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Abst rac t  

The finite dimensional theory of minimal sensitivity 
design is extended to infinite dimensions. The high 
accuracy control of the state vector of a system is a 
practical application of this problem. First the dis- 
crete time high accuracy control problem is solved 
for a single input system with fixed bound on the 
relative error of the control. The optimal steering is 
characterized as one that is zero for the longest possi- 
ble time. The continuous time problem is solved via 
the maximum principle and the example of the rocket 
car with relative control error is solved in detail. The 
maximum accuracy, and the accuracy/time problem 
have a solution of bang-zero-bang type. The accu- 
racy/energy problem also exhibits a coasting period. 

1. In t roduct ion  

The sensitivity of a particular design, given some 
design objectives, can typically be minimized by 
proper choice of the design. A geometrically pleas- 
ing solution has been given in [l, 2, 31, for the case of 
a f i n i t e  number of degrees of freedom (the dimension 
of the parameter space . In many cases the parame- 

deal of effort has been spent on analyzing the sensitiv- 
ity in the case of a Banach space valued parameter, 
(see e.g. [5]  and references therein), it seems that 
the literature is less abundant about the problem of 
m i n i m i z i n g  the sensitivity of a design with respect 
to perturbations in the parameter space. Unlike the 
theory of robust control, the effect of perturbations 
is minimized by tuning these (perturbation) param- 
eters. In this paper, the finite dimensional theory of 
extremal sensitivity [2, 31, summarized below, is ez- 
tended to the infinite case. 
In section 2, the infinite dimensional extension is in- 
troduced as a problem of high accuracy steering. Sec- 
tion 3 bridges the gap between the finite dimensional 
and infinite dimensional case for discrete systems. 
The tools of optimal control theory are used in sec- 
tion 4 to solve the equivalent continuous time prob- 
lem, and in section 5 ,  the example of the rocket car is 
worked out in detail for different performance indices, 
combined with the high accuracy requirement. 

Extremal sensitivity theorem (EST) 
Let 0 be the parameter space, which is endowed with 

ter space is not finite d imensional. Whereas a great 
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a Riemannian structure, g ,  allowing to speak of direc- 
tion and magni tude  of perturbations. An observable f 
is a smooth real valued function on (0, g ) ,  which lacks 
critical points. The inverse image f - l ( O )  contains 
equivalent realizations o f f ,  and is a smooth submani- 
fold of 0. The design objective is to find in f -  ( 

spect to perturbations in @. The EST states that at 
points 6* E 0 of extremal sensitivity, the gradient of 
the observable f must be in the eigenspace of the Hes- 
sian operator of f .  (Both gradient and Hessian are 
defined with respect to the metric g.) This purely 
geometric criterion ives a viable alternative to the 
usual stochastic mehods, since it handles the worst 
case performance whereas the stochastic theory opti- 
mizes the average performance. 

parameter which exhibits the least sensitivity wit O h t h e  re- 

2. Extremal Accuracy Control: The Problem 

Consider the problem of steering the state of 

from a fixed initial state to a terminal manifold 
Q(z) = 0 in a fixed time T .  Acknowledging that 
in general several different steering policies perform 
the same task if a reachability condition is satisfied, 
one usually tries to find an op t ima l  steering with re- 
spect to some performance index, trading off control 
effort and state excursions. In this paper we consider 
the optimal control policy if it is known a priori that, 
in addition, any desired policy can only inaccurately  
be generated, as is the case in a finite precision en- 
vironment. This could be due to fast but inaccurate 
computer control (finite wordlength effects), or due to 
crudely imprecise actuators. In stone throwing, the 
angle of departure and initial velocity can only be 
inaccurately set. This example was used in [3] to il- 
lustrate the minimum sensitivity (of target position) 
design problem. The present note can also be seen 
as a generalization of the minimum sensitivity design 
problem [2] to the dynamic case. As expected this 
problem becomes an infinite dimensional one, and the 
conscise characterization of the extremal sensitivity 
as a gradient of a Hessian is more elusive. The prob- 
lem will be approached by the calculus of variations 
and/or the Pontryagin maximum principle. 

