few eigenvectors of Laplacian are computed (say k)

2) Eigenvector components used to represent vertices as points in k-
dimensional Euclidean space

3) Hierarchical clustering used to group points

4) Modularity is used to pick best partition of resulting dendrogram



Spectral methods:
Donetti & Munoz
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Dynamic methods

* Spin models
* Synchronization

e Random walks



Potts-model method (Reichardt & Bornholdt, 2004)

: favors spins alignment (all vertices in the same

cluster)

: favors (many) clusters of the same size

m resolution parameter (usually set to edge density in applications)



Dynamic methods:
random walks

Principle: in a graph with strong community structure, a random walker
would spend a lot of time in a cluster before leaving it

Similarity measures can be defined through random walks, and
hierarchical clustering can then be used

Examples of similarity measures:

1) Average number of edges that a random walker has to cross to reach j
from i (Zhou, 2003)

2) Probability that the walker reaches j from i in a fixed number of steps
(Latapy & Pons, 2005)

3) Commute-time, average first passage-time, escape probability, etc.



Dynamic methods:

random walks

Markov Cluster Algorithm (MCL) (Van Dongen, PhD thesis, 2000)

Basic idea: diffusion flow on a network

Transfer matrix




Dynamic methods:
random walks

Three parameters: p, '8} , k

Steps:

(Diffusion) Raise the stochastic matrix to the power p (e.g. p=2)
(Inflation) Raise each resulting matrix element to the power (¥
Normalize the elements of the resulting matrix (by row)

Keep only the k largest elements per column

Repeat from 1.

Lk whnh e



Dynamic methods:
random walks

After a sufficient number of iterations the matrix converges to a matrix with
Os and 1s, with disconnected components!

Problem: the final configuration depends on the parameters p, k and
(mostly!) (¢

Complexity: O(nkQ)

http://www.micans.org/mcl/



Dynamic methods: synchronization

. in a graph with strong community structure, oscillators placed
at the vertices synchronize first within the clusters

On a graph, coupling between neighboring oscillators

1) Initial configuration with random phases

2) For K larger than a threshold depending on the width of the
distribution of the natural frequencies w, oscillators partially
synchronize



Dynamic methods: synchronization

By following the dynamics over time, long-lived synchronized clusters
emerge (Arenas et al., 2006)
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1)

2)

1)
2)

Methods based on
statistical inference

The evidence: information D that one has on the system (adjacency
matrix)
A statistical model with parameters {6}

(1031D) = %P(D\{H})P(W}

Z = | P(D|10})P(10})de

Computing Z is a challenge
Choice of prior distribution



Methods based on
statistical inference

Method by Newman & Leicht (2006)
= group of vertex i
g% = fraction of vertices in group r

2 - probability of directed edge from vertices of group r
and vertex i

Best classification corresponds to the maximum of the average likelihood

that the model, with its parameters mand fits the adjacency
matrix of the graph



Equations of method by Newman & Leicht

Equations are self-consistent and can be solved by iteration starting from
suitable initial conditions



Methods based on
statistical inference

Complexity: parameter-dependent, but low (graphs with up to 10°
vertices can be studied)

Plus: no need to specify group structure to search, the method
recognizes if there is community structure, multipartite structure or
combinations of both

Minus:

1) The number of groups to find must be given as input, the method is
not able to find it on its own

2) Results strongly depend on initial conditions



Methods based on
model selection

Model selection: finding a model which is simple and good enough for the
system (ex. Curve fitting!)

No clear-cut recipe, several heuristics: Akaike Information Criterion (AIC),
Bayesian Information Criterion (BIC), Minimum Description Length (MDL),
etc.

VIDL: minimizing length of description of system/clustering for a given
coding scheme



Methods based on
model selection

Infomap (Rosvall & Bergstrom, 2008)

ldea: finding a compressed description of a random walk taking place
on the graph

Procedure:

1) Each vertex s given a coded name (Huffman code)

2) Each cluster receives a coded name

3) Names of vertices can be recycled, as long as they are not
repeated in the same cluster (just like in geographic maps)

4) The recycling procedure enables to spare the space required by
assigning a different name to each vertex

5) When a vertex passes from one cluster to another one must
indicate the name of the new cluster

6) If the graph has a strong community structure, recycling the

vertex names is convenient
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Best partition = minimum description length, optimization can be carried
out with simulated annealing, greedy methods, etc.



Methods to find
overlapping communities

Cliqgue Percolation Method (CPM) (Palla et al., 2005)

. in a graph with community structure there are many cliques
within the clusters

Cliques can be used as probes to explore the graph:
1) Two k-cliques are neighbors if they share a (k-1)-clique
2) One can travel along paths of neighboring cliques

Cligues may be trapped within clusters, which can then be identified



Methods to find
overlapping communities

Cligue Percolation Method




Methods to find
overlapping communities

. finding all k-cliques of a graph is an NP-complete
problem, but on sparse graphs it can be done quickly (graphs with up
to 10° vertices can be studied)

1) Results strongly depend on the density of cliques, and may be
trivial if there are too many or too few
2) Vertices with less than k-1 neighbors cannot be reached by k-

cligues and remain unclassified
3) Which value of k?



