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Goal

Find necessary conditions for a function y = u(x) to make the integral

I =
∫ x1

x0

F (x, y, y′) dx (1)

stationary, while satisfying the constraints

y(x0) = y0

y(x1) = y1. (2)

We shall assume that F (x, y, y′) has continuous partial derivatives with respect to all three
arguments, and that y′′ is continuous in (x0, x1).

Construction

Let u(x) be the stationary solution and η(x) any arbitrary but continuously differentiable
function. Set for an arbitrary parameter ε, independent of x,

y(x) = u(x) + εη(x). (3)

Let further η(x) satisfy
η(x0) = η(x1) = 0. (4)

The term εη(x) is called the variation of y.

Fundamental Lemma of Calculus of Variations
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If φ(x) is continuous in [x0, x1], and for all functions η(x) satisfying

η(x0) = η(x1) = 0

η′(x) continuous in [x0, x1],

we have ∫ x1

x0

η(x)φ(x) dx = 0,

then φ(x) ≡ 0 in [x0, x1].

Proof: By contradiction, constructing a suitable admissible function η(x). See e.g. Forray’s
Variational Calculus in Science and Engineering, McGraw-Hill, 1968.

Notation Convention in Calculus of Variations

The change in y(x) for a fixed value of x is called the variation of y. It is denoted by

δy(x) = εη(x)

The difference between this and the differential of a function should be well understood:
The differential of y(x) is the change in y when looking at the same function (or curve) for
different values of x.

Substituting (3) in (1) yields

I = I(ε) =
∫ x1

x0

F (x, u+ εη, u′ + εη′) dx. (5)

Note that I depends on ε. Since we assumed that u(·) was the stationary solution, I(ε)
is stationary at ε = 0. Hence, a necessary condition is that

dI(ε)

dε

∣∣∣∣∣
ε=0

= 0. (6)

So, turning the crank, we obtain

dI

dε
=

∫ x1

x0

dF (x, u+ εη, u′ + εη′)

dε
dx

=
∫ x1

x0

[
∂F

∂y

dy

dε
+
∂F

∂y′
dy′

dε

]
dx

=
∫ x1

x0

[
∂F

∂(u+ εη)
η +

∂F

∂(u′ + εη′)
η′
]
dx,
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and finally:
dI

dε

∣∣∣∣∣
ε=0

=
∫ x1

x0

[
∂F

∂u
η +

∂F

∂u′η
′
]
dx = 0

where F = F (x, u, u′). Integrating the second term by parts:∫ x1

x0

∂F

∂u′η
′ =

[
∂F

∂u′η

]x1

x0

−
∫ x1

x0

η
d

dx

(
∂F

∂u′

)
dx.

Hence,
dI

dε

∣∣∣∣∣
ε=0

=
∫ x1

x0

[
∂F

∂u
− d

dx

∂F

∂u′

]
η dx = 0. (7)

But η(x) was an arbitrary variation in (x0, x1), and (7) is necessarily true. From the funda-
mental lemma of variational calculus, it follows then that

∂F

∂u
− d

dx

∂F

∂u′ = 0.

This is Euler’s equation. Its boundary conditions are

u(x0) = y0

u(x1) = y1

Finally, note also that δy′ ≡ εη(x)′. The corresponding change in F is:

∆F = F (x, u+ εη, u′ + εη′)− F (x, u, u′)

= εη
∂F

∂y
+ εη′∂F

∂y′ + . . .

where the “. . .” stand for higher order powers of ε.
Define thus

δF =
∂F

∂y
εη +

∂F

∂y′ εη
′

This notation corresponds again to (but is different from) the differential dF (x, y) of (ordi-
nary) calculus:

dF =
∂F

∂x
dx+

∂F

∂y
dy.

Finally, note that from δy = εη(x) and δy′ = εη(x)′ we get

d

dx
[δy] =

d

dx
εη(x) = εη(x)′ = δy′ = δ

[
dy

dx

]

Thus, the operators δ and d
dx

commute, where x is the independent variable.