Thus, consider the system (1) where 1: is n- 
dimensional and the control u assumes its values in 
a space U which we shall endow with a Riemannian 
metric g :  At each point U the tangent space TuU is 
endowed with an inner product gu(., .) : T,U x T,U +. 

i = f(z, U, t )  (1) 
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lR. Note that this Riemannian space (U, g )  is still fi- 
nite dimensional . This may not be entirely realistic, 
in practice there usually is some tem oral coherence 
in the control perturbations, as in 1 - D  conversion, 
but it simplifies the analysis. Moreover by letting the 
worst case perturbation be defined at each instant, 
more conservative results are obtained than if coher- 
ences are taken into account. 

The stage of the problem being set, let the desired 
nominal problem be the minimization of @(z(T))  + 

L ( x ,  u , t )  dt with the exact terminal constraint 
Q(z(T))  = 0. Assume this problem has a solution, 
which we shall denote by uo( t ) ,  and let z,,(t) be the 
corresponding optimal trajectory. 

3. High Accuracy Steering: Discrete Case  

In order to bridge the gap from minimum sensi- 
tivity design with respect to a finite number of pa- 
rameters, and the minimum sensitivity design with 
respect to a function, to be discussed in the next sec- 
tion, we shall consider the high accuracy control of a 
discrete n-th order m-input time invariant linear sys- 
tem c k + l  =  AX^ + B U k .  Let the initial state be 20. 
It is desired to reach the state X J  at the N-th step. 
It is well known that this can be achieved for arbi- 
t r a y  initial and final state if and only if the ( A , B )  
is reachable and N 2 n, where n is the system order. 
For N > n, redundancy can be exploited to minimize 
the performance index. Iterating the state equations 
gives, xf - A"EO = [B,  A B , ,  . . , A N - ' B ] U ~  where 
U& = u;-~, . . . , ub]'. This plays the role of a 
vector observable (of dimension n), while the space of 
the mN input components plays the role of the space 
0 of design parameters. The maximal accuracy prob- 
lem is in this framework exactly the minimal sensi- 
tivity problem discussed in [ l ,  2 ,  31. 

Let us for simplicity consider the case of a first 
order s stem with scalar in ut, i.e., A and B # 0 
are scayar. AS is usually tKe case in practice, we 
shall assume that the inputs can only be inaccu- 
rately generated, with a given bound on the relative 
error. This means that the metric in the parame- 
ter space 0 = lRN is given by the weighting matrix 
G = diag(O;2). In [2] we derived also an easier to 
use, but equivalent matrix criterion for extremal sen- 
sitivity, in terms of the pseudo-gradient vector and 
the pseudo-Hessian matrix, respectively df and d2 f. 
The criterion states that df must be in a left (note 
that df is a row vector) eigenspace of the matrix d2 f. 
Application to our problem gives, with ON-k  = uk 
and f = R N O  - AN, where RN is the reachability 
matrix for N steps, and AN = X J  - ANxO, 

df = xN diag(le1) = [qelI , .  . . , A ~ - ~ B I O N ~ ] ( ~ )  

(3) 

diag(()( = A(, (i = A"lBIeil, (4) 

d2f = diag(B1011,. . . ,AN-'BIeNI). 
The resultin minimum sensitivity necessary condi- 
tions are wit a ( = [ (I , .  . . , (NI ' ,  of the form: 

which has many solutions: Indeed, if Z C 
{ 1 ,  2 , .  . . , N} is an arbirary index set, then (i = X for 
a E Z and ( j  = 0 for j 4 Z is a solution. Hence if 2+ 
and Z- are arbitrary disjoint subsets of { 1 , 2 , .  . . , N } ,  

then it is readily seen that a solution is 

Ai-lBBj = A, V i E Z +  (5) 
A'-lBOi = -X, V i  EZ- (6) 
Aj-'BBj = 0, V j  $!Z+UZ-. (7) 

