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Introduction

History of synchronization

• Christiaan Huijgens (1670): pendulum clocks synchronize...

• Rayleigh (1877): organ tubes sound in unison..., tuning forks,...

• 1900: electrical and electromechanical systems (Van der Pol)

• Rotating bodies, e.g. moon vs earth

• Chaos synchronization

• (Secure) communication: Pecora and Carroll (1990)

• Controlled synchronization: communication, ship mooring, robot

coordination, sound and light show,...
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This presentation

• Control view on synchronization

• Dynamics

• Observer theory vs synchronization

• Controlled synchronization

• Examples of simple/chaotic systems

• Theory: literature

• No complete review
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Christiaan Huijgens,

born April 14, 1629 , The Hague, died July 8, 1695 , The Hague

12

A figure from Huijgens’ notebook, 22 Febr. 1665
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Huijgens’ notebook, “Horloges Marines (Et Sympathie Des Horloges)”,

1 March, 1665.
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Women living together have

synchronous menstrual cycles.
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An application of master slave synchronization
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12

Synchronization in networks: different synchronization modes, partial

synchronization.
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This workshop:

• Control theory: observers, controlled synchronization

• Dynamics: synchronization in networks

• Applications: communication and coordination of mechanical

systems
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Synchronization and observers

Two points of view on synchronization

Peccora and Carroll (1990), Lorenz system

Transmitter (master) system :

ẋ1 = σ(x2 − x1)

ẋ2 = rx1 − x2 − x1x3

ẋ3 = −bx3 + x1x2

12
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y

z

The Lorenz attractor.
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Two points of view on synchronization

Peccora and Carroll (1990), Lorenz system

Transmitter (master) system :

ẋ1 = σ(x2 − x1)

ẋ2 = rx1 − x2 − x1x3

ẋ3 = −bx3 + x1x2

Receiver (slave) system

(”copy” of master)

˙̂x2 = rx1 − x̂2 − x1x̂3

˙̂x3 = −bx̂3 + x1x̂2

No x̂1-dynamics, because x1 already known.
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e2 = x2 − x̂2, e3 = x3 − x̂3

ė2 = −e2 − x1e3

ė3 = −be3 + x1e2

Lyapunov function: V (e2, e3) = e22 + e23

V̇ = −2e22 − 2be23

(e2, e3) → (0, 0), as t → ∞

Control viewpoint: Slave is partial observer for master.
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Two points of view on synchronization

Peccora and Carroll (1990), Lorenz system

Transmitter (master) system :

ẋ1 = σ(x2 − x1)

ẋ2 = rx1 − x2 − x1x3

ẋ3 = −bx3 + x1x2

Receiver (slave) system

(”copy” of master)

˙̂x1 = σ(x̂2 − x̂1)

˙̂x2 = rx1 − x̂2 − x1x̂3

˙̂x3 = −bx̂3 + x1x̂2

12

e1 = x1 − x̂1, e2 = x2 − x̂2, e3 = x3 − x̂3

ė1 = σ(e2 − e1)

ė2 = −e2 − x1e3

ė3 = −be3 + x1e2

Lyapunov function: V (e1, e2, e3) = 1/σe21 + e22 + e23

V̇ = −2(e1 − 1/2e2)
2 − 3/2e22 − 2be23

(e1, e2, e3) → (0, 0, 0), as t → ∞

Control viewpoint: slave is full observer for master.

12

ẋ1 = σ(x2 − x1)

ẋ2 = rx1 − x2 − x1x3

ẋ3 = −bx3 + x1x2

˙̂x1 = σ(x̂2 − x̂1)

˙̂x2 = rx1 − x̂2 − x1x̂3

˙̂x3 = −bx̂3 + x1x̂2

Two related problems:

Observer

System S

S x(t)

y(t)
e(t)

y(t)

e(t)

System System

System

S

x(t)x(t)

S

S

Synchronization/observer problem Convergent systems, Demidovich
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Synchronization/Observer problem statement

ẋ = f(x)

y = h(x)

x(t) ∈ R
n, state; y(t) ∈ R, output, or measurement.

Observer: given y(t), t ≥ 0, reconstruct asymptotically x(t), t ≥ 0.

Reduced observer: given y(t), t ≥ 0, reconstruct asymptotically x(t)

modulo y(t).

So if slave can be chosen freely, synchronization problem is equivalent to

observer problem.

12

Example

ẋ1 = x2

ẋ2 = ax1 + bx2, y = x1

reduced observer: estimate for x2.

How to find reduced observer? Try ”Pecora & Carroll copy”:

˙̂x2 = ay + bx̂2 = ax1 + bx̂2

e2 = x2 − x̂2

ė2 = be2

Asymptotic reconstruction if and only if b < 0.

12

Example

ẋ1 = x2

ẋ2 = ax1 + bx2, y = x1

observer: estimate for (x1, x2)

How to find observer? Try ”Pecora & Carroll copy”:

˙̂x1 = x̂2

˙̂x2 = ay + bx̂2 = ax1 + bx̂2

e1 = x1 − x̂1, e2 = x2 − x̂2

ė1 = e2, ė2 = be2

Does give reconstruction of x2 iff b < 0, but not reconstruction of x1!

12

Alternative:

˙̂x1 = x̂2 + k1e1

˙̂x2 = ax̂1 + bx̂2 + k2e1

Suitable k1 and k2 yield

(e1, e2) → (0, 0), as t → ∞

(Reduced observer: similar)
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Linear systems (no complex dynamics):

ẋ = Ax, x ∈ R
n

y = Cx

˙̂x = Ax̂+K(y − ŷ)

ŷ = Cx̂

ė = (A−KC)e

12

A−KC has arbitrary pole location iff system is observable, i.e.

rank




C

CA
...

