Synchronization and control

Henk Nijmeijer, Henri Huijberts, Sasha Pogromsky
Eindhoven University of Technology, University of London
$\mathrm{TU} / \mathrm{e}=$ arenmary

n Huijgens born April 14, 1629, The Hague, died July 8, 1695 , The Hague	Huijgens' notebook, "Horloges Marines (Et Sympathie Des Horloges)", 1 March, 1665.
A figure from Huijgens' notebook, 22 Febr. 1665	Women living together have synchronous menstrual cycles.

	TU/e ${ }^{\text {techiscre uniesisiet eindoven }}$, queen Mary
Contents - Introduction - An observer view on synchronization - Communication and synchronization - Synchronization in diffusive networks - Controlled synchronization - Coordination of mechanical systems	The Lorenz attractor.
TU/e	TU/e
Synchronization and observers Two points of view on synchronization Peccora and Carroll (1990), Lorenz system Transmitter (master) system : $\begin{aligned} & \dot{x}_{1}=\sigma\left(x_{2}-x_{1}\right) \\ & \dot{x}_{2}=r x_{1}-x_{2}-x_{1} x_{3} \\ & \dot{x}_{3}=-b x_{3}+x_{1} x_{2} \end{aligned}$	Two points of view on synchronization Peccora and Carroll (1990), Lorenz system $\begin{array}{ll} \text { Transmitter (master) system : } & \begin{array}{l} \text { Receiver (slave) system } \\ \text { (" copy" of master) } \end{array} \\ \dot{x}_{1}=\sigma\left(x_{2}-x_{1}\right) & \\ \dot{x}_{2}=r x_{1}-x_{2}-x_{1} x_{3} & \dot{\widehat{x}}_{2}=r x_{1}-\widehat{x}_{2}-x_{1} \widehat{x}_{3} \\ \dot{x}_{3}=-b x_{3}+x_{1} x_{2} & \dot{\hat{x}}_{3}=-b \widehat{x}_{3}+x_{1} \widehat{x}_{2} \end{array}$ No \widehat{x}_{1}-dynamics, because x_{1} already known.

$e_{2}=x_{2}-\widehat{x}_{2}, \quad e_{3}=x_{3}-\widehat{x}_{3}$ Lyapunov function: $\begin{gathered} V\left(e_{2}, e_{3}\right)=e_{2}^{2}+e_{3}^{2} \\ \dot{V}=-2 e_{2}^{2}-2 b e_{3}^{2} \\ \left(e_{2}, e_{3}\right) \rightarrow(0,0), \quad \text { as } \quad t \rightarrow \infty \end{gathered}$ Control viewpoint: Slave is partial observer for master.	$e_{1}=x_{1}-\widehat{x}_{1}, \quad e_{2}=x_{2}-\widehat{x}_{2}, \quad e_{3}=x_{3}-\widehat{x}_{3}$ $\dot{e}_{1}=\sigma\left(e_{2}-e_{1}\right)$ $\dot{e}_{2}=-e_{2}-x_{1} e_{3}$ $\dot{e}_{3}=-b e_{3}+x_{1} e_{2}$ Lyapunov function: $V\left(e_{1}, e_{2}, e_{3}\right)=1 / \sigma e_{1}^{2}+e_{2}^{2}+e_{3}^{2}$ $\begin{gathered} \dot{V}=-2\left(e_{1}-1 / 2 e_{2}\right)^{2}-3 / 2 e_{2}^{2}-2 b e_{3}^{2} \\ \left(e_{1}, e_{2}, e_{3}\right) \rightarrow(0,0,0), \quad \text { as } \quad t \rightarrow \infty \end{gathered}$ Control viewpoint: slave is full observer for master.
Two points of view on synchronization Peccora and Carroll (1990), Lorenz system Transmitter (master) system : $\begin{aligned} & \dot{x}_{1}=\sigma\left(x_{2}-x_{1}\right) \\ & \dot{x}_{2}=r x_{1}-x_{2}-x_{1} x_{3} \\ & \dot{x}_{3}=-b x_{3}+x_{1} x_{2} \end{aligned}$ Receiver (slave) system (" copy" of master) $\dot{\widehat{x}}_{1}=\sigma\left(\widehat{x}_{2}-\widehat{x}_{1}\right)$ $\dot{\hat{x}}_{2}=r x_{1}-\widehat{x}_{2}-x_{1} \widehat{x}_{3}$ $\dot{\hat{x}}_{3}=-b \widehat{x}_{3}+x_{1} \widehat{x}_{2}$	$\begin{array}{ll} \dot{x}_{1}=\sigma\left(x_{2}-x_{1}\right) & \dot{\hat{x}_{1}}=\sigma\left(\widehat{x}_{2}-\widehat{x}_{1}\right) \\ \dot{x}_{2}=r x_{1}-x_{2}-x_{1} x_{3} & \dot{\grave{x}}_{2}=r x_{1}-\widehat{x}_{2}-x_{1} \widehat{x}_{3} \\ \dot{x}_{3}=-b x_{3}+x_{1} x_{2} & \grave{\grave{x}}_{3}=-b \widehat{x}_{3}+x_{1} \widehat{x}_{2} \end{array}$ Two related problems: Synchronization/observer problem Convergent systems, Demidovich

Synchronization/Observer problem statement $\begin{aligned} \dot{x} & =f(x) \\ y & =h(x) \end{aligned}$ $x(t) \in \mathbb{R}^{n}$, state; $\quad y(t) \in \mathbb{R}$, output, or measurement. Observer: given $y(t), t \geq 0$, reconstruct asymptotically $x(t), t \geq 0$. Reduced observer: given $y(t), t \geq 0$, reconstruct asymptotically $x(t)$ modulo $y(t)$. So if slave can be chosen freely, synchronization problem is equivalent to observer problem.	Example $\begin{aligned} & \dot{x}_{1}=x_{2} \\ & \dot{x}_{2}=a x_{1}+b x_{2}, \quad y=x_{1} \end{aligned}$ observer: estimate for $\left(x_{1}, x_{2}\right)$ How to find observer? Try "Pecora \& Carroll copy": $\begin{aligned} & \dot{\widehat{x}}_{1}=\widehat{x}_{2} \\ & \dot{\widehat{x}}_{2}=a y+b \widehat{x}_{2}=a x_{1}+b \widehat{x}_{2} \\ & e_{1}=x_{1}-\widehat{x}_{1}, \quad e_{2}=x_{2}-\widehat{x}_{2} \\ & \quad \dot{e}_{1}=e_{2}, \quad \dot{e}_{2}=b e_{2} \end{aligned}$ Does give reconstruction of x_{2} iff $b<0$, but not reconstruction of x_{1} !
TU/e	TU/e
Example $\begin{aligned} & \dot{x}_{1}=x_{2} \\ & \dot{x}_{2}=a x_{1}+b x_{2}, \quad y=x_{1} \end{aligned}$ reduced observer: estimate for x_{2}. How to find reduced observer? Try "Pecora \& Carroll copy": $\dot{\hat{x}_{2}}=a y+b \widehat{x}_{2}=a x_{1}+b \widehat{x}_{2}$ $\begin{gathered} e_{2}=x_{2}-\widehat{x}_{2} \\ \dot{e}_{2}=b e_{2} \end{gathered}$ Asymptotic reconstruction if and only if $b<0$.	Alternative: $\begin{aligned} & \dot{\widehat{x}}_{1}=\widehat{x}_{2}+k_{1} e_{1} \\ & \dot{\widehat{x}}_{2}=a \widehat{x}_{1}+b \widehat{x}_{2}+k_{2} e_{1} \end{aligned}$ Suitable k_{1} and k_{2} yield $\left(e_{1}, e_{2}\right) \rightarrow(0,0), \quad \text { as } t \rightarrow \infty$ (Reduced observer: similar)