The X is determined by the state constraint xi A"-'Bi = AN, i.e., we have X = &. Are all 
candidate solutions really maximizing the accuracy? 
Lemma 2.13 in [2] can provide an answer. In this 
scalar case, it can be easily checked that, with the 
relative metric, and a nominal control of the above 
class: uk = the worst perturbation of the final 
state is proportional to  

There is clearly a benefit in taking either Z+ or 2- 
empty. Therefore all (equivalent) high accuracy con- 
trols are of the form (if A = 0, we limit N to 1) 

(9) 

e; = o I i 9 Z  (10) 
for an arbitrary index set Z. 

How does this generalize to the maximal accuracy 
steering of higher order single input systems (still 
with a relative error criterion)? In the framework 
of our minimal sensitivity design problem, the ob- 
servable, f ,  is now multi-dimensional. A method was 
introduced in [ l ,  2 ,  31 to deal with this. Restating 
this in the current context, one considers for all unit 
vectors U of dimension n the scalar observable u'f. 
Solving the problem in this fashion for fixed U gives 
again a necessary condition in the form 

where now instead C k  = u'AN-kBIOkl = 
~ ' A ~ - ' B l u ~ - k l .  Hence the solution from the pre- 
vious paragraph can be adapted to find 

with 

diag(C)C = XC, (11) 

U; E (0, X ( U ' A ~ - ' - ~ B  )-lh ( 1 2 )  

Clearly, this solution depends on the choice of the unit 
vector U, unlike in the application of the extremal 
sensitivity theorem to optimum system implementa- 
tion, where the optimum solution was u-independent. 
Moreover, only the constraint U'RNUN = ~ ( X J  - 
A N z o )  is satisfied. Consequently one cannot con- 
clude that all solutions to the above mininiize the 
accuracy while satisfying the final state vector ob- 
servable. One could argue that the introduction of 
an alternate scalar constraint +(UN)  = ~ ( R N U N  - 
AN)'(RNUN - AN) might solve the problem, since 
after all (b e )  = 0 iff RNUN = AN. There is how- 

in order for our theory to be applicable, we had to 
exclude this (we called this a 'technical condition' in 
[?I). . This application shows that the extremal sen- 
sitivity condition does not carry any information at 
a critical point. The full multi-dimensional obsery- 
able minimum sensitivity theory developed in [6] is 
required. There is however also a way around this. If 

ever a catc 6 : this observable has a critical point, and 
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with the above analysis, one can find a vector v for 
which the whole state constraint is satisfied, then a 
candidate solution with maximal accuracy is found. 

For the v-dependent solution, = Bi = 
& 1  

#I w ,A , - lB  for i E Z and zero else, one gets at the 
final step the state (recall that AN = x j  - ANxo), 

Therefore, one needs to find a v such that 

This is in itself a nice linear algebra problem. It can 
be cast in the form: 

Problem v: 
Given a set of k 5 n linearly indegendent vectors 
{ & ,  . . . , Pk}, and a vector 2, dl in . Find v E nt" 
of unit norm such that 

k 

(16) 

Note that in our application, an arbitrary set of vec- 
tors {A'-lB, i E Z) is not necessarily a linearly inde  
pendent set, but since the system is reachable, there 
will always exist a set of a t  most n such vectors, con- 
stituting a basis for E"' Below we shall give a con- 
structive solution to problem v. 