CAn−1




= n

Thus synchronization x̂ → x for suitably chosen K.
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Nonlinear systems?

ẋ = f(x), x ∈ R
n

y = h(x)

Try:

˙̂x = f(x̂) + k(x̂, y)

with k(x̂, y) = 0 if h(x̂) = y

Required for synchronization: x → x̂, as t → ∞ for any initial

x(0), x̂(0).

Find k(·, ·)!

12

When does an observer exist?

1. Linear error dynamics

Example: Chua circuit

ẋ1 = α(−x1 + x2 − ϕ(x1))

ẋ2 = x1 − x2 + x3

ẋ3 = −λx2

ϕ(x1) = m1x1 +m2(|x1 + 1| − |x1 − 1|)

with m1 = −5/7, m2 = −3/7, 23 < λ < 31, α = 15.6.

Double scroll chaotic attractor

Output: y = x1

Thus nonlinearity ϕ(x1) is measurable!
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The double scroll attractor.
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Observer:

˙̂x1 = α(−x̂1 + x̂2 − ϕ(x1)) + k1e1

˙̂x2 = x̂1 − x̂2 + x̂3 + k2e1

˙̂x3 = −λx̂2 + k3e1

ė1 = (k1 − α)e1 + e2

ė2 = (k2 + 1)e1 − e2 + e3

ė3 = k3e1 − λe2

Note: Linear Observable System, (e1, e2, e3) → (0, 0, 0) for suitable

choice of k1, k2, k3.

Arbitrarily fast!

Similar design for Lur’e systems.

12

2. Linearizable Error Dynamics

Example: Rössler system, a, b, c > 0

ẋ1 = −x2 − x3

ẋ2 = x1 + ax2

ẋ3 = c+ x3(x1 − b)

y = x3

NB x3(0) > 0 =⇒ x3(t) > 0, ∀t > 0.

New coordinates:

(ξ1, ξ2, ξ3) = (x1, x2, log x3)

New output: ey = log y = ξ3

12

x

y

z

Trajectories of the Rössler system.
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In new coordinates:

ξ̇1 = −ξ2 − e� 3

ξ̇2 = ξ1 + aξ2

ξ̇3 = ξ1 + (−b+ ce−� 3)

ey = ξ3

• Linear part is observable

• Nonlinear part is measurable

Observer:
˙̂
ξ1 = −ξ̂2 − e� 3 + k1(ξ3 − ξ̂3)
˙̂
ξ2 = ξ̂1 + aξ̂2 + k2(ξ3 − ξ̂3)
˙̂
ξ3 = ξ̂1 + (−b+ ce−� 3) + k3(ξ3 − ξ̂3)

12

Error dynamics:

ė1 = −e2 + k1e3

ė2 = e1 + ae2 + k2e3

ė3 = e1 + k3e3

Suitable k1, k2, k3 =⇒ synchronization

12

3. High-gain Observer

ẋ = f(x), y = h(x)

Assume:

• f(x) satisfies Lipschitz condition on positively invariant compact

domain Ω.

• The n functions h(x), Lfh(x), L
2
fh(x), . . . (Iterated Lie derivatives of

h in the direction of f) define new coordinates on domain Ω.

There exists an observer of the form

˙̂x = f(x̂) +K(y − h(x̂))

with K suitable (n, 1)-vector.

Example: Lorenz system on compact domain.

12

4. Time rescaling

Suppose that for the system

ẋ = f(x), y = h(x)

there exist new coordinates ξ such that

ξ̇ = s(y)(Aξ + ϕ(y)), y = Cξ

with some s(y) > 0.

New time: dτ = s(y)dt.

dξ

dτ
= (Aξ + ϕ(y))

In new time – linear error dynamics provided (A,C) is observable

(detectable).
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5. Partial observers and partial synchronization

ẋ = f(x), y = h(x), z = g(x)

Problem: Reconstruct z(t) instead of x(t).

An idea of possible solution: to find new coordinates (ξ1, ξ2) s.t. the

system is in a cascade form:

ξ̇1 = p(ξ1)

ξ̇2 = q(ξ1, ξ2)

y = w(ξ1), z = v(ξ1)

where the ξ1-subsystem admits an observer.

12

6. Discrete-time observers

x(k + 1) = f(x(k)), x(0) = x0 ∈ R
n

y(k) = h(x(k))

where y ∈ R
1 and h : R

n → R
1 is the smooth output map.

Problem: how to reconstruct the state trajectory x(k, x0) on the basis of

the measurements y(k)?

12

Full order observer:

x̂(k + 1) = f̂(x̂(k), y(k)), x̂(0) = x̂0 ∈ R
n

where x̂ ∈ R
n, and f̂ is a smooth mapping on R

n parametrized by y,

such that the error e(k) := x(k) − x̂(k) asymptotically converges to zero

as k → ∞ for all initial conditions x0 and x̂0.

12

Systems in Lur’e form

x(k + 1) = Ax(k) + ϕ(y(k)), y(k) = Cx(k),

where x(k) ∈ R
n is the state, y(k) ∈ R

1 is the scalar output,

ϕ : R
1 → R

n, (C,A) detectable.

Observer:
{
x̂(k + 1) = Ax̂(k) + ϕ(y(k)) + L(y(k) − ŷ(k))

ŷ(k) = Cx̂(k)

Error dynamics:

e(k + 1) = (A− LC)e(k).
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Observation: The representation of a system in Lur’e form is

coordinate dependent.