TU/e ${ }^{\text {Eechische uniessitete endoven }{ }^{\text {bid }} \text { Quen Mary }}$	
Observation: The representation of a system in Lur'e form is coordinate dependent. Question: Is it possible to transform a system into Lur'e form by means of a nonlinear coordinate change? Local results due to Lin and Byrnes: A discrete-time system with single output is locally equivalent to a system in Lur'e form with observable pair (C, A) via a coordinate change $z=T(x)$ if and only if (i) the pair $(\partial h(0) / \partial x, \partial f(0) / \partial x)$ is observable, (ii) the Hessian matrix of the function $h \circ f^{n} \circ \mathcal{O}^{-1}(s)$ is diagonal, where $x=\mathcal{O}^{-1}(s)$ is the inverse map of $\mathcal{O}(x)=\left[h(x), h \circ f(x), \ldots, h \circ f^{n-1}(x)\right]^{T},$ with $h \circ f(x):=h(f(x)), f^{1}:=f, f^{j}:=f \circ f^{j-1}$.	Observable form: $\begin{aligned} s_{1}(k+1) & =s_{2}(k) \\ & \vdots \\ s_{n-1}(k+1) & =s_{n}(k) \\ s_{n}(k+1) & =f_{s}(s) \\ y(k) & =s_{1}(k) \end{aligned}$ (Alternative result) A discrete-time system with single output is locally equivalent to a system in Lur'e form with observable pair (C, A) via a coordinate change $z=T(x)$ if and only if for the observable form there exist functions $\varphi_{1}, \cdots, \varphi_{n}: \mathbb{R} \rightarrow \mathbb{R}$ such that $f_{s}(s)=\varphi_{1}\left(s_{1}\right)+\cdots+\varphi_{n}\left(s_{n}\right)$
TU/e	TU/e
Alternative formulation. If the pair $(\partial h(0) / \partial x, \partial f(0) / \partial x)$ is observable, there exist new coordinates $s_{i}=h \circ f^{i-1}(x)(i=1, \cdots, n)$ such that in these new coordinates the system takes a so-called obser able form $\begin{aligned} s_{1}(k+1) & =s_{2}(k) \\ & \vdots \\ s_{n-1}(k+1) & =s_{n}(k) \\ s_{n}(k+1) & =f_{s}(s) \\ y(k) & =s_{1}(k) \end{aligned}$	Example. Bouncing ball. $\left\{\begin{array}{l} x_{1}(k+1)=x_{1}(k)+x_{2}(k) \tag{1}\\ x_{2}(k+1)=\alpha x_{2}(k)-\beta \cos \left(x_{1}(k)+x_{2}(k)\right) \\ y(k)=h(x(k))=x_{1}(k) \end{array}\right.$ with $x_{1}(k)$ the phase of the table at the k-th impact, $x_{2}(k)$ proportional to the velocity of the ball at the k-th impact, α the coefficient of restitution, ω the angular frequency of table oscillation, A its amplitude, and $\beta=2 \omega^{2}(1+\alpha) A / g$. Condition i): $\frac{\partial f(0)}{\partial x}=\left[\begin{array}{ll} 1 & 1 \\ 0 & \alpha \end{array}\right], \quad \frac{\partial h(0)}{\partial x}=\left[\begin{array}{ll} 1 & 0 \end{array}\right]$

	TU/e
Condition ii): $\mathcal{O}(x)=\left[\begin{array}{ll} 1 & 0 \tag{2}\\ 1 & 1 \end{array}\right] x$ $s=\operatorname{col}\left(s_{1}, s_{2}\right):=\mathcal{O}(x)$ $f_{s}(s):=h \circ f^{2} \circ \mathcal{O}^{-1}(s)=-\alpha s_{1}+(1+\alpha) s_{2}-\beta \cos s_{2}$ Hessian is diagonal	Transformation into extended Lur'e form Extended Lur'e form: $\left\{\begin{aligned} x(k+1) & =A x(k)+\varphi(y(k), y(k-1), \cdots, y(k-N)) \\ y(k) & =C x(k) \end{aligned}\right.$ Observer for the extended Lur'e form: $\left\{\begin{aligned} \widehat{x}(k+1)= & A \widehat{x}(k)+\varphi(y(k), \cdots, y(k-N)) \\ & +L(y(k)-\widehat{y}(k)) \\ \widehat{y}(k)= & C \widehat{x}(k) \end{aligned}\right.$ When can a system be transformed into an extended Lur'e form?
	TU/e
New coordinates: $\left\{\begin{array}{l} z_{1}=-\alpha x_{1}+x_{2}+\beta \cos x_{1} \\ z_{2}=x_{1} \end{array}\right.$ In new coordinates: $\left\{\begin{array}{l} z_{1}(k+1)=-\alpha z_{2}(k) \\ z_{2}(k+1)=z_{1}(k)+(1+\alpha) z_{2}(k)-\beta \cos z_{2}(k) . \end{array}\right.$ Observer: $\left\{\begin{array}{l} \widehat{z}_{1}(k+1)=-\alpha \widehat{z}_{2}(k)+{ }_{1}\left(z_{2}(k)-\widehat{z}_{2}(k)\right) \\ \widehat{z}_{2}(k+1)=\widehat{z}_{1}(k)+(1+\alpha) \widehat{z}_{2}(k)-\beta \cos z_{2}(k)+{ }_{2}\left(z_{2}(k)-\widehat{z}_{2}(k)\right) \end{array}\right.$	Assume that the mapping \mathcal{O} is a local di eomorphism. Let $N \in\{0, \cdots, n-1\}$ be given. Then there is a local transformation into an e tended Lur'e form with bu er N if and only if there locally e ist functions $\varphi_{N+1}, \cdots, \varphi_{n}: \mathbb{R}^{N+1} \rightarrow \mathbb{R}$ such that the function f_{s} in the observable form $\left\{\begin{aligned} s_{1}(k+1) & =s_{2}(k) \\ & \vdots \\ s_{n}(k+1) & =f_{s}(s(k)) \\ y(k) & =s_{1}(k) \end{aligned}\right.$ where $f_{s}(s):=h \circ f^{n} \circ \mathcal{O}^{-1}(s)$, satisfies $f_{s}\left(s_{1}, \cdots, s_{n}\right)=\sum_{i=N+1}^{n} \varphi_{i}\left(s_{i}, \cdots, s_{i-N}\right)$

