Lecture |V
Introduction to complex networks

Santo Fortunato



Plan of the course

Networks: definitions, characteristics,
basic concepts in graph theory

Real world networks: basic properties
Models

Community structure |l

Dynamic processes in networks



Outline

e Communities in real networks
e Elements of community detection:
a) community definitions
b) partitions
e Traditional clustering methods
a) graph partitioning
b) hierarchical clustering
c) partitional clustering
d) spectral clustering



Communities

More links “inside” than “outside”
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Communities in biological networks
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information networks
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Networks with overlapping communities
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Communities in bipartite networks
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Elements of community detection

1)

2)

1)
2)
3)

Null hypothesis: communities are inferred

, relationship with actual groups is unclear!
The number m of edges of the graph is of the order of the number of
vertices n, 1M ~ N, otherwise problem becomes similar to !

Computational complexity
Communities
Partitions



Computational complexity

. the computational complexity of an algorithm is the
required by the algorithm to perform a task

Resources: number of and

Notation: O(namﬁ), polynomial complexity (class P)

Class NP: problems whose solution can be verified in polynomial time

Class : problems whose solution can be translated into a solution of
any NP problem

Class : problems which are NP-hard and in NP

Exact complexity often unknown: !



Communities: basics

internal degree, number of
o internal neighbors

km internal degree of
mt _ community

u external degree, number of
o external neighbors

C J.€T external degree of
ext v community
veC

7 internal edges o

Ne(ne —1)/2
~ #f external edges of C

Intra-cluster edge density

Inter-cluster edge density

ne(n — ne)



Communities: local definitions

: look at the subgraph, forget the rest of the graph

or

1) Condition is too strict!

2) All vertices are symmetric, whereas in real communities they usually
have different roles

3) Cliques are hard to find: NP-complete problem. Bron-Kerbosch method

has a complexity growing exponentially with the graph size (Bron &
Kerbosch, 1973)



Communities: local definitions

: subgraph such that the
distance between each pair of vertices
does not exceed n (Luce, 1950)

1) Paths can go outside the community, so diameter of n-clique may be
even bigger than n!
2) n-cligue can be disconnected

(Mokken, 1979)
1) n-clan = n-cligue with diameter does not exceed n
2) n-club = maximal subgraph with diameter n



Communities: local definitions

: cohesion through vertex adjacency

: maximal subgraph such that each vertex is adjacent to all other
vertices of the subgraph except at most k of them (Seidman & Foster,
1978)

: maximal subgraph such that each vertex is adjacent to at least k
other vertices of the subgraph (Seidman, 1983)

. maximal subgraph such that the
degree of each vertex is larger than [ Wy € |0, 1 4L
the order of the subgraph (Matsuda et al., 1 ]




K-core decomposition
(Batagely & Zaversnick, 2003)
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Communities: local definitions

: comparison between internal and external cohesion of a
subgraph

or : subgraph such
that the internal degree of each vertex is
greater than its external degree (Luccio &
Sami, 1969)

condition too strong, unrealistic in practical cases!

. subgraph such that the internal degree of the
subgraph is greater than its external degree (Radicchi et al., 2004)



Communities: local definitions

Variant of concepts of strong and weak community (Hu et al., 2008)

: subgraph such that the internal degree of each
vertex is greater than its internal degree in any of the other communities
of the partition

. subgraph such that the internal degree of the
subgraph is greater than its external degree in each of the other
communities

Link with planted l-partition model (Condon & Karp, 1999)



Communities: local definitions

Communities can be defined through a

: Community= subgraph such that

NP-complete problem, as it coincides with the Clique Problem when H

ZUEC k.z}nt

. Relative density p(C) =

ZUEC k’”
Community: subgraph @ such that

NP-complete problem (Sima & Schaeffer, 2006)



Communities: global definitions

: comparison between subgraph and the whole system

Definition often depending on choice of , i.e. randomized
versions of the original graph

Most popular null model: random graph with the same expected degree
sequence of the original graph

Same null model as in modularity of Newman and Girvan (Newman & Girvan,
2002)