Question: Is it possible to transform a system into Lur’e form by

means of a nonlinear coordinate change?

Local results due to Lin and Byrnes:

A discrete–time system with single output is locally equivalent to a system in Lur’e

form with observable pair (C, A) via a coordinate change z = T (x) if and only if

(i) the pair (∂h(0)/∂x, ∂f(0)/∂x) is observable,

(ii) the Hessian matrix of the function h ◦ fn ◦ O−1(s) is diagonal, where

x = O−1(s) is the inverse map of

O(x) =
[
h(x), h ◦ f(x), . . . , h ◦ fn−1(x)

]
T

,

with h ◦ f(x) := h(f(x)), f1 := f, fj := f ◦ fj−1.

12

Alternative formulation. If the pair (∂h(0)/∂x, ∂f(0)/∂x) is observable,

there exist new coordinates si = h ◦ f i−1(x) (i = 1, · · · , n) such that in

these new coordinates the system takes a so-called observable form:

s1(k + 1) = s2(k)
...

sn−1(k + 1) = sn(k)

sn(k + 1) = fs(s)

y(k) = s1(k)

12

Observable form:

s1(k + 1) = s2(k)
...

sn−1(k + 1) = sn(k)

sn(k + 1) = fs(s)

y(k) = s1(k)

(Alternative result) A discrete–time system with single output is locally

equivalent to a system in Lur’e form with observable pair (C, A) via a coordinate

change z = T (x) if and only if for the observable form there exist functions

ϕ1, · · · , ϕn : R → R such that

fs(s) = ϕ1(s1) + · · · + ϕn(sn)

12

Example. Bouncing ball.





x1(k + 1) = x1(k) + x2(k)

x2(k + 1) = αx2(k) − β cos(x1(k) + x2(k))

y(k) = h(x(k)) = x1(k)

(1)

with x1(k) the phase of the table at the k-th impact, x2(k) proportional

to the velocity of the ball at the k-th impact, α the coefficient of

restitution, ω the angular frequency of table oscillation, A its amplitude,

and β = 2ω2(1 + α)A/g.

Condition i):

∂f(0)

∂x
=


 1 1

0 α


 , ∂h(0)

∂x
=
[

1 0
]
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Condition ii):

O(x) =


 1 0

1 1


x (2)

s = col(s1, s2) := O(x)

fs(s) := h ◦ f2 ◦ O−1(s) = −αs1 + (1 + α)s2 − β cos s2

Hessian is diagonal

12

New coordinates: {
z1 = −αx1 + x2 + β cosx1

z2 = x1

In new coordinates:
{
z1(k + 1) = −αz2(k)

z2(k + 1) = z1(k) + (1 + α)z2(k)−β cos z2(k).

Observer:




ẑ1(k + 1) = −αẑ2(k)+`1(z2(k) − ẑ2(k))

ẑ2(k + 1) = ẑ1(k) + (1 + α)ẑ2(k)−β cos z2(k)+`2(z2(k) − ẑ2(k))

12

Transformation into extended Lur’e form

Extended Lur’e form:




x(k + 1) = Ax(k) + ϕ(y(k), y(k − 1), · · · , y(k −N))

y(k) = Cx(k)

Observer for the extended Lur’e form:




x̂(k + 1) = Ax̂(k) + ϕ(y(k), · · · , y(k −N))

+L(y(k) − ŷ(k))

ŷ(k) = Cx̂(k)

When can a system be transformed into an extended Lur’e form?

12

Assume that the mapping O is a local diffeomorphism. Let N ∈ {0, · · · , n − 1}

be given. Then there is a local transformation into an extended Lur’e form

with buffer N if and only if there locally exist functions

ϕN+1, · · · , ϕn : R
N+1 → R such that the function fs in the observable form





s1(k + 1) = s2(k)

...

sn(k + 1) = fs(s(k))

y(k) = s1(k)

where fs(s) := h ◦ fn ◦ O−1(s), satisfies

fs(s1, · · · , sn) =

n∑

i=N+1

ϕi(si, · · · , si−N )
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7. Extended Kalman Filters

Nonlinear discrete time dynamics with a linear output map:

x(k + 1) = f(x(k)) + w(k), x ∈ R

y(k) = Hx(k) + v(k)

where:

• w(k) is noise in dynamics of transmitter, assumed to satisfy

E(w(k)) = 0, E(w(k)w(l)T ) = Qδkl (Q > 0),

• v(k) is measurement noise, assumed to satisfy E(v(k)) = 0,

E(v(k)v(l)T ) = Rδkl.

12

Extended Kalman Filter:

x̂(k) = x̂(k | k − 1) +K(k)[y(k) −Hx̂(k | k − 1)]

x̂(k + 1 | k) = f(x̂(k))

P (k) = [I −K(k)H]P (k | k − 1)

P (k + 1 | k) = F (k)P (k)F (k)T +Q

K(k) = P (k | k − 1)HT [HP (k | k − 1)HT +R]−1

F (k) = ∂f
∂x

(x)
∣∣∣
x=x̂(k)

12

Under certain conditions (differentiability, stochastic observability,

boundedness of state trajectories and noise signals), “practical”

convergence of the observer can be guaranteed, i.e., there exists a ρ > 0

and a τ ∈ Z+ such that

‖x(k) − x̂(k)‖ ≤ ρ, ∀k ≥ τ

12

Example: coupled logistic maps

x1(k + 1) = (1 − ε)µx1(k)(1 − x1(k)) + εx2(k) + w1(k)

x2(k + 1) = (1 − ε)µx2(k)(1 − x2(k)) + εx3(k) + w2(k)

x3(k + 1) = (1 − ε)µx3(k)(1 − x3(k)) + εx1(k) + w3(k)

y = x2(k) + v(k)

with Q = diag(10−6, 10−6, 10−6), R = 10−5, µ = 3.7, ε = 0.35.
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12

Practical synchronization with ρ = 0.04.
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8. Alternative methods:

• Bilinear systems

• Physics-based Observers (see ”Coordination of Mechanical

Systems”)

BUT no fully general method exists that works for all systems!