Parameter estimation Parameter estimation methods are well established for linear systems However, are dealing with chaotic systems, which are nonlinear. Still, if appropriate decomposition/transformation of system as well as synchronizing subsystem exists, linear parameter estimation methods can still be used. Chaos helps in the convergence of estimates, because chaotic signals are persistently exciting	After $\hat{\Sigma}$ has synchronized, y satisfies: $\dot{y}=\lambda u_{1}-y-u_{2}, \quad u_{1}=\hat{x}_{1}, \quad u_{2}=\hat{x}_{1} \hat{x}_{3}$ This is a linear system with output y, known inputs u_{1}, u_{2}, and linear dependence on the unknown parameter λ. So linear parameter estimation methods can now be used to estimate λ !
TU/e	TU/e
Parameter estimation: Example (Corron \& Hahs, 1997) Transmitter is a Lorenz system: $\Sigma_{T}\left\{\begin{aligned} \dot{x}_{1} & =10\left(x_{2}-x_{1}\right) \\ \dot{x}_{2} & =\lambda x_{1}-x_{2}-x_{1} x_{3} \\ \dot{x}_{3} & =x_{1} x_{2}-\frac{8}{3} x_{3} \\ y & =x_{2} \end{aligned}\right.$ Then the system $\hat{\Sigma}\left\{\begin{array}{l} \dot{\hat{x}}_{1}=10\left(y-\hat{x}_{1}\right) \\ \dot{\hat{x}}_{3}=\hat{x}_{1} y-\frac{8}{3} \hat{x}_{3} \end{array}\right.$ (partially) synchronizes, i.e., $\left(\hat{x}_{1}(t), \hat{x}_{3}(t)\right)-\left(x_{1}(t), x_{3}(t)\right) \rightarrow 0(t \rightarrow+\infty)$	The receiver Σ_{R} is then e.g. given by (Corron \& Hahs, 1997): $\Sigma_{R}\left\{\begin{aligned} \dot{\hat{x}}_{1} & =10\left(y-\hat{x}_{1}\right) \\ \dot{\hat{x}}_{3} & =\hat{x}_{1} y-\frac{8}{3} \hat{x}_{3} \\ \dot{w}_{0} & =(k-1) y-\hat{x}_{1} \hat{x}_{3}-k w_{0}, \quad k>0 \\ \dot{w}_{1} & =\hat{x}_{1}-k w_{1} \\ \dot{\hat{\lambda}} & =\frac{q \operatorname{sign}\left(w_{1}\right)}{1+\left\|w_{1}\right\|}\left(y-w_{0}-w_{1} \hat{\lambda}\right), \quad q>0 \end{aligned}\right.$

TU/e

	TU/e ${ }^{\text {techische unvesitete tindoven }}$ 通 Queen Mary
Update law for $\hat{\lambda}$: $\left\{\begin{array}{rlr} \dot{\hat{\lambda}}=-\nu \phi_{1}(w) p(\hat{y}-\tilde{y}) & & (\nu>0) \\ \dot{p} & =-\nu\left(\phi_{1}(w)^{2} p^{2}-\gamma p\right) & \\ \hat{y} & =\phi_{0}(w)+\hat{\lambda} \phi_{1}(w) \\ \tilde{y} & =\log \left(x_{3}\right) & \end{array}\right.$ So if λ is constant and parameter estimation has been achieved: $\exp \left(\phi_{0}(w)+\hat{\lambda} \phi_{1}(w)\right) \text { synchronizes with } x_{3}$ From this, also functions of w synchronizing with x_{1} and x_{2} can be derived.	Adaptive observers Receivers constructed using linear parameter estimation methods may be viewed as adaptive observers. However, since these receivers have not been constructed as adaptive observers, it is generally not straightforward to obtain the relationship between receiver states and state estimates of the transmitter. We now give two examples of how adaptive observers may be used as receivers.

	TU/e ${ }^{\text {techiscte univesitet eindoven }}$, Queen Mary
Example: Chua circuit $\begin{aligned} & \dot{x}_{1}=\alpha\left(-x_{1}+x_{2}-\varphi_{\lambda}\left(x_{1}, \lambda\right)\right) \\ & \dot{x}_{2}=x_{1}-x_{2}+x_{3} \\ & \dot{x}_{3}=-\beta x_{2} \end{aligned}$ $\begin{aligned} \varphi_{\lambda}\left(x_{1}, \lambda\right) & =\varphi\left(x_{1}\right)+\lambda(t)\left(\left\|x_{1}+1\right\|-\left\|x_{1}-1\right\|\right) \\ & =m_{1} x_{1}+\left(m_{2}+\lambda(t)\right)\left(\left\|x_{1}+1\right\|-\left\|x_{1}-1\right\|\right) \end{aligned}$ with $m_{1}=5 / 7, m_{2}=-6 / 7, \alpha=9, \beta=14.286$. Output: $y=x_{1}$ Signal $\lambda(t): \lambda(t)=\lambda_{0}+\lambda_{1} \operatorname{sign}(\sin \omega t)$	Suppose m_{1}, m_{2} are unknown Adaptive observer: $\begin{aligned} & \dot{\hat{x}}_{1}=\alpha\left(-\hat{x}_{1}+\hat{x}_{2}\right)+c_{1}\left(\left\|x_{1}+1\right\|-\left\|x_{1}-1\right\|\right)+c_{2}\left(\hat{x}_{1}-x_{1}\right) \\ & \dot{\hat{x}}_{2}=\hat{x}_{1}-\hat{x}_{2}+\hat{x}_{3}+0\left(\hat{x}_{1}-x_{1}\right) \\ & \dot{\hat{x}}_{3}=-\beta \hat{x}_{2}+0\left(\hat{x}_{1}-x_{1}\right) \end{aligned}$ Adaptation law for $c_{1}(t), c_{2}(t)$ $\begin{aligned} & \dot{c}_{1}=-\gamma_{1}\left(x_{1}-\hat{x}_{1}\right)^{2}\left(\left\|x_{1}+1\right\|-\left\|x_{1}-1\right\|\right) \\ & \dot{c}_{2}=-\gamma_{2}\left(x_{1}-\hat{x}_{1}\right)^{2} \end{aligned}$ γ_{1}, γ_{2} adaptation gains
TU/e	TU/e
$\begin{gathered} \dot{x}_{1}=\alpha\left(-x_{1}+x_{2}-\varphi_{\lambda}\left(x_{1}, \lambda\right)\right) \\ \dot{x}_{2}=x_{1}-x_{2}+x_{3} \\ \dot{x}_{3}=-\beta x_{2} \\ \varphi_{\lambda}\left(x_{1}, \lambda\right)=m_{1} x_{1}+\left(m_{2}+\lambda(t)\right)\left(\left\|x_{1}+1\right\|-\left\|x_{1}-1\right\|\right) \end{gathered}$ Suppose m_{1} and m_{2} are unknown Adaptive observer: $\begin{aligned} & \dot{\hat{x}}_{1}=\alpha\left(-\hat{x}_{1}+\hat{x}_{2}\right)+c_{1}\left(\left\|x_{1}+1\right\|-\left\|x_{1}-1\right\|\right)+c_{2}\left(\hat{x}_{1}-x_{1}\right) \\ & \dot{\hat{x}}_{2}=\hat{x}_{1}-\hat{x}_{2}+\hat{x}_{3}+0\left(\hat{x}_{1}-x_{1}\right) \\ & \dot{\hat{x}}_{3}=-\beta \hat{x}_{2}+0\left(\hat{x}_{1}-x_{1}\right) \end{aligned}$	Then due to - Minimum-phaseness - Relative degree one - Linear dependence on unknown parameters it follows that - Error vanishes as $t \rightarrow \infty$ - $c_{1}(t)$ converges to the "true signal". $\underline{\text { Chaos helps! }}$