Communities: definitions based on
vertex similarity

Principle: communities are subgraphs of vertices “similar” to each other

Basic ingredient: measure of similarity between vertices

Similarity measures essential for methods like hierarchical, partitional and
spectral clustering

Two classes of measures:
1) Graphs embedded in space
2) Graphs not embedded in space



Vertex similarity for graphs
embedded in space

Thereis a between each pair of vertices, it could be used as
measure

Pair of vertices:




Vertex similarity for graphs not
embedded in space

Only information: adjacency matrix




Vertex similarity for graphs not
embedded in space

between a pair of
vertices (related to max flow)
between pair of vertices, each weighted by
factors like or 1/“ (Il = length of the path, & IE<) [Estrada &
Hatano, 2008]

. average number of steps needed for a random walker
starting at any of two vertices to hit the other for the first time and come
back to the first (Saerens et al.)

: average number of steps needed to hit for
the first time the target vertex from the source vertex (White & Smyth,
2003; Zhou, 2003)

. probability that the walker hits the target vertex
before coming back to the source vertex (Palmer & Faloutsos, 2003; Tong
et al., 2008)



Warning

Communities are usually implicitly defined by the specific algorithm
adopted, without an explicit definition!

The practical definition may depend on the specific system/application



Partitions: basics

A is a division of a graph into clusters, such that each vertex is
assigned to one and only one cluster!
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Partitions: basics

The number of possible partitions in k clusters of a graph with n vertices

sthe

Total number of possible partitions:

Large-n limit




Hierarchy

Clusters may be included in other clusters, etc. (hierarchical order!)

Clauset, Moore & Newman, LNCS 4503, 1, 2007



Dendrograms




Partitions: quality functions

What is a “good” clustering ?




Partitions: quality functions

(2002)

Set S of points, distance function d, positive definite and symmetric

by multiplying any distance function by any

constant [@ the clustering is the same

any possible partition of S can be recovered with a
suitable choice of the distance function d

. given a partition, any modification of the distance
function that does not decrease the distance between points of
different clusters and does not increase the distance between points
of the same cluster, yields the same clustering



Partitions: quality functions

A quality function assigns a score to each partition/cover of a graph

High-score partitions are “good”, low-score partitions are “bad”

cepP
Examples of quality functions

1) Performance:




Partitions: modularity

Newman & Girvan, 2004

: random graphs have no community structure!

. comparing the edge density in each cluster with the edge density
of the cluster in a randomized version of the graph

Null model in principle arbitrary

Ex. Bernoulli random graph




Partitions: modularity

Problem with Bernoulli random graph: degree distribution is binomial/
Poissonian

: random graph with identical expected degree
sequence of original graph

Number of edges inside
cluster ¢

WS Total degree of cluster c

Number of clusters



probability that a stub, randomly selected, ends in

= module c



d. d

2m.2m

probability that the link
Is internal to module ¢

expected number of
links in module ¢



Some features:

Q<1

Q =3\ for the partition in which the whole graph is one cluster

3) Modularity can be negative (multipartite structure)

4) Modularity in general depends on graph size: partitions of different
graphs cannot be compared to each other based on their modularity
values

5) Large values of modularity not necessarily indicate good partitions:
random graphs may have high-modularity partitions




Traditional methods: graph partitioning

“Divide a graph in n parts, such that the number of links
between them (cuf size) is minimal”

Problems
1. Number of clusters must be specified
2. Size of the clusters must be specified (other measures may help)



Graph bisectioning

“Divide a graph in two parts of equal size, such that the
number of links between them (cut size) is minimal”



Kernighan-Lin algorithm

Kernighan & Lin, 1970

1)  Split in two groups of predefined size

2) At each step, a pair of nodes of different groups are swapped so to
decrease the cut size

3) (Some) moves decreasing the cut size are accepted to avoid being
trapped in local minima

4) After a series of moves one picks the one which yielded the lowest
cut size, which is used as starting point for a new iteration

2 . : . .
O(TL IeY:q7) if cach iteration consists of a constant number
of moves [on sparse graphs it can be lowered to O(nz) ]

. results strongly dependent on initial partition, the
method is often used to improve the results of other methods



