

Synchronization and control

Henk Nijmeijer, Henri Huijberts, Sasha Pogromsky Eindhoven University of Technology, University of London

Find $k(\cdot, \cdot)!$

 $\dot{x}_1 = \alpha(-x_1 + x_2 - \varphi(x_1))$

 $\varphi(x_1) = m_1 x_1 + m_2(|x_1 + 1| - |x_1 - 1|)$ with $m_1 = -5/7$, $m_2 = -3/7$, $23 < \lambda < 31$, $\alpha = 15.6$.


```
TU/e Cueen Mary
```

3. High-gain Observer

$$\dot{x} = f(x), \quad y = h(x)$$

Assume:

- f(x) satisfies Lipschitz condition on positively invariant compact domain Ω .
- The *n* functions $h(x), L_f h(x), L_f^2 h(x), \ldots$ (Iterated Lie derivatives of *h* in the direction of *f*) define new coordinates on domain Ω .

There exists an observer of the form

$$\dot{\widehat{x}} = f(\widehat{x}) + K(y - h(\widehat{x}))$$

with K suitable (n, 1)-vector.

Example: Lorenz system on compact domain.

TU/e technische universiteit eindhoven

4. Time rescaling

Suppose that for the system

$$\dot{x} = f(x), \quad y = h(x)$$

there exist new coordinates ξ such that

$$\dot{\xi} = s(y)(A\xi + \varphi(y)), \quad y = C\xi$$

with some s(y) > 0.

New time: $d\tau = s(y)dt$.

$$\frac{d\xi}{d\tau} = (A\xi + \varphi(y))$$

In new time – linear error dynamics provided (A, C) is observable (detectable).

5. Partial observers and partial synchronization

$$\dot{x} = f(x), \quad y = h(x), \quad z = g(x)$$

<u>Problem:</u> Reconstruct z(t) instead of x(t).

An idea of possible solution: to find new coordinates (ξ_1, ξ_2) s.t. the system is in a cascade form:

$$\begin{aligned} \dot{\xi}_1 &= p(\xi_1) \\ \dot{\xi}_2 &= q(\xi_1, \xi_2) \\ y &= w(\xi_1), \ z &= v(\xi_1) \end{aligned}$$

where the ξ_1 -subsystem admits an observer.

TU/e technische universiteit eindhoven 🔬 Queen Mary

6. Discrete-time observers

$$x(k+1) = f(x(k)), \quad x(0) = x_0 \in \mathbb{R}^n$$

y(k) = h(x(k))

where $y \in \mathbb{R}^1$ and $h : \mathbb{R}^n \to \mathbb{R}^1$ is the smooth output map.

Problem: how to reconstruct the state trajectory $x(k, x_0)$ on the basis of the measurements y(k)?

TU/e Cueen Mary

Full order observer:

$$\widehat{x}(k+1) = \widehat{f}(\widehat{x}(k), y(k)), \quad \widehat{x}(0) = \widehat{x}_0 \in \mathbb{R}^n$$

where $\hat{x} \in \mathbb{R}^n$, and \hat{f} is a smooth mapping on \mathbb{R}^n parametrized by y, such that the error $e(k) := x(k) - \hat{x}(k)$ asymptotically converges to zero as $k \to \infty$ for all initial conditions x_0 and \hat{x}_0 .

TU/e technische universiteit eindhoven

Systems in Lur'e form

$$x(k+1) = Ax(k) + \varphi(y(k)), \quad y(k) = Cx(k),$$

where $x(k) \in \mathbb{R}^n$ is the state, $y(k) \in \mathbb{R}^1$ is the scalar output, $\varphi : \mathbb{R}^1 \to \mathbb{R}^n, (C, A)$ detectable.

Observer:

$$\begin{cases} \widehat{x}(k+1) = A\widehat{x}(k) + \varphi(y(k)) + L(y(k) - \widehat{y}(k)) \\ \widehat{y}(k) = C\widehat{x}(k) \end{cases}$$

Error dynamics:

$$e(k+1) = (A - LC)e(k).$$

TU/e technische universiteit eindhoven Queen Mary

Observation: The representation of a system in Lur'e form is *coordinate dependent*.

Question: Is it possible to transform a system into Lur'e form by means of a nonlinear coordinate change?

Local results due to Lin and Byrnes:

A discrete-time system with single output is locally equivalent to a system in Lur'e form with observable pair (C, A) via a coordinate change z = T(x) if and only if

- (i) the pair $(\partial h(0)/\partial x, \partial f(0)/\partial x)$ is observable,
- (ii) the Hessian matrix of the function $h \circ f^n \circ O^{-1}(s)$ is diagonal, where $x = O^{-1}(s)$ is the inverse map of

$$\mathcal{O}(x) = \left[h(x), h \circ f(x), \dots, h \circ f^{n-1}(x)\right]^T,$$

with $h \circ f(x) := h(f(x)), f^1 := f, f^j := f \circ f^{j-1}$.