 $\lambda(t) \equiv 0$; Error and adaptation parameters vs time.	Example: Rössler system. $\Sigma_{T}:\left\{\begin{array}{l} \dot{x}_{1}=-x_{2}-x_{3} \\ \dot{x}_{2}=x_{1}+\lambda x_{2} \\ \dot{x}_{3}=c+x_{3}\left(x_{1}-b\right) \quad y=x_{3} \end{array}\right.$ $b, c>0$. Suppose λ is unknown parameter (message). $Q(\lambda)=\left(\begin{array}{ccc} -\lambda & -1 & 1 \\ 1 & 0 & -\lambda \\ 0 & 0 & 1 \end{array}\right)$ New coordinates: $z=Q(\lambda) \xi$.
TU/e	TU/e ${ }^{\text {tectrische unvesisiet eindoven }}$ 䦽 Queen Mary
 $\lambda(t)=\lambda_{0}+\lambda_{1} \operatorname{sign}(\sin \omega t) ;$ Error and adaptation parameters vs time.	Suppose λ is unknown parameter (message). $Q(\lambda)=\left(\begin{array}{ccc} -\lambda & -1 & 1 \\ 1 & 0 & -\lambda \\ 0 & 0 & 1 \end{array}\right)$ New coordinates $z=Q(\lambda) \xi$: $\begin{gathered} \left(\begin{array}{c} \dot{z}_{1} \\ \dot{z}_{2} \\ \dot{z}_{3} \end{array}\right)=\underbrace{\left(\begin{array}{ccc} 0 & 0 & 0 \\ 1 & 0 & -1 \\ 0 & 1 & 0 \end{array}\right)}_{A}\left(\begin{array}{c} z_{1} \\ z_{2} \\ z_{3} \end{array}\right)+\underbrace{\left(\begin{array}{c} c e^{-y}-b \\ -e^{y} \\ c e^{-y}-b \end{array}\right)}_{f_{0}(y)}+\lambda \underbrace{\left(\begin{array}{c} e^{y} \\ -c e^{-y}+b \\ y \end{array}\right)}_{f_{1}(y)}, \\ y=z_{3}=\left(\begin{array}{lll} 0 & 0 & 1 \end{array}\right) z \end{gathered}$

	TU/e
Filtered transformation: $\binom{\dot{\xi}_{1}}{\dot{\xi}_{2}}=\left(\begin{array}{ll} 0 & k_{1} \\ 1 & k_{2} \end{array}\right)\binom{\xi_{1}}{\xi_{2}}+\binom{k_{1}}{k_{2}} y+\binom{e^{y}}{-c e^{y}+b},$ New variables: $\binom{\eta_{1}}{\eta_{2}}=\binom{z_{1}}{z_{2}}-\lambda\binom{\xi_{1}}{\xi_{2}}+\binom{k_{1}}{k_{2}} y$	Adaptive observer: $\begin{aligned} \left(\begin{array}{c} \dot{\overparen{\eta}}_{1} \\ \dot{\eta}_{2} \\ \dot{\hat{y}} \end{array}\right)= & \left(\begin{array}{ccc} 0 & k_{1} & -k_{1} k_{2} \\ 1 & k_{2} & -\left(k_{1}+k_{2}^{2}+1\right) \\ 0 & 1 & k_{2} \end{array}\right)\left(\begin{array}{l} \widehat{\eta}_{1} \\ \widehat{\eta}_{2} \\ \widehat{y} \end{array}\right)+ \\ & \left(\begin{array}{c} \left(k_{1}+1\right)\left(c e^{-y}-b\right) \\ k_{2}\left(c e^{-y}-b\right)-e^{y} \\ c e^{-y}-b \end{array}\right)+\widehat{\theta}\left(\begin{array}{l} 0 \\ 0 \\ 1 \end{array}\right)\left(\xi_{2}+y\right)+\left(\begin{array}{c} l_{1} \\ l_{2} \\ l_{3} \end{array}\right)(\widehat{y}-y) \\ \dot{\hat{\theta}} & =-\gamma\left(\xi_{2}+y\right)(\widehat{y}-y), \quad \gamma>0 \end{aligned}$
TU/e	
In new coordinates: $\begin{array}{rl} \left(\begin{array}{c} \dot{\eta}_{1} \\ \dot{\eta}_{2} \\ \dot{y} \end{array}\right)= & \underbrace{\left(\begin{array}{ccc} 0 & k_{1} & -k_{1} k_{2} \\ 1 & k_{2} & -\left(k_{1}+k_{2}^{2}+1\right) \\ 0 & 1 & k_{2} \end{array}\right)}_{\bar{A}}\left(\begin{array}{c} \eta_{1} \\ \eta_{2} \\ y \end{array}\right) \\ & +\underbrace{\left(\begin{array}{c} \left(k_{1}+1\right)\left(c e^{-y}-b\right) \\ k_{2}\left(c e^{-y}-b\right)-e^{y} \\ c e^{-y}-b \end{array}\right)}_{\overline{f_{0}}}+\lambda \end{array} \underbrace{\left(\begin{array}{c} 0 \\ 0 \\ 1 \end{array}\right)}_{\bar{B}} \underbrace{\left(\xi_{2}+y\right)}_{u})$	Coordinate transformation depends on $\lambda \Longrightarrow$ to estimate the whole state vector it is required that $\widehat{\theta}(t) \rightarrow \lambda$. Chaos helps!