12
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Communication and synchronization

1. Introduction

Pecora and Carroll, 1990:

”The ability to design synchronizing systems in nonlinear and,

especially, chaotic systems may open interesting opportunities

for application of chaos to communications, exploiting the

unique features of chaotic signals.”

Why and how?

12

- ΣT
- ΣR

-

λ y λ̂

• λ : message, ”coded” by modulating a parameter

• λmin ≤ λ(t) ≤ λmax, λ(t) (mainly) slowly varying

• ΣT : transmitter

• y : encoded message

• λ̂ : decoded message

Problem: design ΣR such that |λ(t) − λ̂(t)| is small.

12

If ΣT is a chaotic for constant λmin ≤ λ(t) ≤ λmax:

• It produces chaotic (seemingly random) signals, even when λ(t) is

(mainly) slowly time-varying.

• This means that the original message λ(t) is ”hidden” inside the

seemingly random encoded message y.

• This gives the possibility to use a chaotic communication scheme for

private communication.

• Note: originally it was thought that chaotic communication schemes

would even provide secure communication. The work of numerous

code breakers, however, has shown that is too much to ask for

12

2. Control viewpoint

- ΣT
- ΣR

-

λ y λ̂

Design ΣR such that |λ̂(t) − λ(t)| is small.

From a control point of view:

• System inversion

• Parameter estimation

• Adaptive observers

Will pay attention to last two points
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Parameter estimation

Parameter estimation methods are well established for linear systems

However, are dealing with chaotic systems, which are nonlinear.

Still, if appropriate decomposition/transformation of system as well

as synchronizing subsystem exists, linear parameter estimation

methods can still be used.

Chaos helps in the convergence of estimates, because chaotic signals

are persistently exciting

12

Parameter estimation: Example (Corron & Hahs, 1997)

Transmitter is a Lorenz system:

ΣT





ẋ1 = 10(x2 − x1)

ẋ2 = λx1 − x2 − x1x3

ẋ3 = x1x2 − 8
3x3

y = x2

Then the system

Σ̂





˙̂x1 = 10(y − x̂1)

˙̂x3 = x̂1y − 8
3 x̂3

(partially) synchronizes, i.e., (x̂1(t), x̂3(t)) − (x1(t), x3(t)) → 0 (t → +∞)

12

After Σ̂ has synchronized, y satisfies:

ẏ = λu1 − y − u2, u1 = x̂1, u2 = x̂1x̂3

This is a linear system with output y, known inputs u1,u2, and linear

dependence on the unknown parameter λ.

So linear parameter estimation methods can now be used to estimate λ!

12

The receiver ΣR is then e.g. given by (Corron & Hahs, 1997):

ΣR





˙̂x1 = 10(y − x̂1)

˙̂x3 = x̂1y − 8
3 x̂3

ẇ0 = (k − 1)y − x̂1x̂3 − kw0, k > 0

ẇ1 = x̂1 − kw1

˙̂
λ = qsign(w1)

1+|w1| (y − w0 − w1λ̂), q > 0
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Some remarks:

• x̂1 and x̂3 need to synchronize with x1 and x3 before parameter

estimation can be achieved.

• However, if λ is (piecewise) constant, it follows from the update law

for λ̂:
˙̂
λ =

qsign(w1)

1 + |w1|
(y − w0 − w1λ̂)

that w0 − w1λ̂ synchronizes with x2 after parameter estimation has

been achieved.

• Furthermore, if λ is slowly time-varying, practical synchronization

between w0 − w1λ̂ and x2 will be achieved.

• Thus, the receiver can be viewed as an adaptive (practical) observer

for the transmitter.
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Synchronization before parameter estimation is not necessary! To

illustrate this, we consider a Rössler system:

ΣT :





ẋ1 = −x2 − x3

ẋ2 = x1 + λx2

ẋ3 = 2 + x3(x1 − 4) y = x3

NB x3(0) > 0 =⇒ x3(t) > 0, ∀t > 0.

New coordinates: (ξ1, ξ2, ξ3) = (x1, x2, log x3), ỹ = ξ3




ξ̇1

ξ̇2

ξ̇3


 =




0 −1 0

1 λ 0

1 0 0







ξ1

ξ2

ξ3


+




−eỹ

0

2e−ỹ − 4




12

Transmitter:

ξ̇ = A(λ)ξ +Bu, ỹ = Cξ, u = Φ(ỹ)

A(λ) =




0 −1 0

1 λ 0

1 0 0


 , B =




1 0

0 0

0 1


 , Φ(ỹ) =


 −eỹ

2e−ỹ − 4




Use linear identification tools!

Chaos helps!

