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1 The Unconstrained Problem

Consider the problem of optimizing J =
∫ T
0 F (u(t), t) dt over the class of smooth functions.

A necessary condition for an extremum is that for all variations δu we have

δJ =
∫ T

0

∂F

∂u
δu dt = 0. (1)

But then, since δu is completely arbitrary, it must hold that

∂F

∂u
= 0. (2)

Example: Consider the functional

J =
∫ π/2

π/3
[cos t u(t)− sin t u2(t)] dt

We find
∂

∂u
[cos t u(t)− sin t u2(t)] = cos t− 2 sin t u(t)

and thus

uo(t) =
1

2
cot t.

Thus giving

Jo =
∫ π/2

π/3

[
cos2 t

2 sin t
− cos2 t

4 sin t

]
dt =

1

4

∫ π/2

π/3

cos2 t

sin t
dt =

1

2
[log 3− 1].

This stationary solution is a maximum since

J =
∫ T

0

∂2F

∂u2

∣∣∣∣∣
o

(δu)2 dt =
∫ π/2

π/3
[−2 sin t] dt = −1 ≤ 0.
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2 The Constrained Problem

In this section we add a number of constraints to the problem. First let us require that the
optimizing function should satisfy the constraint∫ T

0
G(u(t), t) dt = 0. (3)

At a stationary point we must still have (1), but now this does not imply (2) anymore since
the variation δu cannot be taken arbitrary, but must be consistent with the constraint (3).
This means that the variation has to satisfy∫ T

0

∂G

∂u

∣∣∣∣∣
o

δu dt = 0. (4)

Note that this is an orthogonality condition in the function space. Thus we can imbed all
such admissible variations in the class of arbitrary variations as follows Take any arbitrary
variation, δv, but subtract the component in line with g(t) = ∂G

∂u

∣∣∣
o
. This gives an admissible

δu
δu = δv − νg, (5)

where the constant ν is chosen to satisfy the orthogonality condition, i.e.∫ T

0
g[δv − νg] dt = 0, (6)

or

ν =

∫ T
0 gδv dt∫ T
0 g2 dt

. (7)

Let’s now choose a variation δv = εf , where f = ∂F
∂u

∣∣∣
o
. We find

δJ =
∫ T

0
f

(
εf − εg

∫ T
0 fg dt∫ T
0 g2 dt

)
dt (8)

Reorganizing terms, we find

δJ = ε

[∫ T

0
f 2 dt− (

∫ T
0 fg dt)2∫ T
0 g2 dt

]
(9)

Recall Schwarz’s inequality. If f and g are not proportional, the term between brackets is
nonzero. Hence according to its sign, we can choose ε positive or negative to decrease (or
increase as the case might be) the value of J . But this contradicts that u0 was an extremizing
solution. Consequently, the coefficient of δv must have been zero, i.e., at the extremizing
solution: ∫ T

0

[
f δv −

∫ T
0 gδv dt∫ T
0 g2 dt

g

]
dt = 0 (10)
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or, rearranged, ∫ T

0

[
f −

∫ T
0 fg dt∫ T
0 g2 dt

g

]
δv dt = 0 (11)

implies

f −
∫ T
0 fg dt∫ T
0 g2 dt

g = 0 (12)

Formally, we define a Hamiltonian function (for all t)

H(u(t), ν, t) = F (u(t), t) + ν G(u(t), t) (13)

and state the necessary condition

∂H

∂u
= 0 (14)

where the Lagrange multiplier ν is chosen to satisfy the constraint∫ T

0
G(u(t), t) dt = 0. (15)

We state now the general case as an exercise:

Exercise: Derive necessary conditions for extremal solutions to

J =
∫ T

0
F (u(t), t) dt = 0, (16)

where u(t) is an n-dimensional vector function, each component belonging to the class of
smooth functions, and such that ∫ T

0
G(u(t), t) dt = Γ. (17)

for G a p-dimensional vector function.

3 Application: Entropy Maximization

This is a problem in statistical mechanics. Suppose we know that a probability density of
a nonnegative random variable x has the expected value Ex = m. What is its most likely
distribution? The notion of most likely means that it is the least prejudiced distribution,
given the information of the mean: i.e., it is the most random distribution. Information
theory tells us that the random ness of a distribution is specified by its entropy (differential
entropy in the continuous case). The (differential) entropy of a density f(x) is defined as
the functional

H(f) = −
∫ ∞
−∞

f(x) log f(x) dx. (18)
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The most random density on the positive real line with given mean m is then given by
the maximizer fo of H(f) subject to the two constraints∫ ∞

0
f(x) dx = 1 (19)∫ ∞

0
xf(x) dx = m. (20)

With the Hamiltonian,
H(f, x, λ, µ) = −f log f + λf + µxf, (21)

The stationarity condition, dH/df = 0, yields

− log f − 1 + λ+ µx = 0. (22)

This says that f(x) must be exponential in x. Regrouping constants, the normalization
condition says that µ must be negative, and thus

f(x) = |µ|e−|µ|x, (23)

while mu itself follows then from

m =
∫ ∞
0

x|µ|e−|µ|x dx =
1

|µ|
. (24)

Thus finally, the most random density on [0,∞] with mean m > 0 is: fo(x) = 1
m
e−x/mχ(x),

where χ(x) is the indicator function for the positive real line (also known as the Heaviside
step function). We check that the result is indeed a valid density (we did not actually put
the constraint f(x) ≥ 0 in the problem formulation to keep it simple, but were lucky that
the answer came out a probability density.

Exercise: Determine the most random probability density on the real line, with mean m
and variance σ2.