TU/e

TU/e ${ }^{\text {Eechische uniessitete endoven }{ }^{\text {bid }} \text { Quen Mary }}$			
Example. The Lorenz system $\begin{aligned} & \dot{x}_{1}=\sigma\left(y_{1}-x_{1}\right)+u \\ & \dot{y}_{1}=r x_{1}-y_{1}-x_{1} z_{1} \\ & \dot{z}_{1}=-b z_{1}+x_{1} y_{1} \end{aligned}$ is strictly semipassive from u to $y=x_{1}$ with the storage function $\begin{gathered} V\left(x_{1}, y_{1}, z_{1}\right)=\frac{1}{2}\left(x_{1}^{2}+y_{1}^{2}+\left(z_{1}-\sigma-r\right)^{2}\right) . \\ \dot{V}\left(x_{1}, y_{1}, z_{1}, u\right)=y u-H\left(x_{1}, y_{1}, z_{1}\right) \end{gathered}$ where $H=\underbrace{\sigma x_{1}^{2}+y_{1}^{2}+b\left(z_{1}-\frac{\sigma+r}{2}\right)^{2}}_{\geq 0}-b \frac{(\sigma+r)^{2}}{4} .$	Network equations: $\left\{\begin{array}{l} \dot{x}_{j}=f\left(x_{j}\right)+B u_{j} \\ y_{j}=C x_{j} \end{array}\right.$ Nonsingularity of $C B \Longrightarrow$ new coordinates (normal form). $\left\{\begin{array}{l} \dot{z}_{j}=q\left(z_{j}, y_{j}\right) \\ \dot{y}_{j}=a\left(z_{j}, y_{j}\right)+C B u_{j} \end{array}\right.$ Coupling: $u=-\left(\Gamma \otimes I_{m}\right) y, \quad u=\operatorname{col}\left(u_{1}, \ldots, u_{k}\right), y=\operatorname{col}\left(y_{1}, \ldots, y_{k}\right)$ Eigenvalues of $\Gamma: \quad 0=\lambda_{1}<\lambda_{2} \leq \lambda_{3} \leq \ldots \leq \lambda_{k}$		
TU/e	TU/e		
Convergent systems (Demidovich, 1961) $\dot{z}=q(z, y(t)), \quad y(t) \in \mathbb{D}, \quad \mathbb{D}$ is compact The system is exponentially convergent if - for any function $y: t \rightarrow \mathbb{D}, t \in(-\infty,+\infty)$ - \exists a unique bounded limit solution $\bar{z}(t)$ defined on $(-\infty,+\infty)$ - $\\|z(t)-\bar{z}(t)\\| \leq C e^{-\alpha\left(t-t_{0}\right)}, \alpha>0$. Test for convergence: $\exists P=P^{T}>0$, s.t. $\frac{1}{2}\left[P\left(\frac{\partial q}{\partial z}(z, w)\right)+\left(\frac{\partial q}{\partial z}(z, w)\right)^{T} P\right]$ has negative eigenvalues $(\forall w \in \mathbb{D}$ separated from zero).	Full synchronization in DCN. Full synchronization: $x_{1}(t)=x_{2}(t)=\ldots=x_{k}(t)$ Assumptions: - Strict semipassivity of each system from DCN with radially unbounded storage function - Exponential convergence of the system $\dot{z}=q(z, y(t))$ Result: - $\exists \bar{\lambda}>0$, s.t. - if $\lambda_{2} \geq \bar{\lambda}$ the set $x_{1}=x_{2}=\ldots=x_{k}$ contains globally asymptotically stable compact subset.		

Example. DCN of Lorenz systems. $\left\{\begin{array}{l} \dot{x}_{j}^{1}=\sigma\left(x_{j}^{2}-x_{j}^{1}\right)+u_{j} \\ \dot{x}_{j}^{2}=r x_{j}^{1}-x_{j}^{2}-x_{j}^{1} x_{j}^{3} \quad, \quad y_{j}=x_{j}^{1} \\ \dot{x}_{j}^{3}=-b x_{j}^{3}+x_{j}^{1} x_{j}^{2} \\ u=-\Gamma y \end{array}\right.$ If the smallest nonzero eigenvalue λ_{2} of Γ is large enough \Longrightarrow full synchronization. Intermediate regimes? Partial synchronization.	Global symmetries Γ contains all information about the coupling Let Π be a permutation matrix commuting with Γ : $\Pi \Gamma-Г \Pi=0$ The set $\operatorname{ker}\left(I_{k n}-\Pi \otimes I_{n}\right)$ is invariant. This set can be described by the equations of the form $x_{i}=x_{j}$ partial synchronization if $x_{i}=x_{j}$ is stable and/or attractive for some i, j
TU/e	
Partial synchronization Observation: the set $x_{1}=x_{2}=\ldots=x_{k}$ is an invariant linear subspace. Questions: - are there any other invariant subspaces? - how to find them? - how to prove stability? Hint: - look for the symmetries Symmetries: - Global (depend on the coupling) - Internal (depend on the properties of free systems)	Example. A ring of four systems. $\Gamma=\left(\begin{array}{cccc} K_{0}+K_{1} & -K_{0} & 0 & -K_{1} \\ -K_{0} & K_{0}+K_{1} & -K_{1} & 0 \\ 0 & -K_{1} & K_{0}+K_{1} & -K_{0} \\ -K_{1} & 0 & -K_{0} & K_{0}+K_{1} \end{array}\right)$ Group of permutation matrices: $\Pi_{4}=I_{4}$ and $\begin{gathered} \Pi_{1}=\left(\begin{array}{cc} E & O \\ O & E \end{array}\right), \Pi_{2}=\left(\begin{array}{cc} O & I_{2} \\ I_{2} & O \end{array}\right), \Pi_{3}=\left(\begin{array}{cc} O & E \\ E & O \end{array}\right), E:=\left(\begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array}\right) \\ \mathcal{A}_{1}=\left\{x \in \mathbb{R}^{4 n}: x_{1}=x_{2}, x_{3}=x_{4}\right\}, \mathcal{A}_{2}=\left\{x \in \mathbb{R}^{4 n}: x_{1}=x_{3}, x_{2}=x_{4}\right\} \\ \mathcal{A}_{3}=\left\{x \in \mathbb{R}^{4 n}: x_{1}=x_{4}, x_{2}=x_{3}\right\} \end{gathered}$