12

Receiver (using least squares estimator with exponential forgetting

factor):

ΣR





ẇi = Kwi + Lui (i = 0, 1, 2)

ŷ = φ0(w) + λ̂φ1(w)
˙̂
λ = −νφ1(w)p(ŷ − ỹ) (ν > 0)

ṗ = −ν(φ1(w)2p2 − γp) (γ > 0)

where u0 = log(y), u1 = −y, u2 = 2
x3

− 4, K = comp(k0, k1, k2),

L = col(0, 0, 1), s3 + k2s
2 + k1s+ k0 is Hurwitz,

φ0(w) = k0w01 + (k1 − 1)w02 + k2w03 + w12 + w21 + w23, and

φ1(w) = w03 − w11 − w22.

12
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Update law for λ̂:




˙̂
λ = −νφ1(w)p(ŷ − ỹ) (ν > 0)

ṗ = −ν(φ1(w)2p2 − γp) (γ > 0)

ŷ = φ0(w) + λ̂φ1(w)

ỹ = log(x3)

So if λ is constant and parameter estimation has been achieved:

exp(φ0(w) + λ̂φ1(w)) synchronizes with x3

From this, also functions of w synchronizing with x1 and x2 can be

derived.
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Adaptive observers

Receivers constructed using linear parameter estimation methods may

be viewed as adaptive observers.

However, since these receivers have not been constructed as adaptive

observers, it is generally not straightforward to obtain the relationship

between receiver states and state estimates of the transmitter.

We now give two examples of how adaptive observers may be used as

receivers.
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Example: Chua circuit

ẋ1 = α(−x1 + x2 − ϕλ(x1, λ))

ẋ2 = x1 − x2 + x3

ẋ3 = −βx2

ϕλ(x1, λ) = ϕ(x1) + λ(t)(|x1 + 1| − |x1 − 1|)

= m1x1 + (m2 + λ(t))(|x1 + 1| − |x1 − 1|)

with m1 = 5/7,m2 = −6/7, α = 9, β = 14.286.

Output: y = x1

Signal λ(t): λ(t) = λ0 + λ1sign(sinωt)

12

ẋ1 = α(−x1 + x2 − ϕλ(x1, λ))

ẋ2 = x1 − x2 + x3

ẋ3 = −βx2

ϕλ(x1, λ) = m1x1 + (m2 + λ(t))(|x1 + 1| − |x1 − 1|)

Suppose m1 and m2 are unknown

Adaptive observer:

˙̂x1 = α(−x̂1 + x̂2) + c1(|x1 + 1| − |x1 − 1|) + c2(x̂1 − x1)

˙̂x2 = x̂1 − x̂2 + x̂3 + 0(x̂1 − x1)

˙̂x3 = −βx̂2 + 0(x̂1 − x1)

12

Suppose m1,m2 are unknown

Adaptive observer:

˙̂x1 = α(−x̂1 + x̂2) + c1(|x1 + 1| − |x1 − 1|) + c2(x̂1 − x1)

˙̂x2 = x̂1 − x̂2 + x̂3 + 0(x̂1 − x1)

˙̂x3 = −βx̂2 + 0(x̂1 − x1)

Adaptation law for c1(t), c2(t)

ċ1 = −γ1(x1 − x̂1)
2(|x1 + 1| − |x1 − 1|)

ċ2 = −γ2(x1 − x̂1)
2

γ1, γ2 adaptation gains

12

Then due to

• Minimum-phaseness

• Relative degree one

• Linear dependence on unknown parameters

it follows that

• Error vanishes as t → ∞

• c1(t) converges to the “true signal”. Chaos helps!
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Example: Rössler system.

ΣT :





ẋ1 = −x2 − x3

ẋ2 = x1 + λx2

ẋ3 = c+ x3(x1 − b) y = x3

b, c > 0. Suppose λ is unknown parameter (message).

Q(λ) =




−λ −1 1

1 0 −λ

0 0 1


 .

New coordinates: z = Q(λ)ξ.

12

Suppose λ is unknown parameter (message).

Q(λ) =




−λ −1 1

1 0 −λ

0 0 1


 .

New coordinates z = Q(λ)ξ:




ż1

ż2

ż3


 =




0 0 0

1 0 −1

0 1 0




︸ ︷︷ ︸
A




z1

z2

z3


+




ce−y − b

−ey

ce−y − b




︸ ︷︷ ︸
f0(y)

+λ




ey

−ce−y + b

y




︸ ︷︷ ︸
f1(y)

,

y = z3 = (0 0 1)z,
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Filtered transformation:

 ξ̇1

ξ̇2


 =


 0 k1

1 k2




 ξ1

ξ2


+


 k1

k2


 y +


 ey

−cey + b


 ,

New variables:


 η1

η2


 =


 z1

z2


− λ


 ξ1

ξ2


+


 k1

k2


 y

12

In new coordinates:



η̇1

η̇2

ẏ


 =




0 k1 −k1k2

1 k2 −(k1 + k2
2 + 1)

0 1 k2




︸ ︷︷ ︸
Ā




η1

η2

y




+




(k1 + 1)(ce−y − b)

k2(ce
−y − b) − ey

ce−y − b




︸ ︷︷ ︸
f̄0

+λ




0

0

1




︸ ︷︷ ︸
B̄

(ξ2 + y)︸ ︷︷ ︸
u

12

Adaptive observer:




˙̂η1

˙̂η2

˙̂y


 =




0 k1 −k1k2

1 k2 −(k1 + k2
2 + 1)

0 1 k2







η̂1

η̂2

ŷ


+




(k1 + 1)(ce−y − b)

k2(ce
−y − b) − ey

ce−y − b


+ θ̂




0

0

1


 (ξ2 + y) +




l1

l2

l3


 (ŷ − y)

˙̂
θ = −γ(ξ2 + y)(ŷ − y), γ > 0

12

Coordinate transformation depends on λ =⇒ to estimate the whole

state vector it is required that θ̂(t) → λ.