Spectral partitioning

Unnormalized Laplacian

Normalized Laplacian

Normalized Laplacian L.w = D 'L=I-D'A=1I-T




Spectral partitioning

Relation between cut size R and Laplacian

1
R =—s'L

4

Laplacian eigenvectors

Laplacian eigenvalues

NCE ) — 0. \y > (



Spectral partitioning

Special case: 2~ 0, <N\ (1> 2)

Cut size R is minimal (with good approximation) for

S = Vo2, VollGls
D — )\

: components of Fiedler vector are real-valued, those of index
vector are integer (1) by definition

. separating vertices with positive and negative
components of the Fiedler vector



Spectral partitioning

If one wants a split into n; and n,=n-n, vertices, one orders
the components of the Fiedler vector from the largest
positive to the smallest negative and picks the n, largest
(smallest) components of the Fiedler vector

110.14 1210.73
2 |-0.23 1310.53
3 1-0.11 1610.50
4 -0.08 141041
510.13 11]0.33
6 0.21 1710.28
710.02 6 10.21
8 10.15 8 10.15
9 -0.01 110.14
10 |[-0.03| —» 5 |0.13
11 10.33 7 10.02
12 10.73 9 -0.01
13 10.53 10/-0.03
14 {041 4 1-0.08
15 [-0.82 31-0.11
16 10.50 2 1-0.23
17 10.28 191-0.55
18 |-0.90 151-0.82
19 |-0.55 181-0.90




Spectral partitioning

Eigenvectors of the Laplacian matrix can be computed with the Lanczos
method, complexity depends on size of eigengap

Results are good, they can be further improved with the Kernighan-Lin
algorithm

Partitions in more than two clusters can be obtained via iterative
bisectioning



Graph partitioning: alternative
measures

Conductance m of subgraph [@ of graph @

Ratio cut

Normalized cut

Advantage over cut size: no need to specify size of clusters



Graph partitioning: alternative
measures

Optimization of conductance is NP-hard (Sima & Schaeffer, 2006)

Optimization of ratio cut is NP-hard (Matula & Shahrokhi, 1990)

Optimization of normalized cut is NP-complete (Shi & Malik, 2000)

Ratio cut and normalized cut can be well normalized via

1) Number of clusters needs to be given by input
2) Iterative bisectioning not ideal to find partitions in more than two
clusters



Hierarchical clustering

Very common in social network analysis

Methods can be or

1. A criterion is introduced to compare nodes based on their similarity

2. A similarity matrix X is constructed: the similarity of nodes i and j is X;

3. (Agglomerative) Starting from the individual nodes, larger groups are built
by joining groups of nodes based on their similarity

4. (Divisive) Starting from the graph as a single cluster, separates the most
dissimilar parts, etc.



Hierarchical clustering

g@DOOOQOOOglO



Hierarchical clustering:
agglomerative techniques

: how to define similarity of clusters from similarity matrix

. similarity between two clusters is minimum
element x; with i in one cluster and j in the other
similarity between two clusters s
maximum element x; with i in one cluster and j in the other
: average of the similarity elements x; with i in
one cluster and j in the other



s e

Problems of hierarchical
clustering

n-1 partitions recovered: which ones are meaningful?

Hierarchical structure given by the method may be artificial

Vertices with just one neighbor are often classified as separate clusters
Methods do not scale well: if graph is embedded in space the complexity
is for single-linkage and O(n log n) for complete and

average linkage clustering




Partitional clustering

Set of data points, distance for each pair of points i,

Goal: dividing the points in k groups such to maximize/ minimize a
given measure




Partitional clustering

: minimizing the “diameter” of a cluster, i.e. the
largest distance between points of the cluster

: minimizing the average intra-cluster distance

: minimizing the maximum distance of cluster points from a
“centroid”

minimizing the average distance of cluster points from a
“centroid”



K-means clustering

MacQueen, 1967

1) K pointsin space, or “centroids”
2) Minimization of the total squared distance of each point from its
centroid




K-means clustering

The Lloyd algorithm (Lloyd, 1982)

Initial distribution of centroids, as far as possible from each other
Each vertex is assigned to the nearest centroid

Centers of mass of clusters are computed

The centers of mass become the new centroids

Repeat from 2

bk e

: convergence is fast

: strong dependence on initial conditions



Partitional clustering

: number of clusters needs to be given as input, like in
hierarchical clustering



Spectral clustering

Spectral clustering includes all clustering methods that use the
eigenvectors of graph matrices

How it works

1) Graph vertices are transformed into a set of n points in a k-
dimensional Euclidean space, where k is the number of clusters:
coordinates are eigenvector components

2) Points are grouped in clusters via standard methods like, e.g., k-
means clustering

Advantage over direct clustering of vertices: change of representation
makes clustering properties more evident!