TU/e technische universiteit eindhoven Queen Mary

<u>Alternative formulation</u>. If the pair $(\partial h(0)/\partial x, \partial f(0)/\partial x)$ is observable, there exist new coordinates $s_i = h \circ f^{i-1}(x)$ $(i = 1, \dots, n)$ such that in these new coordinates the system takes a so-called *obser able form*

$$s_1(k+1) = s_2(k)$$

 \vdots
 $s_{n-1}(k+1) = s_n(k)$
 $s_n(k+1) = f_s(s)$
 $y(k) = s_1(k)$

TU/e Lechnische universiteit eindhoven Queen Mary

Observable form:

$$s_{1}(k+1) = s_{2}(k)$$

$$\vdots$$

$$s_{n-1}(k+1) = s_{n}(k)$$

$$s_{n}(k+1) = f_{s}(s)$$

$$y(k) = s_{1}(k)$$

(Alternative result) A discrete-time system with single output is locally equivalent to a system in Lur'e form with observable pair (C, A) via a coordinate change z = T(x) if and only if for the observable form there exist functions $\varphi_1, \dots, \varphi_n : \mathbb{R} \to \mathbb{R}$ such that

$$f_s(s) = \varphi_1(s_1) + \dots + \varphi_n(s_n)$$

TU/e technische universiteit eindhoven Queen Mary

Example. Bouncing ball.

$$\begin{cases} x_1(k+1) = x_1(k) + x_2(k) \\ x_2(k+1) = \alpha x_2(k) - \beta \cos(x_1(k) + x_2(k)) \\ y(k) = h(x(k)) = x_1(k) \end{cases}$$
(1)

with $x_1(k)$ the phase of the table at the k-th impact, $x_2(k)$ proportional to the velocity of the ball at the k-th impact, α the coefficient of restitution, ω the angular frequency of table oscillation, A its amplitude, and $\beta = 2\omega^2(1+\alpha)A/g$.

Condition i):

$$\frac{\partial f(0)}{\partial x} = \begin{bmatrix} 1 & 1\\ 0 & \alpha \end{bmatrix}, \quad \frac{\partial h(0)}{\partial x} = \begin{bmatrix} 1 & 0 \end{bmatrix}$$

TU/e Chrische universiteit eindhoven Condition ii): $\mathcal{O}(x) = \left[\begin{array}{cc} 1 & 0 \\ 1 & 1 \end{array} \right] x$ (2) $s = \operatorname{col}(s_1, s_2) := \mathcal{O}(x)$ $f_s(s) := h \circ f^2 \circ \mathcal{O}^{-1}(s) = -\alpha s_1 + (1+\alpha)s_2 - \beta \cos s_2$ Hessian is diagonal TU/e technische universiteit eindhoven New coordinates: $\begin{cases} z_1 = -\alpha x_1 + x_2 + \beta \cos x_1 \\ z_2 = x_1 \end{cases}$ In new coordinates: $\begin{cases} z_1(k+1) = -\alpha z_2(k) \\ z_2(k+1) = z_1(k) + (1+\alpha) z_2(k) - \beta \cos z_2(k). \end{cases}$

Observer:

$$\begin{aligned} \widehat{z}_1(k+1) &= -\alpha \widehat{z}_2(k) + {}_1(z_2(k) - \widehat{z}_2(k)) \\ \widehat{z}_2(k+1) &= \widehat{z}_1(k) + (1+\alpha) \widehat{z}_2(k) - \beta \cos z_2(k) + {}_2(z_2(k) - \widehat{z}_2(k)) \end{aligned}$$

TU/e technische universiteit eindhoven

Transformation into extended Lur'e form

Extended Lur'e form:

$$\begin{aligned} x(k+1) &= Ax(k) + \varphi(y(k), y(k-1), \cdots, y(k-N)) \\ y(k) &= Cx(k) \end{aligned}$$

Observer for the extended Lur'e form:

$$\begin{cases} \widehat{x}(k+1) &= A\widehat{x}(k) + \varphi(y(k), \cdots, y(k-N)) \\ &+ L(y(k) - \widehat{y}(k)) \\ \widehat{y}(k) &= C\widehat{x}(k) \end{cases}$$

When can a system be transformed into an extended Lur'e form?

TU/e technische universiteit eindhoven

Assume that the mapping \mathcal{O} is a local di eomorphism. Let $N \in \{0, \dots, n-1\}$ be given. Then there is a local transformation into an e tended Lur'e form with bu er N if and only if there locally e ist functions $\varphi_{N+1}, \dots, \varphi_n : \mathbb{R}^{N+1} \to \mathbb{R}$ such that the function f_s in the observable form

$$\begin{cases} s_1(k+1) &= s_2(k) \\ &\vdots \\ s_n(k+1) &= f_s(s(k)) \\ y(k) &= s_1(k) \end{cases}$$

where $f_s(s) := h \circ f^n \circ \mathcal{O}^{-1}(s)$, satisfies

$$f_s(s_1, \cdots, s_n) = \sum_{i=N+1}^n \varphi_i(s_i, \cdots, s_{i-N})$$

$$\mathbf{U}(\mathbf{e}^{(\text{preservation of the server of the server$$

Parameter estimation

Parameter estimation methods are well established for linear systems

However, are dealing with chaotic systems, which are nonlinear.