Chaos helps!
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Synchronization and spatial ordering

Coupled systems with local interactions

To model:

• spatially extended systems

• turbulence

Simplified models of high-dimensional systems:

• Spatial structure is modelled by the coupling

• Each free system from the array is low-dimensional

12

Diffusive cellular networks

Two ways to describe diffusion

(A. Turing): PDE or ODE.

Two problems: synchronization via

diffusion, generation of oscillations

by means of diffusion.
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Diffusive cellular networks

{
ẋj = f(xj) +Buj j = 1 . . . k, xj ∈ R

n, uj , yj ∈ R
m

yj = Cxj

(3)

CB is similar to a diagonal matrix with positive entries.

uj = −γj1(yj − y1) − γj2(yj − y2) − . . .− γjk(yj − yk) (4)

with γji = γij ≥ 0

Systems (3) are said to be diffusively coupled.

12

The coupling matrix

Γ =




k∑
i=2

γ1i −γ12 · · · −γ1k

−γ21

k∑
i=1,i6=2

γ2i · · · −γ2k

...
...

. . .
...

−γk1 −γk2 · · ·
k−1∑
i=1

γki




, (5)

γij = γji ≥ 0

• Γ is singular (all row sums are zero)

• Γ = ΓT ≥ 0 (Gershgorin theorem)

12

Network equations:





ẋ = F (x) + (Ik ⊗BC)u

u = −(Γ ⊗ Im)y

x =




x1

x2

...

xk



, y =




y1

y2
...

yk



, F (x) =




f(x1)

f(x2)
...

f(xk)




If the network cannot be divided into two or more disconnected

networks the matrix Γ has only one zero eigenvalue.

12

Boundedness of solutions in DCN

{
ẋ = f(x, u)

y = h(x)

• Passivity: ∃V ≥ 0, V̇ ≤ yTu

• Semipassivity: Dissipation inequality

is satisfied outside some ball.

• Strict semipassivity: Dissipation in-

equality is strict.

V yu<

O

DCN of strictly semipassive systems with radially unbounded storage

function has ultimately bounded solutions.
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Example. The Lorenz system

ẋ1 = σ(y1 − x1) + u

ẏ1 = rx1 − y1 − x1z1

ż1 = −bz1 + x1y1

is strictly semipassive from u to y = x1 with the storage function

V (x1, y1, z1) =
1

2

(
x2

1 + y2
1 + (z1 − σ − r)2

)
.

V̇ (x1, y1, z1, u) = yu−H(x1, y1, z1)

where

H = σx2
1 + y2

1 + b

(
z1 −

σ + r

2

)2

︸ ︷︷ ︸
≥0

−b
(σ + r)2

4
.

12

Convergent systems (Demidovich, 1961)

ż = q(z, y(t)), y(t) ∈ D, D is compact

The system is exponentially convergent if

• for any function y : t → D, t ∈ (−∞,+∞)

• ∃ a unique bounded limit solution z̄(t) defined on (−∞,+∞)

• ||z(t) − z̄(t)|| ≤ Ce−α(t−t0), α > 0.

Test for convergence: ∃P = P T > 0, s.t.

1

2

[
P

(
∂q

∂z
(z, w)

)
+

(
∂q

∂z
(z, w)

)
T

P

]

has negative eigenvalues (∀w ∈ D separated from zero).

12

Network equations:

{
ẋj = f(xj) +Buj

yj = Cxj

Nonsingularity of CB =⇒ new coordinates (normal form).

{
żj = q(zj , yj)

ẏj = a(zj , yj) + CBuj

Coupling:

u = −(Γ ⊗ Im)y, u = col(u1, . . . , uk), y = col(y1, . . . , yk)

Eigenvalues of Γ: 0 = λ1 < λ2 ≤ λ3 ≤ . . . ≤ λk

12

Full synchronization in DCN.

Full synchronization: x1(t) = x2(t) = . . . = xk(t)

Assumptions:

• Strict semipassivity of each system from DCN with radially

unbounded storage function

• Exponential convergence of the system

ż = q(z, y(t))

Result:

• ∃λ̄ > 0, s.t.

• if λ2 ≥ λ̄ the set x1 = x2 = . . . = xk contains

globally asymptotically stable compact subset.
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Example. DCN of Lorenz systems.





ẋ1
j = σ(x2

j − x1
j ) + uj

ẋ2
j = rx1

j − x2
j − x1

jx
3
j

ẋ3
j = −bx3

j + x1
jx

2
j

, yj = x1
j

u = −Γy

If the smallest nonzero eigenvalue λ2 of Γ is large enough

=⇒ full synchronization.

Intermediate regimes?

Partial synchronization.

12

Partial synchronization

Observation: the set x1 = x2 = . . . = xk is an invariant linear subspace.

Questions:

• are there any other invariant subspaces?

• how to find them?

• how to prove stability?

Hint:

• look for the symmetries

Symmetries:

• Global (depend on the coupling)

• Internal (depend on the properties of free systems)

12

Global symmetries

Γ contains all information about the coupling

Let Π be a permutation matrix commuting with Γ:

ΠΓ − ΓΠ = 0

The set

ker(Ikn − Π ⊗ In)

is invariant.

This set can be described by the equations of the form

xi = xj

partial synchronization if xi = xj is stable and/or attractive for some i, j

12

Example. A ring of four systems.