Controlled synchronization Master system : $\begin{aligned} & \dot{x}=f(x), \quad x \in \mathbb{R}^{n} \\ & y=h(x) \end{aligned}$ Slave system : $\quad \dot{\hat{x}}=g(\hat{x}, y), \quad \hat{x} \in \mathbb{R}^{n}$ In general, a given master system and a given slave system will not synchronize. From a control point of view, there are two ways to try to overcome this problem. - If one is free to choose the slave system, it should be designed as an observer for the master system. - If the slave system is given beforehand, but there is still some freedom to influence (i.e., control) the slave system, one could try to design a controller to achieve synchronization. This is the Controlled Synchronization Problem.	Controlled synchronization problem: Find dynamic feedback $\begin{aligned} \dot{z} & =k(z, \eta, y) \\ u & =\alpha(z, \eta, y) \end{aligned}$ such that the closed loop system satisfies: $\lim _{t \rightarrow+\infty}\\|x(t)-\hat{x}(t)\\|=0$ Sometimes also internal stability required, i.e., the dynamics $\begin{aligned} \dot{\hat{x}} & =g(\hat{x}, 0, \alpha(z, \eta, 0)) \\ \dot{z} & =k(z, \eta, 0) \end{aligned}$ are asymptotically stable.		
TU/e	TU/e		
Master system : $\begin{aligned} & \dot{x}=f(x), \quad x \in \mathbb{R}^{n} \\ & y=h(x) \end{aligned}$ Slave system : $\begin{aligned} & \dot{\hat{x}}=g(\hat{x}, y, u), \quad \hat{x} \in \mathbb{R}^{n}, u \in \mathbb{R}^{m} \\ & \eta=h(\hat{x}) \end{aligned}$ Controlled synchronization problem: Find dynamic feedback $\begin{aligned} \dot{z} & =k(z, \eta, y) \\ u & =\alpha(z, \eta, y) \end{aligned}$ such that the closed loop system satisfies: $\lim _{t \rightarrow+\infty}\\|x(t)-\hat{x}(t)\\|=0$	In fact, the controlled synchronization problem with internally stability can be viewed as (a version of) the regulator problem. So could try to solve the controlled synchronization problem by using methods for solution of the regulator problem. However, in most applications of chaos synchronization, the master system possesses a chaotic attractor in which several equilibrium points with unstable linearization are embedded. This means that the Poisson stability hypothesis from the "Byrnes \& Isidori solution" to the regulator problem is not met.		

Example of class of systems for which controlled synchronization problem can be solved: Lur'e systems. Master system: $\begin{aligned} \dot{x} & =A x+\Psi(y) \\ y & =C x \end{aligned}$ Slave system: $\begin{aligned} \dot{\hat{x}} & =A \hat{x}+\Psi(y)+B u \\ \eta & =C \hat{x} \end{aligned}$ where (A, B) is stabilizable and (C, A) is detectable.	Example: Chua circuit. $\begin{aligned} & \left(\begin{array}{c} \dot{x}_{1} \\ \dot{x}_{2} \\ \dot{x}_{3} \end{array}\right)=\underbrace{\left(\begin{array}{ccc} \gamma & \alpha & 0 \\ 1 & -1 & 1 \\ 0 & -\beta & 0 \end{array}\right)}_{A}\left(\begin{array}{c} x_{1} \\ x_{2} \\ x_{3} \end{array}\right)+\underbrace{\left(\begin{array}{c} -\alpha\left(m_{0}-m_{1}\right) \operatorname{sat}(y) \\ 0 \\ 0 \end{array}\right)}_{\Psi(y)} \\ & y=x_{1}, \quad \gamma=-\alpha\left(m_{1}+1\right), \alpha=15 \cdot 6, m_{0}=-\frac{8}{7}, m_{1}=-\frac{5}{7}, \beta=25 \end{aligned}$ Slave system: $\dot{\hat{x}}=A \hat{x}+\Psi(y)+\left(\begin{array}{l} 1 \\ 1 \\ 1 \end{array}\right) u$ Choose $F=\operatorname{col}(-1-15.60), K=\left(\begin{array}{lll}4.36 & 0 & 0\end{array}\right)$.
TU/e	TU/e
$\dot{x}=A x+\Psi(y)$ Master and slave : $y=C x$ $\dot{\hat{x}}=A \hat{x}+\Psi(y)+B u$ $\eta=C \hat{x}$ $\begin{aligned} \dot{\tilde{x}} & =A \tilde{x}+K(\tilde{y}-y)+\Psi(y) \\ \dot{\bar{x}} & =A \bar{x}+K(\bar{\eta}-\eta)+\Psi(y)+B u \end{aligned}$ Controller : $\tilde{y}=C \tilde{x}$ $\begin{aligned} \bar{\eta} & =C \bar{x} \\ u & =F(\tilde{x}-\bar{x}) \end{aligned}$ with $\sigma(A+B F), \sigma(A+K C) \subset \mathbb{C}$.	Example: Van der Pol differential equation. Master system: $\begin{aligned} \dot{x}_{1} & =x_{2} \\ \dot{x}_{2} & =-x_{1}-\left(x_{1}^{2}-1\right) x_{2} \\ y & =x_{1} \end{aligned}$ Slave system: $\begin{aligned} & \dot{\hat{x}}_{1}=\hat{x}_{2}+\alpha u \\ & \hat{\hat{x}}_{2}=-y-\left(y^{2}-1\right) \hat{x}_{2}+\beta u \end{aligned}$ Want to try to achieve synchronization by means of (high gain) static error feedback: $u=-c\left(\hat{x}_{1}-x_{1}\right)$

	TU/e ${ }^{\text {teemisiste uniessitetet entoven }{ }^{\text {bid }} \text { Quen Mary }}$
Case 3: $\alpha \neq 0, \beta \neq 0$. Error dynamics: $\dot{e}=\left(\begin{array}{cc} -\alpha c & 1 \\ -\beta c & -p(t) \end{array}\right) e$ Singular perturbations and Tikhonov's Theorem: High-gain feedback with $\alpha c \rightarrow+\infty$ works if and only if $\frac{\beta}{\alpha}>-\bar{p}$ High-gain feedback with $\alpha c \rightarrow-\infty$ does not work. Lower bound for c can be given, but is very conservative. Have to take recourse to numerical methods	What can be learnt from this example? - Have had to use many example-specific and ad-hoc methods. - This leads to the conclusion that "genuinely nonlinear" regulation and controlled synchronization is difficult, and that hoping to be able to solve the problem in its full generality seems to be in vain at the outset. - So should rather concentrate on classes of systems with specific properties. - One of these classes, fully actuated mechanical systems, will be treated in the next section.
TU/e	TU/e
	Contents - Introduction - An observer view on synchronization - Communication and synchronization - Synchronization in diffusive networks - Controlled synchronization - Coordination of mechanical systems

TU/e

Coordination of mechanical systems:

- Introduction
- Mutual synchronization controller
- Convergence properties
- Experiments
- Conclusions
- Future extensions

TU/e

Introduction

Objective

Two or more mutually synchronized robot manipulators

Restrictions

Only position measurements

Motivation

* Synchronization tasks :
- mobile platforms (transportation, walking robots),
- object manipulation (manufacturing industry),
* Velocity sensor equipment
* Accessibility on the robot architecture
- $\underbrace{\text { technische universiteit eindhoven }}$