Still, if appropriate decomposition/transformation of system as well as synchronizing subsystem exists, linear parameter estimation methods can still be used.

Chaos helps in the convergence of estimates, because chaotic signals are persistently exciting

TU/e technische universiteit eindhoven Queen Mary

Parameter estimation: Example (Corron & Hahs, 1997)

Transmitter is a Lorenz system:

$$\Sigma_T \begin{cases} \dot{x}_1 &= 10(x_2 - x_1) \\ \dot{x}_2 &= \lambda x_1 - x_2 - x_1 x_3 \\ \dot{x}_3 &= x_1 x_2 - \frac{8}{3} x_3 \\ y &= x_2 \end{cases}$$

Then the system

$$\hat{\Sigma} \begin{cases} \dot{x}_1 = 10(y - \hat{x}_1) \\ \dot{x}_3 = \hat{x}_1 y - \frac{8}{3} \hat{x}_3 \end{cases}$$

(partially) synchronizes, i.e., $(\hat{x}_1(t), \hat{x}_3(t)) - (x_1(t), x_3(t)) \rightarrow 0 \ (t \rightarrow +\infty)$

TU/e technische universiteit eindhoven Queen Mary

After $\hat{\Sigma}$ has synchronized, y satisfies:

 $\dot{y} = \lambda u_1 - y - u_2, \ u_1 = \hat{x}_1, \ u_2 = \hat{x}_1 \hat{x}_3$

This is a linear system with output y, known inputs u_1, u_2 , and linear dependence on the unknown parameter λ .

So linear parameter estimation methods can now be used to estimate λ !

TU/e technische universiteit eindhoven Queen Mary

The receiver Σ_R is then e.g. given by (Corron & Hahs, 1997):

$$\Sigma_R \begin{cases} \dot{\hat{x}}_1 = 10(y - \hat{x}_1) \\ \dot{\hat{x}}_3 = \hat{x}_1 y - \frac{8}{3} \hat{x}_3 \\ \dot{w}_0 = (k - 1)y - \hat{x}_1 \hat{x}_3 - kw_0, \quad k > 0 \\ \dot{w}_1 = \hat{x}_1 - kw_1 \\ \dot{\hat{\lambda}} = \frac{q \operatorname{sign}(w_1)}{1 + |w_1|} (y - w_0 - w_1 \hat{\lambda}), \quad q > 0 \end{cases}$$

TU/e Cechnische universiteit eindhoven Queen Mary

Some remarks:

- \hat{x}_1 and \hat{x}_3 need to synchronize with x_1 and x_3 before parameter estimation can be achieved.
- However, if λ is (piecewise) constant, it follows from the update law for $\hat{\lambda}$:

$$\dot{\hat{\lambda}} = \frac{q \operatorname{sign}(w_1)}{1 + |w_1|} (y - w_0 - w_1 \hat{\lambda})$$

that $w_0 - w_1 \hat{\lambda}$ synchronizes with x_2 after parameter estimation has been achieved.

- Furthermore, if λ is slowly time-varying, practical synchronization between $w_0 w_1 \hat{\lambda}$ and x_2 will be achieved.
- Thus, the receiver can be viewed as an adaptive (practical) observer for the transmitter.

$$\mathbf{TU}/\mathbf{e}^{\text{verturements}} \quad \text{Weights}$$
Synchronization before parameter estimation is not necessary! ID illustrate this, we conside a flower parameter setimation is not necessary! ID illustrate this, we conside a flower parameter setimation is not necessary! ID illustrate this, we conside a flower parameter setimation is not necessary! ID illustrate this, we conside a flower parameter setimation is not necessary! ID illustrate this, we conside a flower parameter setimation is not necessary! ID illustrate this, we conside a flower parameter setimation is not necessary! ID illustrate this, we conside a flower parameter setimation is not necessary! ID illustrate this, we conside a flower parameter setimation is not necessary! ID illustrate this, we conside a flower parameter setimation is not necessary! ID illustrate this, we conside a flower parameter setimation is not necessary! ID illustrate this, we conside a flower parameter setimation is not necessary! ID illustrate this, we conside a flower parameter setimation is not necessary! ID illustrate this, we consider a flower parameter setimation is not necessary! ID illustrate this, we consider a flower parameter setimation is not necessary! ID illustrate this, we consider a flower parameter setimation is not necessary in the parameter is observed. The necessary is not nece

