2.1. Calculus of Variations

© Erik I. Verriest*

November 19, 2008

Goal

Find necessary conditions for a function $y=u(x)$ to make the integral

$$
\begin{equation*}
I=\int_{x_{0}}^{x_{1}} F\left(x, y, y^{\prime}\right) d x \tag{1}
\end{equation*}
$$

stationary, while satisfying the constraints

$$
\begin{align*}
y\left(x_{0}\right) & =y_{0} \\
y\left(x_{1}\right) & =y_{1} . \tag{2}
\end{align*}
$$

We shall assume that $F\left(x, y, y^{\prime}\right)$ has continuous partial derivatives with respect to all three arguments, and that $y^{\prime \prime}$ is continuous in (x_{0}, x_{1}).

Construction

Let $u(x)$ be the stationary solution and $\eta(x)$ any arbitrary but continuously differentiable function. Set for an arbitrary parameter ϵ, independent of x,

$$
\begin{equation*}
y(x)=u(x)+\epsilon \eta(x) . \tag{3}
\end{equation*}
$$

Let further $\eta(x)$ satisfy

$$
\begin{equation*}
\eta\left(x_{0}\right)=\eta\left(x_{1}\right)=0 . \tag{4}
\end{equation*}
$$

The term $\epsilon \eta(x)$ is called the variation of y.

Fundamental Lemma of Calculus of Variations

[^0]If $\phi(x)$ is continuous in $\left[x_{0}, x_{1}\right]$, and for all functions $\eta(x)$ satisfying

$$
\begin{aligned}
\eta\left(x_{0}\right)= & \eta\left(x_{1}\right)=0 \\
\eta^{\prime}(x) & \text { continuous in }\left[x_{0}, x_{1}\right]
\end{aligned}
$$

we have

$$
\int_{x_{0}}^{x_{1}} \eta(x) \phi(x) d x=0
$$

then $\phi(x) \equiv 0$ in $\left[x_{0}, x_{1}\right]$.

Proof: By contradiction, constructing a suitable admissible function $\eta(x)$. See e.g. Forray's Variational Calculus in Science and Engineering, McGraw-Hill, 1968.

Notation Convention in Calculus of Variations

The change in $y(x)$ for a fixed value of x is called the variation of y. It is denoted by

$$
\delta y(x)=\epsilon \eta(x)
$$

The difference between this and the differential of a function should be well understood: The differential of $y(x)$ is the change in y when looking at the same function (or curve) for different values of x.

Substituting (3) in (1) yields

$$
\begin{equation*}
I=I(\epsilon)=\int_{x_{0}}^{x_{1}} F\left(x, u+\epsilon \eta, u^{\prime}+\epsilon \eta^{\prime}\right) d x . \tag{5}
\end{equation*}
$$

Note that I depends on ϵ. Since we assumed that $u(\cdot)$ was the stationary solution, $I(\epsilon)$ is stationary at $\epsilon=0$. Hence, a necessary condition is that

$$
\begin{equation*}
\left.\frac{d I(\epsilon)}{d \epsilon}\right|_{\epsilon=0}=0 . \tag{6}
\end{equation*}
$$

So, turning the crank, we obtain

$$
\begin{aligned}
\frac{d I}{d \epsilon}= & \int_{x_{0}}^{x_{1}} \frac{d F\left(x, u+\epsilon \eta, u^{\prime}+\epsilon \eta^{\prime}\right)}{d \epsilon} d x \\
& =\int_{x_{0}}^{x_{1}}\left[\frac{\partial F}{\partial y} \frac{d y}{d \epsilon}+\frac{\partial F}{\partial y^{\prime}} \frac{d y^{\prime}}{d \epsilon}\right] d x \\
& =\int_{x_{0}}^{x_{1}}\left[\frac{\partial F}{\partial(u+\epsilon \eta)} \eta+\frac{\partial F}{\partial\left(u^{\prime}+\epsilon \eta^{\prime}\right)} \eta^{\prime}\right] d x,
\end{aligned}
$$

and finally:

$$
\left.\frac{d I}{d \epsilon}\right|_{\epsilon=0}=\int_{x_{0}}^{x_{1}}\left[\frac{\partial F}{\partial u} \eta+\frac{\partial F}{\partial u^{\prime}} \eta^{\prime}\right] d x=0
$$

where $F=F\left(x, u, u^{\prime}\right)$. Integrating the second term by parts:

$$
\int_{x_{0}}^{x_{1}} \frac{\partial F}{\partial u^{\prime}} \eta^{\prime}=\left[\frac{\partial F}{\partial u^{\prime}} \eta\right]_{x_{0}}^{x_{1}}-\int_{x_{0}}^{x^{1}} \eta \frac{d}{d x}\left(\frac{\partial F}{\partial u^{\prime}}\right) d x .
$$

Hence,

$$
\begin{equation*}
\left.\frac{d I}{d \epsilon}\right|_{\epsilon=0}=\int_{x_{0}}^{x_{1}}\left[\frac{\partial F}{\partial u}-\frac{d}{d x} \frac{\partial F}{\partial u^{\prime}}\right] \eta d x=0 . \tag{7}
\end{equation*}
$$

But $\eta(x)$ was an arbitrary variation in $\left(x_{0}, x_{1}\right)$, and (7) is necessarily true. From the fundamental lemma of variational calculus, it follows then that

$$
\frac{\partial F}{\partial u}-\frac{d}{d x} \frac{\partial F}{\partial u^{\prime}}=0
$$

This is Euler's equation. Its boundary conditions are

$$
\begin{aligned}
& u\left(x_{0}\right)=y_{0} \\
& u\left(x_{1}\right)=y_{1}
\end{aligned}
$$

Finally, note also that $\delta y^{\prime} \equiv \epsilon \eta(x)^{\prime}$. The corresponding change in F is:

$$
\begin{aligned}
\Delta F & =F\left(x, u+\epsilon \eta, u^{\prime}+\epsilon \eta^{\prime}\right)-F\left(x, u, u^{\prime}\right) \\
& =\epsilon \eta \frac{\partial F}{\partial y}+\epsilon \eta^{\prime} \frac{\partial F}{\partial y^{\prime}}+\ldots
\end{aligned}
$$

where the ". .." stand for higher order powers of ϵ.
Define thus

$$
\delta F=\frac{\partial F}{\partial y} \epsilon \eta+\frac{\partial F}{\partial y^{\prime}} \epsilon \eta^{\prime}
$$

This notation corresponds again to (but is different from) the differential $d F(x, y)$ of (ordinary) calculus:

$$
d F=\frac{\partial F}{\partial x} d x+\frac{\partial F}{\partial y} d y
$$

Finally, note that from $\delta y=\epsilon \eta(x)$ and $\delta y^{\prime}=\epsilon \eta(x)^{\prime}$ we get

$$
\frac{d}{d x}[\delta y]=\frac{d}{d x} \epsilon \eta(x)=\epsilon \eta(x)^{\prime}=\delta y^{\prime}=\delta\left[\frac{d y}{d x}\right]
$$

Thus, the operators δ and $\frac{d}{d x}$ commute, where x is the independent variable.

[^0]: *School of ECE, Georgia Tech, Atlanta, GA, USA. Presently with SCD, ESAT, KULeuven.