History

- Huygens (1673): pendulum clocks linked via (flexible) beam
- Rayleigh (1877): nearby organ tubes, tuning forks
- B. van der Pol (1920): electrical-mechanical systems

Definition

- Time conformity
- Certain relations between functionals and/or variables

Internal (mutual) synchronization

- All objects appear at equal terms
- Synchronous motion as result of interaction/coupling

External synchronization

- One object is more powerful (master)
- Synchronous motion is determined by the master

TU/e

TU/e

General setup

- n actuated rigid joints
- All joints are revolute

TU/e

Hydraulic platform

TU/e

technische universiteit eindhoven

General assumptions

- Only joint position measurements
- Dynamic model and physical parameters are known for all robots
- Desired joint positions, velocities and accelerations are bounded

Synchronization index and functional

$$
\begin{aligned}
& J_{i}\left(q_{i}, \dot{q}_{i}\right)=\left[\begin{array}{cc}
q_{i}^{T} & \dot{q}_{i}^{T}
\end{array}\right] \\
& f_{i, j}=\left\|J_{i}\left(q_{i}, \dot{q}_{i}\right)-J_{j}\left(q_{j}, \dot{q}_{j}\right)\right\|, \quad i, j=1, \ldots, p, \quad j \neq i, \\
& f_{i, i}=\left\|J_{i}\left(q_{i}, \dot{q}_{i}\right)-J_{d}\left(q_{d}, \dot{q}_{d}\right)\right\|, \quad i=1, \ldots, p \\
& \hline
\end{aligned}
$$

TU/e

Mutual synchronization controller

Rigid joint robot dynamics

$$
M_{i}\left(q_{i}\right) \ddot{q_{i}}+C_{i}\left(q_{i}, \dot{q}_{i}\right) \dot{q_{i}}+g_{i}\left(q_{i}\right)=\tau_{i} \quad i=1, \ldots, p
$$

Ideal feedback control law

$$
\tau_{i}=M_{i}\left(q_{i}\right) \ddot{q}_{r i}+C_{i}\left(q_{i}, \dot{q}_{i}\right) \dot{q}_{r i}+g_{i}\left(q_{i}\right)-K_{d, i} \dot{s}_{i}-K_{p, i} s_{i}
$$

Synchronization errors

$$
\begin{gathered}
s_{i}=q_{i}-q_{r i}, \quad \dot{s}_{i}=\dot{q}_{i}-\dot{q}_{r i} \\
e_{i, i}=q_{i}-q_{d}, \quad e_{i, j}=q_{i}-q_{j}
\end{gathered}
$$

Nominal reference trajectories

$$
q_{r i}=q_{d}-\sum_{j=1, j \neq i}^{p} K_{i, j}\left(q_{i}-q_{j}\right) ; \quad \dot{q}_{r i}=\dot{q}_{d}-\sum_{j=1, j \neq i}^{p} K_{i, j}\left(\dot{q}_{i}-\dot{q}_{j}\right)
$$

TU/e
 technische universiteit eindhoven

Observer for slave joint variables

$$
\left.\begin{array}{l}
\frac{d}{d t} \hat{q}_{i}=\hat{\dot{q}}_{i} \\
\frac{d}{d t} \hat{\dot{q}}_{i}=-M_{i, 1}\left(\tilde{q}_{i}\right)^{-1} \\
C\left(q_{i}, \hat{\dot{q}}_{i}\right) \hat{\dot{q}}_{i}+g_{i}\left(q_{i}\right)-\tau_{i}
\end{array}\right)+\mu_{i, 2} \tilde{q}_{i} .
$$

Estimation joint errors

$$
\tilde{q}_{i}:=q_{i}-\hat{q}_{i}, \quad \tilde{\dot{q}}_{i}:=\dot{q}_{i}-\hat{\dot{q}}_{i}
$$

Seemingly problem: Algebraic loop !!!

TU/e

Feedback control law with estimated variables

$$
\tau_{i}=M_{i}\left(q_{i}\right) \hat{\underline{q}}_{r i}+C_{i}\left(q_{i}, \hat{q}_{i}\right) \hat{q}_{r i}+g_{i}\left(q_{i}\right)-K_{d, i} \hat{\dot{s}}_{i}-K_{p, i} s_{i}
$$

Synchronization errors

$$
\begin{gathered}
s_{i}=q_{i}-q_{r i}, \quad \hat{s_{i}}=\hat{\dot{q}}_{i}-\hat{\dot{q}}_{r i} \\
e_{i, i}=q_{i}-q_{d}, \quad e_{i, j}=q_{i}-q_{j}
\end{gathered}
$$

Nominal reference trajectories

$$
q_{r i}=q_{d}-\sum_{j=l, j \neq i}^{p} K_{i, j}\left(q_{i}-q_{j}\right) ; \quad \hat{\dot{q}}_{r i}=\dot{q}_{d}-\sum_{j=l, j \neq i}^{p} K_{i, j}\left(\hat{q_{i}}-\hat{\dot{q}}_{j}\right)
$$

Algebraic loop

$$
\frac{d}{d t} \hat{q}_{i}=-M_{i}\left(q_{i}\right)^{-1}\left(C\left(q_{i}, \hat{q}_{i}\right) \hat{q}_{i}+g_{i}\left(q_{i}\right)-\tau_{i}\right)+\mu_{i, 2} \tilde{q}_{i}
$$

$\left.\frac{d}{d t} \hat{\dot{q}}_{i}=-\sum_{j=1, j \neq i}^{p} K_{i, j}\left(\frac{d}{d t} \hat{\dot{q}}_{i}-\frac{d}{d t} \hat{\dot{q}}_{j}\right)+\ddot{q}_{d}-M_{i}\left(q_{i}\right)^{-1}\left(C\left(q_{i}, \hat{\dot{q}}_{i}\right) \hat{\dot{s}}_{i}+K_{d, i} \hat{\dot{s}}_{i}+K_{p, i} s_{i}\right)+\mu_{i, 2} \tilde{q}_{i}\right)$

$$
y_{i}\left(\ddot{q}_{d}, s_{i}, \hat{s}_{i}, q_{i}, \hat{q}_{i}\right)
$$

TU/e

For $i=1, \ldots, p$

$$
\left.\left(I_{n}+\sum_{j=l, j \neq i}^{p} K_{i, j}\right) \frac{d}{d t} \hat{q}_{i}-\sum_{j=l, j \neq i}^{p} K_{i, j} \frac{d}{d t} \hat{\dot{q}}_{j}=y_{i} \ddot{q}_{d}, s_{i}, \hat{s}_{i}, q_{i}, \hat{q}_{i}\right)
$$

Such that

$$
\underbrace{\left[\begin{array}{cccc}
I_{n}+\sum_{j=l, j \neq 1}^{p} K_{l, j} & -K_{l, 2} & \cdots & -K_{l, p} \\
-K_{2, l} & I_{n}+\sum_{j=l, j \neq 2}^{p} K_{2, j} & \cdots & -K_{2, p} \\
\vdots & \vdots & \ddots & \vdots \\
-K_{p, l} & -K_{p, 2} & \cdots & I_{n}+\sum_{j=l, j \neq p}^{p} K_{p, j}
\end{array}\right]}\left[\begin{array}{c}
\frac{d}{d} \hat{\hat{q}_{l}} \\
\frac{d}{d} \hat{q}_{2} \\
\vdots \\
\vdots \\
\frac{d}{d t} \hat{q}_{p}
\end{array}\right]=\left[\begin{array}{c}
y_{l} \\
y_{2} \\
\vdots \\
y_{p}
\end{array}\right]
$$

$M_{c}\left(K_{i, j}\right) \quad$ Nonsingular for any $K_{i, j} \geq 0$!