Solution 
First, it is obvious from (16) that for a solution to 
exist, x cannot have components outside the span of 
{ a , .  . . , Pk}. We shall therefore make the additional 
assumption 

The set of k 5 n vectors, {PI ,..., pk}, can be aug- 
mented with { P k + 1 , .  . . , P,,} to obtain a full basis. Let 
{ai, ...,a,} be the dual basis, i.e., @j = S i j .  Ex- 
press the unknown vector v in terms of the dual basis: 
v = E;=, p j a j ,  and substitute in (16) to get 

2 E span {Pi,. . . ,Pk}. (17) 

taking the properties of the reciprocal basis into ac- 
count. We shall temporarily assume that the p j , i  = 
1 . . . , k are nonzero, and later verify consistency. Ex- 
press now the given vector x in terms of the (primal) 
basis taking (17) into account 

k 

L=O 
If in addition x has nonzero components along all 
,&,i = 1 , .  . . ,k, then all yi, i = 1 . .  . , k  are nonzero. 
Substituting this expansion in the equation (18) 
yields 

. k n  k 

from which it follows that for all i = l , . .  .,k: 
1 E x j  = x i .  A trivial solution is given by pi = 
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i = 1  ..., k 
i = k + 1,. .. ,n, This is consistent with our 

Gmporary assumption, and thus 

c is a normalization constant, llvll = 1, and x ;  = aic 
is exactly the component of c along Pi, with respect 
to the basis { P I , .  . . l/?,}. 

The quantity v'z is required below. We get from 
( 1 2  and (21) v'z = ck. 

et us now apply this result to the high accu- 
racy reachability problem: Given the initial and final 
states, respectively x o  and zf, a maximum accuracy 
transition from 20 to cf in N steps is given by the 
following (preliminary) algorithm: 

i) Compute AN = zj - ANxO, and express 
it with a minimal number of Krylov vectors 
B , A B , A 2 B , . .  ., i.e., find a minimal index set 
Z so that the corresponding Krylov vectors are 
linearly independent, and have AN in their span. 
It follows that then none of these Krylov vectors 
can be orthogonal to AN. 

ii) Compute the vector v as outlined in the solu- 
tion of Problem v. Note that all conditions for a 
solution to  exists are satisfied because of step i). 

iii) Generate the open loop control 

iv) As only necessary conditions are analyzed, the 
above steps generate candidate solutions. For 
each index set, the maximal perturbation asso- 
ciated with this index set Z needs to be checked 
in order to close in on the optimal 2* and its 
associated control. 

Steps ii) and iii) can be simplified: For this selec- 
tion of v from ii), the corresponding control is 

The optimal control is the component of AN along the 
vector Pi = ALt-lBl w.r.t. the basis indicated b y  2. 
If there is no such component, the control is consis- 
tently set to zero. It thus follows that the maximum 
accuracy control is a control using the least number 
of nonzero controls. For the selection Z, the perfor- 
mance, i.e., the worst perturbation (in the relative 
metric) is proportional to 

where in the last equality the maximization is over all 
signature matrices E. Obviously, a large combinato- 
rial problem remains. 

4. Extremal Accuracy Control: The Solution 
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&turning to the continuous time problem, we solve 
the problem in two stages. First we derive the worst 
case perturbat ion in the metric q ,  about some nomi- 
nal trajectory, and compute the induced effect on the 
terminal objective. Next this induced perturbation 
effect is combined with the given performance index, 
and the optimal steering is computed. 

Part 1: Perturbation Control 
Let the effect of an infinitesimal perturbation 6u(t)  
for 0 5 t 5 T be a change in the final state 
6x(T) ,  which may cause a change from 9(xo(T))  to 
O(xo(T) + Sz(T)). To first order: 

Since the perturbation system is affine ( f z  and f u  are 
functions of uo ,  but not 6u) it is a time varying linear 
system. Maximize  for this perturbation system the 
quantity 116911~ with the constraint Ilbu(t IIu 5 1. 

nal state with a Riemannian structure, M ,  in order 
to weigh the cost of the inaccuracy. However we shall 
assume that this is already incorporated in the defi- 
nition of 9, so that the uniform metric (i.e. the usual 
Euclidean metric) is understood. 