TU/e technische universiteit eindhoven Example: Rössler system. $\Sigma_T : \begin{cases} \dot{x}_1 = -x_2 - x_3 \\ \dot{x}_2 = x_1 + \lambda x_2 \\ \dot{x}_3 = c + x_3(x_1 - b) \qquad y = x_3 \end{cases}$ b, c > 0. Suppose λ is unknown parameter (message). $Q(\lambda) = \begin{pmatrix} -\lambda & -1 & 1\\ 1 & 0 & -\lambda\\ 0 & 0 & 1 \end{pmatrix}.$ New coordinates: $z = Q(\lambda)\xi$. TU/e technische universiteit eindhoven Suppose λ is unknown parameter (message). $Q(\lambda) = \begin{pmatrix} -\lambda & -1 & 1\\ 1 & 0 & -\lambda\\ 0 & 0 & 1 \end{pmatrix}.$ New coordinates $z = Q(\lambda)\xi$:

 $\begin{pmatrix} \dot{z}_1 \\ \dot{z}_2 \\ \dot{z}_3 \end{pmatrix} = \underbrace{\begin{pmatrix} 0 & 0 & 0 \\ 1 & 0 & -1 \\ 0 & 1 & 0 \end{pmatrix}}_{A} \begin{pmatrix} z_1 \\ z_2 \\ z_3 \end{pmatrix} + \underbrace{\begin{pmatrix} ce^{-y} - b \\ -e^y \\ ce^{-y} - b \end{pmatrix}}_{f_0(y)} + \lambda \underbrace{\begin{pmatrix} e^y \\ -ce^{-y} + b \\ y \end{pmatrix}}_{f_1(y)},$ $y = z_3 = (0 \ 0 \ 1)z,$

$$\mathbf{TU}/\mathbf{e}^{\mathbf{TU}/\mathbf{E}^{\mathbf{TU}/\mathbf{TU}/\mathbf{E}^{\mathbf{TU}/\mathbf{E}^{\mathbf{TU}/\mathbf{E}^{\mathbf{TU}/\mathbf{E}^{\mathbf{TU}/\mathbf{E}$$

Systems (3) are said to be diffusively coupled.

TU/e etchnische universiteit eindhoven Queen Mary

Network equations:

$$\begin{cases} \dot{x} = F(x) + (I_k \otimes BC)u\\ u = -(\Gamma \otimes I_m)y \end{cases}$$
$$x = \begin{pmatrix} x_1\\ x_2\\ \vdots\\ x_k \end{pmatrix}, \quad y = \begin{pmatrix} y_1\\ y_2\\ \vdots\\ y_k \end{pmatrix}, \quad F(x) = \begin{pmatrix} f(x_1)\\ f(x_2)\\ \vdots\\ f(x_k) \end{pmatrix}$$

If the network cannot be divided into two or more disconnected networks the matrix Γ has only one zero eigenvalue.

- \exists a unique bounded limit solution $\bar{z}(t)$ defined on $(-\infty, +\infty)$
- $||z(t) \bar{z}(t)|| \le Ce^{-\alpha(t-t_0)}, \, \alpha > 0.$

Test for convergence: $\exists P = P^T > 0$, s.t.

$\frac{1}{2}\left[P\left(\frac{\partial q}{\partial z}(z,w)\right) + \left(\frac{\partial q}{\partial z}(z,w)\right)^{\mathrm{T}}P\right]$

has negative eigenvalues ($\forall w \in \mathbb{D}$ separated from zero).

TU/e technische universiteit eindhoven Queen Mary

Network equations:

 $\begin{cases} \dot{x}_j = f(x_j) + Bu_j \\ y_j = Cx_j \end{cases}$

Nonsingularity of $CB \implies$ new coordinates (normal form).

$$\dot{z}_j = q(z_j, y_j)$$

 $\dot{y}_j = a(z_j, y_j) + CBu_j$

Coupling:

$$u = -(\Gamma \otimes I_m)y, \quad u = \operatorname{col}(u_1, \dots, u_k), y = \operatorname{col}(y_1, \dots, y_k)$$

Eigenvalues of Γ : $0 = \lambda_1 < \lambda_2 \le \lambda_3 \le \ldots \le \lambda_k$

TU/e technische universiteit eindhoven

Full synchronization in DCN.

Full synchronization: $x_1(t) = x_2(t) = \ldots = x_k(t)$

Assumptions:

- Strict semipassivity of each system from DCN with radially unbounded storage function
- Exponential convergence of the system

 $\dot{z} = q(z, y(t))$

$\underline{\text{Result:}}$

- $\exists \bar{\lambda} > 0$, s.t.
- if $\lambda_2 \geq \overline{\lambda}$ the set $x_1 = x_2 = \ldots = x_k$ contains globally asymptotically stable compact subset.