TU/e
 technische universiteit eindhoven

- Convergence of $s_{i}, \dot{s}_{i}, \tilde{q}_{i}, \tilde{\dot{q}}_{i}$

$$
\begin{gathered}
V=\frac{1}{2} \sum_{i=1}^{p}\left(\dot{s}_{i}^{T} M_{i}\left(q_{i}\right) \dot{s}_{i}+s_{i}^{T} K_{p, i} s_{i}\right)+\frac{1}{2} \sum_{i=1}^{p}\left[\begin{array}{cc}
\tilde{\dot{q}}_{i}^{T} & \tilde{q}_{i}^{T}
\end{array}\right]\left[\begin{array}{cc}
M_{i}\left(q_{i}\right) & \eta_{i}\left(\tilde{q}_{i}\right) I_{n} \\
\eta_{i}\left(\tilde{q}_{i}\right) I_{n} & \mu_{i, 2}+\beta_{i} I_{n}
\end{array}\right]\left[\begin{array}{c}
\tilde{\dot{q}}_{i} \\
\tilde{q}_{i}
\end{array}\right] \\
\eta_{i}\left(\tilde{q_{i}}\right)=\frac{\eta_{o}}{1+\left\|\tilde{q}_{i}\right\|} \\
\beta_{i}=\eta_{o} \mu_{i, 1}+2 V_{M} C_{i, M}\left(\mu_{i, l}+\eta_{o} M_{i, m}{ }^{-1}\right)-\mu_{i, 2}\left(1-M_{i, m}\right)
\end{gathered}
$$

Convergence of s_{i}, \dot{s}_{i} imply $q_{i} \rightarrow q_{j}$ and $\dot{q}_{i} \rightarrow \dot{q}_{j}$!

TU/e

Main result

There exist conditions on the minimum eigenvalues of the control gains $K_{p, i}, K_{d, i}$ and the observer gains $\mu_{i, l}, \mu_{i, 2}$ such that

$$
s_{i} \rightarrow 0, \quad \dot{s}_{i} \rightarrow 0, \quad q_{i} \stackrel{\sim}{\rightarrow} 0, \quad \dot{q}_{i}^{\sim} \rightarrow 0
$$

semi-globally exponentially.
Thus, the robots are semi-globally exponentially synchronized since for $i=1, \ldots, p, q_{i} \rightarrow q_{j}$ and $\dot{q}_{i} \rightarrow \dot{q}_{j}$ exponentially for any initial condition in the region of convergence.

TU/e

$s_{i} \rightarrow 0$ implies in the limit $t \rightarrow \infty$ that
$e_{i, i}=q_{i}-q_{d}$

$$
\left.\begin{array}{c}
{\left[\begin{array}{c}
s_{l} \\
\vdots \\
s_{p}
\end{array}\right]=\left[\begin{array}{c}
e_{l, l}+\sum_{j=l, j \neq l}^{p} K_{l, j} e_{l, j} \\
\vdots \\
e_{p, p}+\sum_{j=l, j \neq p}^{p} K_{p, j} e_{p, j}
\end{array}\right]=\left[\begin{array}{c}
0 \\
\vdots \\
0
\end{array}\right]} \\
\frac{-K_{l, 2}}{\cdots} \quad-K_{l, p} \\
\left.\begin{array}{cccc}
I_{n}+\sum_{j=l, j \neq l}^{p} K_{l, j} & \cdots \\
-K_{2, l} & I_{n}+\sum_{j=l, j \neq 2}^{p} K_{2, j} & \cdots & -K_{2, p} \\
\vdots & & \ddots & \vdots \\
-K_{p, l} & -K_{p, 2} & \cdots & I_{n}+\sum_{j=l, j \neq p}^{p} K_{p, j}
\end{array}\right]
\end{array}\right]\left[\begin{array}{c}
q_{l} \\
q_{2} \\
\vdots \\
q_{p}
\end{array}\right]=\left[\begin{array}{c}
q_{d} \\
q_{d} \\
\vdots \\
q_{d}
\end{array}\right]
$$

TU/e

Experiments

Two CFT transposer robots

- 4 degrees of freedom (dof)
- sampling frequency: 2 kHz
- encoders: 2000 PPR

TU/e

Robot dynamics + friction effects

$$
\begin{aligned}
& M_{i}\left(q_{i}\right) \ddot{q}_{i}+C_{i}\left(q_{i}, \dot{q}_{i}\right) \dot{q}_{i}+g_{i}\left(q_{i}\right)+\tau_{f}\left(\dot{q}_{i}\right)=\tau_{i} \quad i=1, \ldots, p \\
& \tau_{f}\left(\dot{q}_{i}\right)=B_{v} \dot{q}_{i}+B_{f 1, i}\left(1-\frac{2}{1+e^{2 w_{l i,}} \dot{q}_{i}}\right)+B_{f 2, i}\left(1-\frac{2}{1+e^{2 w_{2, i}} \dot{q}_{i}}\right)
\end{aligned}
$$

Feedback control law with estimated variables

$$
\tau_{i}=M_{i}\left(q_{i}\right) \stackrel{\hat{q}}{r i}+C_{i}\left(q_{i}, \hat{\dot{q}}_{i}\right) \hat{\dot{q}}_{r i}+g_{i}\left(q_{i}\right)+\tau_{f}\left(\hat{q}_{i}\right)-K_{d, i} \stackrel{\hat{s}}{i}-K_{p, i} s_{i}
$$

TU/e

technische universiteit eindhoven

Synchronization errors

$$
e_{1,1}=q_{1}-q_{d}, \quad e_{1,2}=q_{1}-q_{2}, \quad e_{2,2}=q_{2}-q_{d}
$$

TU/e

Observer errors

Synchronization and Control

TU/e

technische universiteit eindhoven

Conclusions

- Semi-global exponential mutual synchronization
- Robustness against noise measurements
- Robustness against disturbances

Future extensions

- Different nominal references:
- partial synchronization
- Other mechanical systems:
> mobile systems
> satellite formations