Γ =




K0 + K1 −K0 0 −K1

−K0 K0 + K1 −K1 0

0 −K1 K0 + K1 −K0

−K1 0 −K0 K0 + K1




Group of permutation matrices: Π4 = I4 and

1 2

34

K


K


K


K


Π1 =

(
E O

O E

)
, Π2 =

(
O I2

I2 O

)
, Π3 =

(
O E

E O

)
, E :=

(
0 1

1 0

)

A1 = {x ∈ R
4n : x1 = x2, x3 = x4}, A2 = {x ∈ R

4n : x1 = x3, x2 = x4}

A3 = {x ∈ R
4n : x1 = x4, x2 = x3}
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Internal symmetries

Depend on the properties of free system.

Suppose:

• ∃ permutation Π, ΠΓ − ΓΠ = 0

• ∃J , Jf(xj) = f(Jxj)

• J commutes with BC: JBC −BCJ = 0

Then the set

ker(Ikn − Π ⊗ J)

is invariant.

12

Example. A ring of four systems (cont’d).

Each cell is described by Lorenz system.




ẋ1
j = σ(x2

j − x1
j ) + uj

ẋ2
j = rx1

j − x2
j − x1

jx
3
j

ẋ3
j = −bx3

j + x1
jx

2
j

, yj = x1
j , j = 1, . . . 4, u = −Γy

J = diag(−1 − 1 1)

Additional invariant sets:

A′
1 = {x ∈ R

12 : Jx1 = x2, Jx3 = x4}

A′
2 = {x ∈ R

12 : Jx1 = x3, Jx2 = x4}

A′
3 = {x ∈ R

12 : Jx1 = x4, Jx2 = x3}

A′
4 = {x ∈ R

12 : x1
i = x2

i = 0, i = 1, 2, 3, 4}.
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Stability of partially synchronized mode

Assumptions:

• Strict semipassivity of each system from DCN with radially

unbounded storage function

• Exponential convergence of the system

ż = q(z, y(t))

Let γ′ be the smallest eigenvalue of Γ|range(Ik−Π)

Result:

• ∃λ̄ > 0, s.t.

• if γ′ ≥ λ̄ the set ker(Ikn − Π ⊗ In) contains globally asymptotically

stable compact subset.
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Example. A ring of four Lorenz systems (cont’d)

partial
synchronization
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On topology of DCN

A cellular diffusive network is said to be regular if

• All coupling constants are equal: γij = γ for all i 6= j

• Each cell is connected to N other cells.

N is the density of DCN.

12

Examples of irregular and regular networks.

12

Problem statement: Asymptotic behavior of λ2 when k → ∞ (large

DCN).

λ2 is responsible for synchronization.

For regular networks the following relation is valid

lim
k→∞

λ2(k,N) = 0.

Conclusion: in large DCN full synchronization of unstable systems is

impossible.
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Controlled synchronization

Master system :
ẋ = f(x), x ∈ R

n

y = h(x)

Slave system : ˙̂x = g(x̂, y), x̂ ∈ R
n

In general, a given master system and a given slave system will not

synchronize. From a control point of view, there are two ways to try to

overcome this problem.

• If one is free to choose the slave system, it should be designed as an

observer for the master system.
• If the slave system is given beforehand, but there is still some

freedom to influence (i.e., control) the slave system, one could try to

design a controller to achieve synchronization. This is the

Controlled Synchronization Problem.

12

Master system :
ẋ = f(x), x ∈ R

n

y = h(x)

Slave system :
˙̂x = g(x̂, y, u), x̂ ∈ R

n, u ∈ R
m

η = h(x̂)

Controlled synchronization problem: Find dynamic feedback

ż = k(z, η, y)

u = α(z, η, y)

such that the closed loop system satisfies:

lim
t→+∞

‖x(t) − x̂(t)‖ = 0

12

Controlled synchronization problem: Find dynamic feedback

ż = k(z, η, y)

u = α(z, η, y)

such that the closed loop system satisfies:

lim
t→+∞

‖x(t) − x̂(t)‖ = 0

Sometimes also internal stability required, i.e., the dynamics

˙̂x = g(x̂, 0, α(z, η, 0))

ż = k(z, η, 0)

are asymptotically stable.

12

In fact, the controlled synchronization problem with internally stability

can be viewed as (a version of) the regulator problem.

So could try to solve the controlled synchronization problem by using

methods for solution of the regulator problem.

However, in most applications of chaos synchronization, the master

system possesses a chaotic attractor in which several equilibrium points

with unstable linearization are embedded.

This means that the Poisson stability hypothesis from the ”Byrnes &

Isidori solution” to the regulator problem is not met.



12

Example of class of systems for which controlled synchronization

problem can be solved: Lur’e systems.

Master system:

ẋ = Ax+ Ψ(y)

y = Cx

Slave system:

˙̂x = Ax̂+ Ψ(y) +Bu

η = Cx̂

where (A,B) is stabilizable and (C,A) is detectable.

12

Master and slave :

ẋ = Ax+ Ψ(y)

y = Cx

˙̂x = Ax̂+ Ψ(y) +Bu

η = Cx̂

Controller :

˙̃x = Ax̃+K(ỹ − y) + Ψ(y)

˙̄x = Ax̄+K(η̄ − η) + Ψ(y) +Bu

ỹ = Cx̃

η̄ = Cx̄

u = F (x̃− x̄)

with σ(A+BF ), σ(A+KC) ⊂ C.

12

Example: Chua circuit.