FUCE Weighten
$$\hat{\mathbf{P}}$$

Example. DCN of Lorenz systems.

$$\begin{cases} \dot{x}_{j}^{1} = \sigma(x_{j}^{2} - x_{j}^{1}) + u_{j} \\ \dot{x}_{j}^{2} = rx_{j}^{1} - x_{j}^{2} - x_{j}^{1}x_{j}^{3} \\ \dot{x}_{j}^{3} = -bx_{j}^{3} + x_{j}^{1}x_{j}^{2} \\ u = -\Gamma y \end{cases}$$
If the smallest nonzero eigenvalue λ_{2} of Γ is large enough \Rightarrow full synchronization.
Intermediate regimes?
Partial synchronization.

TU/e Cueen Mary

Partial synchronization

Observation: the set $x_1 = x_2 = \ldots = x_k$ is an invariant linear subspace.

Questions:

- are there any other invariant subspaces?
- how to find them?
- how to prove stability?

Hint:

• look for the symmetries

Symmetries:

- Global (depend on the coupling)
- Internal (depend on the properties of free systems)

TU/e Cueen Mary

Global symmetries

 Γ contains all information about the coupling

Let Π be a permutation matrix commuting with Γ :

 $\Pi\Gamma-\Gamma\Pi=0$

The set

 $\ker(I_{kn} - \Pi \otimes I_n)$

is <u>invariant.</u>

This set can be described by the equations of the form

 $x_i = x_j$

partial synchronization if $x_i = x_j$ is stable and/or attractive for some i, j

TU/e technische universiteit eindhoven Queen Mary

Example. A ring of four systems.

$$\Gamma = \begin{pmatrix} K_0 + K_1 & -K_0 & 0 & -K_1 \\ -K_0 & K_0 + K_1 & -K_1 & 0 \\ 0 & -K_1 & K_0 + K_1 & -K_0 \\ -K_1 & 0 & -K_0 & K_0 + K_1 \end{pmatrix}$$
Group of permutation matrices: $\Pi_4 = I_4$ and

$$\begin{array}{c}
1 \\
K_{1} \\
4 \\
K_{0} \\
3
\end{array}$$

$$\Pi_1 = \begin{pmatrix} E & O \\ O & E \end{pmatrix}, \ \Pi_2 = \begin{pmatrix} O & I_2 \\ I_2 & O \end{pmatrix}, \ \Pi_3 = \begin{pmatrix} O & E \\ E & O \end{pmatrix}, \ E := \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

$$\mathcal{A}_1 = \{ x \in \mathbb{R}^{4n} : x_1 = x_2, x_3 = x_4 \}, \ \mathcal{A}_2 = \{ x \in \mathbb{R}^{4n} : x_1 = x_3, x_2 = x_4 \}$$
$$\mathcal{A}_3 = \{ x \in \mathbb{R}^{4n} : x_1 = x_4, x_2 = x_3 \}$$

such that the closed loop system satisfies:

$$\lim_{t \to +\infty} \|x(t) - \hat{x}(t)\| = 0$$

TU/e technische universiteit eindhoven 💭 Queen Mary

Controlled synchronization problem: Find dynamic feedback

 $\dot{z} = k(z, \eta, y)$ $u = \alpha(z, \eta, y)$

such that the closed loop system satisfies:

 $\lim_{t \to +\infty} \|x(t) - \hat{x}(t)\| = 0$

Sometimes also internal stability required, i.e., the dynamics

$$\dot{\hat{x}} = g(\hat{x}, 0, \alpha(z, \eta, 0))$$
$$\dot{z} = k(z, \eta, 0)$$

are asymptotically stable.

TU/e Cueen Mary

In fact, the controlled synchronization problem with internally stability can be viewed as (a version of) the *regulator problem*.

So could try to solve the controlled synchronization problem by using methods for solution of the regulator problem.

However, in most applications of chaos synchronization, the master system possesses a chaotic attractor in which several equilibrium points with unstable linearization are embedded.

This means that the Poisson stability hypothesis from the "Byrnes & Isidori solution" to the regulator problem is not met.

TU/e Cueen Mary

Example of class of systems for which controlled synchronization problem can be solved: Lur'e systems.

Master system:

$$\dot{x} = Ax + \Psi(y)$$

 $y = Cx$

Slave system:

$$\dot{\hat{x}} = A\hat{x} + \Psi(y) + Bu$$
$$\eta = C\hat{x}$$

where (A, B) is stabilizable and (C, A) is detectable.