Methods to find
overlapping communities

Local Fitness Method (LFM) (Lancichinetti et al., 2009)

: finding local communities about individual vertices

A local community is built by maximizing a function
k’l,
(kz T kout)a

f

Fitness of vertex A with respect to cluster i




2)
3)
4)

1)
2)

3)
4)

Methods to find
overlapping communities

Take a vertex A at random

Look for community of A

Pick a vertex B at random not yet assigned to a community

Find community of B, it may overlap with the other communities
Go on until all vertices have been assigned to at least a community

Start: cluster with s vertices

The neighboring vertex with largest positive fitness is included in the
cluster; fitness of all vertices is recalculated

Vertices with negative fitness are removed

Process goes on until all vertices of the group have positive fitness
and all their neighbors negative fitness



Multiresolution methods and cluster
hierarchy

: most real networks have hierarchical structure, but most
methods find just one partition, what to do?

. introducing a tunable parameter so that the method
yields partitions at different scales

1) Spin glass modularity by Reichardt & Bornholdt (2006)
2) Multiresolution modularity by Arenas et al. (2008)
3) LFM method by Lancichinetti et al.



Multiresolution methods and cluster
hierarchy

Method by Ronhovde & Nussinov (2009)

Potts model: rewarding edges within clusters and non-edges between
clusters

No null model!

Energy is minimized by shifting single vertices to the clusters that yield

the largest decrease of m

Meaningful partitions: values of y yielding most “stable” partitions



Detection of dynamic communities

: how to track the images of a community at various times?

t) — C(t+1) 7



Detection of dynamic communities

Analysis by Palla et al. (2007)

Datasets: mobile communication network and scientific collaboration

network

Method: CPM

1) Take the graph g(t, =Nl made by the union of the graphs g(t)
and at times t and t+1, find the communities in it: they
include communities of both snapshots at time t and t+1

1) Given a community of m its image in ) is the

community of having the largest overlap with among

those included in the community of GARANARE i including



Detection of dynamic communities

1) Large communities are more variable, small communities
essentially static
2) Vertices which are weakly connected to their community have a
sizeable chance to leave it
3) Vertices which are tightly connected to an external community
have a high chance to join it
4) Results 3 and 4 hold at the community level as well
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Detection of dynamic communities

Most methods are two-stage, like that by Palla et al.

Alternative approach: (Chakrabarti
et al., 2006)

Unified framework: partition derived both from information at time t and
from information at previous times

of a partition: goodness of the partition with

respect to the graph structure at a given time t
: measure of distance of partition at time t from

partition at time t-1

. a good partition should have high snapshot quality and low
history cost



Testing algorithms

: how to test clustering algorithms?

checking whether they are able to recover the known
community structure of benchmark graphs

. definition of community of benchmark and methods should be
consistent!

(Condon & Karp, 1999)

1) n vertices, | equal-sized groups with g=n/| vertices each
2) p=probability that vertices of the same cluster are joined
3) g=probability that vertices of different clusters are joined

. if p>q the groups are communities



Testing algorithms

Planted |-partition model




Testing algorithms

Special case: the benchmark by Girvan and Newman (2002)

n=128, I=4, g=32

Problems:
1) All vertices have the same degree
2) All communities have the same size



Testing algorithms

LFR benchmark (Lancichinetti et al., 2008)

Features:

1) Power law distribution of degree (exponent t,)

2) Power law distribution of community size (exponent t,)

3) A mixing parameter p, sets the ratio between external and total

degree of each vertex

http://santo.fortunato.googlepages.com/inthepress?2



Testing algorithms

: similarity measure between partitions

Ex.

community assignments

P(X:w):nx/n (Y:y):ny/n
Z P logP Shannon entropy

(X‘Y ZP T y log P(az|y) Shannon conditional

entropy
Yy

I(X,Y)=H(X)—- H(X|Y) Mutual information

: mutual information identical for all Y subpartitions of X

Normalized mutual
information




Testing algorithms

First analysis: Danon et al. (2005), using GN benchmark

New analysis: Lancichinetti & Fortunato (2009), using LFR benchmark

Author Label Order
Girvan & Newman GN O(nm?)
Clauset et al. Clauset et al. O(nlog”n)
Blondel et al. Blondel et al. O(m)
Guimera et al. Sim. Ann. parameter dependent
Radicchi et al. Radicchi et al. O(m*/n?)

Palla et al. Cfinder O(exp(n))

Van Dongen MCL O(nk?), k < n parameter
Rosvall & Bergstrom Infomod parameter dependent
Rosvall & Bergstrom Infomap O(m)

Donetti & Mufioz DM O(n?)
Newman & Leicht EM parameter dependent
Ronhovde & Nussinov RN O(nP), B ~1




Testing algorithms
GN benchmark
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Testing algorithms
LFR benchmark
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Testing algorithms
Random graphs
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Outlook

A long way to go ... more questions than answers from clustering

e OQOverlapping communities
e Hierarchies

e Testing

e Computational complexity

e C(Clustering in dense correlation matrices (i.e. neither sparse nor
complete)



Physics Repocts 485 (2010) 75-174
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Community detection in graphs

Santo Fortunato®
Complex Networky and Systery Lagrange Laborstery, I Fossdation, Visle S Severo 65, 10131 Torino, L oy
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Satistical physics bealogy and computer sclence, disciplines where systems are often represented as graphs,
This problem is very hard and net yet satisfactorily solved, despite the huge effort of a
large Interdisciplinary commanity of scientists working on it over the past few years. We
will atternpe a thorough exposition of the topic, frem the definition of the main elements
of the problem, 1o the presentation of mast metheds developed, with a special focus on
techniques designed by statistical physicists, from the discussion of crucial Issues like the
sgnificance of clustering and how methods should be tested and compared against each
other, ta the description of applications to real netwaorks,
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Plan of the course

Networks: definitions, characteristics, basic
concepts in graph theory

Real world networks: basic properties
Models
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