ẋ1

ẋ2

ẋ3


 =




γ α 0

1 −1 1

0 −β 0




︸ ︷︷ ︸
A




x1

x2

x3


+




−α(m0 −m1)sat(y)

0

0




︸ ︷︷ ︸
Ψ(y)

y = x1, γ = −α(m1 + 1), α = 15.6, m0 = − 8
7 , m1 = − 5

7 , β = 25

Slave system:

˙̂x = Ax̂+ Ψ(y) +




1

1

1


u

Choose F = col(−1 − 15.60), K = (4.36 0 0).
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Example: Van der Pol differential equation.

Master system:

ẋ1 = x2

ẋ2 = −x1 − (x2
1 − 1)x2

y = x1

Slave system:

˙̂x1 = x̂2 + αu

˙̂x2 = −y − (y2 − 1)x̂2 + βu

Want to try to achieve synchronization by means of (high gain) static

error feedback:

u = −c(x̂1 − x1)
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Master system :

ẋ1 = x2

ẋ2 = −x1 − (x2
1 − 1)x2

y = x1

• The origin is the only equilibrium, and it is an unstable focus.

• There is a unique limit cycle C that is (not uniformly) exponentially

attracting for all non-zero initial conditions.

• If x̃(t) is a periodic solution starting on C, T is its period, and

p(t) = x̃2
1(t) − 1, then

p̄ :=
1

T

T∫

0

p(τ)dτ > 0

12

Error dynamics when master system evolves on limit cycle C:

ė =


 −αc 1

−βc −p(t)


 e

with

p(t) = x̃2
1(t) − 1, p̄ :=

1

T

T∫

0

p(τ)dτ > 0

Linear time-varying differential equation!

12

Case 1: β = 0, α 6= 0.

Error dynamics:

ė =


 −αc 1

0 −p(t)


 e

Fundamental matrix:

Φ(t, t0) =


 exp(−αc(t− t0)) ψ(t, t0)

0 exp(−
∫ t

t0
p(τ)dτ)




Since p̄ > 0: synchronization if and only if αc > 0.

12

Case 2: α = 0, β 6= 0.

Error dynamics:

ė =


 0 1

−βc −p(t)


 e

Synchronization if

βc >

(
q̄

p̄

)2

where

q̄ =
1

T

T∫

0

|q(τ)|dτ, q(t) =
1

4
p(t)2 +

1

2
ṗ(t)

Proof involves transformation into Hill equation, results on growth of

solutions of Hill equations (Levinson, 1941). Bound is conservative!
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Case 3: α 6= 0, β 6= 0.

Error dynamics:

ė =


 −αc 1

−βc −p(t)


 e

Singular perturbations and Tikhonov’s Theorem: High-gain feedback

with αc → +∞ works if and only if

β

α
> −p̄

High-gain feedback with αc → −∞ does not work.

Lower bound for c can be given, but is very conservative. Have to take

recourse to numerical methods

12
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12

What can be learnt from this example?

• Have had to use many example-specific and ad-hoc methods.

• This leads to the conclusion that ”genuinely nonlinear” regulation

and controlled synchronization is difficult, and that hoping to be

able to solve the problem in its full generality seems to be in vain at

the outset.

• So should rather concentrate on classes of systems with specific

properties.

• One of these classes, fully actuated mechanical systems, will be

treated in the next section.
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Coordination of mechanical systems:

• Introduction

• Mutual synchronization controller

• Convergence properties

• Experiments

• Conclusions

• Future extensions
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Objective
Two or more mutually synchronized robot manipulators

Motivation

✱   Synchronization tasks :
•  mobile platforms (transportation, walking robots),
•  object manipulation (manufacturing industry),

✱   Velocity sensor equipment
✱   Accessibility on the robot architecture

Introduction

Restrictions
Only position measurements
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History

• Huygens (1673): pendulum clocks linked via (flexible) beam

• Rayleigh (1877): nearby organ tubes, tuning forks

• B. van der Pol  (1920):  electrical-mechanical systems

Definition

• Time conformity

• Certain relations between functionals and/or variables
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Internal (mutual) synchronization

• All objects appear at 
  equal terms

• Synchronous motion as
   result of interaction/coupling

External synchronization
• One object is more
  powerful (master)

• Synchronous motion
   is determined by the master

master
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Hydraulic platform

mass
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General setup

• n actuated rigid joints

• All joints are revolute
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General assumptions

•  Only joint position measurements

•  Dynamic model and physical parameters are known 
   for all robots

•  Desired joint positions, velocities and accelerations
   are bounded

Synchronization index and functional
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Feedback control law with estimated variables
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Observer for slave joint variables
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Seemingly problem:   Algebraic loop  !!!
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Algebraic loop
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Main result
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Experiments

Two CFT transposer robots

•  4  degrees of freedom (dof)

•   sampling frequency:  2 kHz

•  encoders:  2000  PPR
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Robot dynamics + friction effects

 ,...,             )
.

()(
.

)
.

,(
..

)( p1iqqgqqqCqqM iifiiiiiiiii ==+++ ττ

















+

−+
















+

−+=
ii2ii1 qw2

i2f

qw2

i1fivif

e1

2
1B

e1

2
1BqBq

..

.
)

.
(

,,

,,τ

 
.

)
.

()(
.

)
.

,(
..

)( ,, iipiidifiiriiiiriiii sKsKqqgqqqCqqM −−+++= ττ

Feedback control law with estimated variables

 ^            ^                     ^   ^              ^

2XMBGQNMHY@SHNM @MC "NMSQNK ��

��
Synchronization errors
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Observer errors
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Conclusions

• Semi-global exponential mutual synchronization
• Robustness against noise measurements

• Robustness against disturbances

Future extensions
•  Different nominal references:

" partial synchronization
•  Other mechanical systems:

" mobile systems
" satellite formations