TU/e Cueen Mary

$$\begin{split} \dot{x} &= Ax + \Psi(y) \\ y &= Cx \\ \dot{x} &= A\hat{x} + \Psi(y) + Bu \\ \eta &= C\hat{x} \\ \dot{x} &= A\hat{x} + \Psi(y) + Bu \\ \eta &= C\hat{x} \\ \dot{x} &= A\tilde{x} + K(\tilde{y} - y) + \Psi(y) \\ \dot{x} &= A\tilde{x} + K(\bar{\eta} - \eta) + \Psi(y) + Bu \\ \text{Controller}: \quad \tilde{y} &= C\tilde{x} \\ \eta &= C\tilde{x} \\ u &= F(\tilde{x} - \bar{x}) \\ \text{with } \sigma(A + BF), \sigma(A + KC) \subset \mathbb{C}. \end{split}$$

Example: Chua circuit.

$$\begin{pmatrix} \dot{x}_1 \\ \dot{x}_2 \\ \dot{x}_3 \end{pmatrix} = \begin{pmatrix} \gamma & \alpha & 0 \\ 1 & -1 & 1 \\ 0 & -\beta & 0 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} + \begin{pmatrix} -\alpha(m_0 - m_1) \operatorname{sat}(y) \\ 0 \\ 0 \\ \Psi(y) \end{pmatrix}$$

$$y = x_1, \ \gamma = -\alpha(m_1 + 1), \alpha = 15.6, \ m_0 = -\frac{8}{7}, \ m_1 = -\frac{5}{7}, \ \beta = 25$$
Slave system:

$$\dot{\hat{x}} = A\hat{x} + \Psi(y) + \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} u$$
Choose $F = \operatorname{col}(-1 - 15.60), \ K = (4.36 \ 0 \ 0).$

TU/e Cueen Mary

Example: Van der Pol differential equation.

Master system:

$$\dot{x}_1 = x_2$$

 $\dot{x}_2 = -x_1 - (x_1^2 - 1)x_2$
 $y = x_1$

Slave system:

$$\dot{\hat{x}}_1 = \hat{x}_2 + \alpha u$$

 $\dot{\hat{x}}_2 = -y - (y^2 - 1)\hat{x}_2 + \beta u$

Want to try to achieve synchronization by means of (high gain) static error feedback:

 $u = -c(\hat{x}_1 - x_1)$

<u>Case 3:</u> $\alpha \neq 0, \beta \neq 0.$

Error dynamics:

$$\dot{e} = \left(\begin{array}{cc} -\alpha c & 1\\ -\beta c & -p(t) \end{array}\right) e$$

Singular perturbations and Tikhonov's Theorem: High-gain feedback with $\alpha c \to +\infty$ works if and only if

$$\frac{\beta}{\alpha} > -\bar{p}$$

High-gain feedback with $\alpha c \rightarrow -\infty$ does not work.

Lower bound for c can be given, but is very conservative. Have to take recourse to numerical methods

What can be learnt from this example?

- Have had to use many example-specific and ad-hoc methods.
- This leads to the conclusion that "genuinely nonlinear" regulation and controlled synchronization is difficult, and that hoping to be able to solve the problem in its full generality seems to be in vain at the outset.
- So should rather concentrate on classes of systems with specific properties.
- One of these classes, fully actuated mechanical systems, will be treated in the next section.

TU/e

technische universiteit eindhoven

Coordination of mechanical systems:

- Introduction
- Mutual synchronization controller
- Convergence properties
- Experiments
- Conclusions
- Future extensions

Synchronization and Control

TU/e technische universiteit eindhoven

History

- Huygens (1673): pendulum clocks linked via (flexible) beam
 - Rayleigh (1877): nearby organ tubes, tuning forks
- B. van der Pol (1920): electrical-mechanical systems

Definition

- Time conformity
- Certain relations between functionals and/or variables

TU/e technische universiteit eindhoven

Introduction

Objective

Two or more mutually synchronized robot manipulators

Restrictions

Only position measurements

Motivation

- ★ Synchronization tasks :
 - mobile platforms (transportation, walking robots),
 - object manipulation (manufacturing industry),
- ★ Velocity sensor equipment
- ★ Accessibility on the robot architecture

Synchronization and Control

2

TU/e technische universiteit eindhoven

Internal (mutual) synchronization

• All objects appear at equal terms

• Synchronous motion as

External synchronization

result of interaction/coupling

- One object is more powerful (master)
- Synchronous motion is determined by the master

Synchronization and Control

т

Synchronization and Control

Synchronization index and functional

 $J_i(q_i, \dot{q}_i) = [q_i^T \quad \dot{q}_i^T]$ $f_{i,j} = \left\| J_i(q_i, \dot{q}_i) - J_j(q_j, \dot{q}_j) \right\|, \quad i, j = 1, ..., p, \quad j \neq i,$ $f_{i,i} = \left\| J_i(q_i, \dot{q}_i) - J_d(q_d, \dot{q}_d) \right\|, \quad i = 1, ..., p$ Synchronization and Control