Spectral partitioning

Unnormalized Laplacian

Normalized Laplacian

Normalized Laplacian L.w = D 'L=I-D'A=1I-T




Spectral clustering

Properties of the Laplacian matrix

* All eigenvalues are non-negative

* |[f the graph is divided in g components, there are g zero
eigenvalues

e |[n this case the Laplacian can be rewritten in a block-

diagonal form

UUUUUUU




Spectral clustering

Disconnected graph with 3
connected components

Connected graph with 3 weakly
connected clusters




Unnormalized spectral clustering

Inputs: number of clusters k, adjacency (weight) matrix A (W)

1)
2)
3)

4)

Compute the k eigenvectors corresponding to the k lowest
eigenvalues of the unnormalized Laplacian |J

Matrix Y is built, matrix whose columns are the k
eigenvectors of B

The il rows of N are vectors with k components representing the
vertices as points in an Euclidean space

Points are grouped in k clusters with k-means clustering or similar
methods



Normalized spectral clustering |

Shi & Malik, 1997

Inputs: number of clusters k, adjacency (weight) matrix A (W)

1) Compute the k eigenvectors corresponding to the k lowest
eigenvalues of the normalized Laplacian m

2) Matrix N\ is built, matrix whose columns are the k
eigenvectors ofw

3) The s rows of AMare vectors with k components representing the
vertices as points in an Euclidean space

4) Points are grouped in k clusters with k-means clustering or similar
methods




Normalized spectral clustering Il

Ng et al., 2001

Inputs: number of clusters k, adjacency (weight) matrix A (W)

1) Compute the k -eigenvectors corresponding to the k lowest

eigenvalues of the normalized Laplacian %
2) Matrix \Y is built, matrix whose columns are the k

eigenvectors of M

3) The elements of each row of N are normalized by dividing them by
their sum

4) Them rows of NMare vectors with k components representing the
vertices as points in an Euclidean space

5) Points are grouped in k clusters with k-means clustering or similar
methods




Properties of spectral clustering

Graph partitioning: relaxed optimization

Ex. Finding bipartition with minimum cut size R

1
R—=—-s'L

4

in the space of all vectors s, with real-valued components, not integer!

Good solution: s = Fiedler vector

: what is the relationship between this solution and the actual
solution one seeks, where s has integer components?



Properties of spectral clustering

Relaxed optimization versus spectral clustering

1) Minimum ratio cut partition in k clusters = unnormalized spectral

clustering

2) Minimum normalized cut partition = normalized spectral clustering

a la Shi-Malik

Random walks versus spectral clustering

L.,=D 'L=I-D'A=1I-T

/

Transfer
matrix

Ex. Normalized cut for a bipartition equals the total probability that a
walker moves from one cluster to the other in either sense (Meila & Shi,

2001)




Properties of spectral clustering

Eigenvectors of the Laplacian matrix can be computed with the Lanczos
method, complexity depends on size of eigengap

: humber of clusters needs to be
given by input

. searching for gaps in the spectrum, but not easy for
graphs with mixed communities

- using [ Bor m; eigenvector components do not have

approximately the same value for vertices in the same cluster!



Problems of traditional
methods

e Graph partitioning, partitional clustering and spectral clustering:
one needs to specify the number and the size of the clusters

* Hierarchical clustering: many partitions recovered, which one is
the best?

One would like methods that can predict the number
and the size of the partition and indicate a subset of
‘good” partitions



Plan of the course

Networks: definitions, characteristics, basic
concepts in graph theory

Real world networks: basic properties
Models

Community structure |

Dynamic processes in networks