7

technische universiteit eindhoven technische universiteit eindhoven TU/e TU/e **Mutual synchronization controller** Feedback control law with estimated variables **Rigid joint robot dynamics** $\tau_i = M_i(q_i)q_{ii} + C_i(q_i, q_i)q_{ii} + g_i(q_i) - K_{di}s_i - K_{ni}s_i$ $M_i(q_i)q_i + C_i(q_i, q_i)q_i + g_i(q_i) = \tau_i$ i = 1,..., pIdeal feedback control law Synchronization errors $\tau_i = M_i(q_i)q_{ii} + C_i(q_i, q_i)q_{ii} + g_i(q_i) - K_{di}s_i - K_{mi}s_i$ $S_i = q_i - q_{ri}, \quad S_i = q_i - q_{ri}$ Synchronization errors $S_i = q_i - q_{ri}, \quad S_i = q_i - q_{ri}$ $e_{i,i} = q_i - q_d, \qquad e_{i,j} = q_i - q_j$ $e_{i,i} = q_i - q_d, \qquad e_{i,j} = q_i - q_j$ Nominal reference trajectories $q_{ri} = q_d - \sum_{i=1}^{p} K_{i,j}(q_i - q_j);$ $\dot{q}_{ri} = \dot{q}_d - \sum_{i=1}^{p} K_{i,j}(\dot{q}_i - \dot{q}_j)$ Nominal reference trajectories $q_{ri} = q_d - \sum_{j=l, j \neq i}^{r} K_{i,j}(q_i - q_j); \qquad \dot{q}_{ri} = \dot{q}_d - \sum_{j=l, j \neq i}^{r} K_{i,j}(\dot{q}_i - \dot{q}_j)$ Synchronization and Control Synchronization and Control 10 9 technische universiteit eindhoven technische universiteit eindhoven TU/e TU/e **Observer for slave joint variables** Algebraic loop $\frac{d}{dt} \dot{q}_i = \dot{q}_i + \mu_{i,l} \ddot{q}_i$ $\frac{d}{dt} \dot{\hat{q}}_i = -M_i(q_i)^{-l} \left[C(q_i, \dot{q}_i) \dot{\hat{q}}_i + g_i(q_i) - \tau_i \right] + \mu_{i,2} \tilde{\hat{q}}_i$ $\frac{d}{dt} \dot{\hat{q}}_i = -M_i(q_i)^{-l} \left(\begin{array}{c} \wedge & \wedge \\ \vdots & \vdots \\ C(q_i, q_i) \dot{q}_i + g_i(q_i) - \tau_i \end{array} \right) + \mu_{i,2} \tilde{q}_i$ $\frac{d}{dt} \stackrel{\wedge}{q}_{i} = -\sum_{j=l, j\neq i}^{p} K_{i,j} \left(\frac{d}{dt} \stackrel{\wedge}{q}_{i} - \frac{d}{dt} \stackrel{\wedge}{q}_{j}\right) + \stackrel{\cdots}{q}_{d} - M_{i}(q_{i})^{-l} \left(C(q_{i}, q_{i}) \stackrel{\wedge}{s}_{i} + K_{d,i} \stackrel{\wedge}{s}_{i} + K_{p,i} s_{i}\right) + \mu_{i,2} \stackrel{\sim}{q}_{i}$ Estimation joint errors $\widetilde{q}_i \coloneqq q_i - q_i, \quad \widetilde{q}_i \coloneqq q_i - q_i$ $v_{i}(a_{1}, s_{i}, s_{i}, a_{i}, a_{i})$ Seemingly problem: Algebraic loop !!! Synchronization and Control II Synchronization and Control 12

For $i = 1,, p$ $(I_n + \sum_{j=l, j \neq i}^p K_{i,j}) \frac{d}{dt} \stackrel{\wedge}{q}_i - \sum_{j=l, j \neq i}^p K_{i,j} \frac{d}{dt} \stackrel{\wedge}{q}_j = y_i (\stackrel{\sim}{q}_i, s_i, \stackrel{\wedge}{s}_i, \stackrel{\wedge}{q}_i)$ Such that $\begin{bmatrix} I_n + \sum_{j=l, j \neq i}^p K_{l,j} & -K_{l,2} & \cdots & -K_{l,p} \\ -K_{2,l} & I_n + \sum_{j=l, j \neq 2}^p K_{2,j} & \cdots & -K_{2,p} \\ \vdots & \ddots & \vdots \\ -K_{p,l} & -K_{p,2} & \cdots & I_n + \sum_{j=l, j \neq p}^p K_{p,j} \end{bmatrix} \begin{bmatrix} \frac{d}{dt} \stackrel{\wedge}{q}_l \\ \frac{d}{dt} \stackrel{\wedge}{q}_2 \\ \vdots \\ \frac{d}{dt} \stackrel{\wedge}{q}_p \end{bmatrix} = \begin{bmatrix} y_l \\ y_j \\ \vdots \\ y_p \end{bmatrix}$ $\underbrace{M_c(K_{i,j}) \text{Nonsingular for any } K_{i,j} \geq 0 !$	TU/e technische universiteit eindhoven Main result There exist conditions on the minimum eigenvalues of the control gains $K_{p,i}$, $K_{d,i}$ and the observer gains $\mu_{i,1}$, $\mu_{i,2}$ such that $s_i \rightarrow 0$, $\dot{s}_i \rightarrow 0$, $q_i \rightarrow 0$, $\dot{q}_i \rightarrow 0$ semi - globally exponentially. Thus, the robots are semi - globally exponentially synchronized since for $i = 1,, p$, $q_i \rightarrow q_j$ and $\dot{q}_i \rightarrow \dot{q}_j$ exponentially for any initial condition in the region of convergence.
Synchronization and Control 13	Synchronization and Control 14
TU/e technische universiteit eindhoven • Convergence of $s_i, \dot{s}_i, \tilde{q}_i, \tilde{q}_i$ $V = \frac{1}{2} \sum_{i=l}^{p} (\dot{s}_i^T M_i(q_i) \dot{s}_i + s_i^T K_{p,i} s_i) + \frac{1}{2} \sum_{i=l}^{p} [\tilde{q}_i^T \tilde{q}_i^T] \begin{bmatrix} M_i(q_i) & \eta_i(\tilde{q}_i) I_n \\ \eta_i(\tilde{q}_i) I_n & \mu_{i,2} + \beta_i I_n \end{bmatrix} [\tilde{q}_i] \\ \eta_i(\tilde{q}_i) = \frac{\eta_o}{1+\ \tilde{q}_i\ } \\ \beta_i = \eta_o \mu_{i,l} + 2V_M C_{i,M} (\mu_{i,l} + \eta_o M_{i,m}^{-l}) - \mu_{i,2} (1-M_{i,m}) \\ \text{Convergence of } s_i, \dot{s}_i \text{ imply } q_i \rightarrow q_j \text{ and } \dot{q}_i \rightarrow \dot{q}_j ! \\ \hline \text{Synchronization and Control} $	$\mathbf{TU/e}^{\text{technische universiteit eindhoven}}$ $s_{i} \rightarrow 0 \text{ implies in the limit } t \rightarrow \infty \text{ that} \qquad e_{i,i} = q_{i} - q_{d}$ $\begin{bmatrix} s_{i} \\ \vdots \\ s_{p} \end{bmatrix} = \begin{bmatrix} e_{i,l} + \sum_{j=l,j\neq l}^{p} K_{l,j}e_{l,j} \\ \vdots \\ e_{p,p} + \sum_{j=l,j\neq p}^{p} K_{p,j}e_{p,j} \end{bmatrix} = \begin{bmatrix} 0 \\ \vdots \\ 0 \end{bmatrix}$ $\begin{bmatrix} I_{n} + \sum_{j=l,j\neq l}^{p} K_{l,j} & -K_{l,2} & \cdots & -K_{l,p} \\ -K_{2,l} & I_{n} + \sum_{j=l,j\neq p}^{p} K_{2,j} & \cdots & -K_{2,p} \\ \vdots & \vdots & \ddots & \vdots \\ -K_{p,l} & -K_{p,2} & \cdots & I_{n} + \sum_{j=l,j\neq p}^{p} K_{p,j} \end{bmatrix} \begin{bmatrix} q_{l} \\ q_{2} \\ \vdots \\ q_{p} \end{bmatrix} = \begin{bmatrix} q_{d} \\ q_{d} \\ \vdots \\ q_{d} \end{bmatrix}$ $\underbrace{M_{c}(K_{i,j})}$ Bynchronization and Control 10

TU/e

technische universiteit eindhoven

Experiments

Two CFT transposer robots

- 4 degrees of freedom (dof)
- sampling frequency: 2 kHz
- encoders: 2000 PPR

Synchronization and Control

17

TU/e technische universiteit eindhoven

Robot dynamics + friction effects

$$M_{i}(q_{i})\ddot{q}_{i} + C_{i}(q_{i},\dot{q}_{i})\dot{q}_{i} + g_{i}(q_{i}) + \tau_{f}(\dot{q}_{i}) = \tau_{i} \qquad i = 1,...,p$$

$$\tau_{f}(\dot{q}_{i}) = B_{v}\dot{q}_{i} + B_{fl,i}\left(1 - \frac{2}{1 + e^{2w_{l,i}\dot{q}_{i}}}\right) + B_{f2,i}\left(1 - \frac{2}{1 + e^{2w_{2,i}\dot{q}_{i}}}\right)$$

Feedback control law with estimated variables

$$\tau_i = M_i(q_i) \dot{q}_{ri} + C_i(q_i, \dot{q}_i) \dot{q}_{ri} + g_i(q_i) + \tau_f(\dot{q}_i) - K_{d,i} \dot{s}_i - K_{p,i} s_i$$

Synchronization and Control

18

TU/e

technische universiteit eindhoven

Conclusions

- Semi-global exponential mutual synchronization
- Robustness against noise measurements
- Robustness against disturbances

Future extensions

- Different nominal references:
 - ► partial synchronization
- Other mechanical systems:
 - ▶ mobile systems
 - ► satellite formations

Synchronization and Control

21