The above perturbation problem is a standard 
problem in linear o timal control, for which the 
Hamiltonian is formuyated as 

and with terminal cost 

The worst case perturbation is the maximizer of 
A:!,,&, over the set U = (gu,(6u,6u) 5 1). Since 
a linear function is maximized, the solution 6, must 
occur at the boundary. It is known that a singular 
solution cannot exist [4, p.2571. For a single input 
system, this implies that the worst perturbation will 
be of bang-bang type, a situation that may be ini- 
portant in practical situations of relay control. The 
extrema1 perturbation for multi-input systems is de- 
rived from the locally (with respect to time) defined 
Lagrangian optimization problem 

where ,U is a Lagrange multiplier. Two solutions 
exist, one minimizing, the other maximizing. Here 
,U = -;llG-'f:Xallc. so that 

ix = fz (xo,uo, t )6x + fu(xo,uo,t)6u. (25) 

Note that we also can endow the space o f t  h e termi- 

H = x; ( f z6x  + fubu),  (26) 

@P(WT)) = I l W 4 ~ ) ) l l  = l l 9 4 ~ ( ~ ) ) W ~ ) I l  (27) 

x',fu6, + PSU,(h 6211, (28) 

The costate equation is 

The boundary conditions on state and costates are 
x'a = -HAx = -fixa. (30) 

(31) 
6x(o) = 0 ; x&( r )  = ~~(x(T))~x(x(T))6x(~), 

since minimizing (27) is equivalent to minimizing 
~ 1 1 ~ ~ . ( ~ ( ~ ) > ~ x ~ ~ > I 1 2 *  
Part 2: Nominal Control 
Now we solve for the minimizing solution u*( t )  to the 
combined performance index 

T 

Ja,, = ~ l l~z (z (T ) )sz (T ) l l +~ (x (T ) )+~  L ( x ,  U ,  t )  dt. 

(32) 

A parameter, p,  is introduced in order to weigh the 
relative importance of high accuracy. This mini- 
mization is now subject to  three sets of dynamical 
constraints with their respective boundary conditions 
from part 1. 

i = f ( x , u )  (33) 

x'6 = - f i x 6  (35) 

62. = fz6Z i- Il.\all;"'G-,,:f~G-'f:xa 

This problem is solved by adjoining these dynamic 
constraints to (32). If a uniform metric is used in the 
control value space U, the inclusion of the maximal 
accuracy requirement has no effect on the nominal 
control. In the case of a more general metric, the 
nominal solution for high accuracy will be different 
from the nominal solution without the accuracy in- 
clusion. 

(34) 

5. Double Integrator Example (Rocket Car) 

In order to illustrate the above ideas, we have 
worked out the case of the rocket car (double inte- 
rator) for the high accuracy steering for several dif- 

ferent nominal problems: but all in the case for the 
relative error metric on the control. 

Let x denote position and v velocity. The system 
equations are, assuming that the car has unit mass, 

x = v  (36) 
6 = U .  (37) 

The objective is to transfer from xo = 0 and vo = 0 
to position xf > 0 at time T with v ( T )  = 0. 
For the relative metric, G-' = U'. The accuracy will 
be obtained by adjoining a term p$(6z(T>' + S V ( T ) ~ )  
to the nominal performance index. One finds, since 
I I X ~ ~ ~ G  = 1u11X6uI, the worst perturbation dynamics 

iz = bv (38) 
6v = l u l sgn (h~)  (39) 

k ( t )  = 6x(T) ,  Vt (40) 

with 6x(O) = 0 and bv(0) = 0. The perturbation 
costate equations are easily solved: one finds 

xa,(t) = 6v(T) + (T - t ) 6 Z ( T )  (41) 
and for the perturbations: 

1 

b v ( t )  = 1 Iu(T)l%n(x6u(T)) dT (42) 
0 

6x( t )  = /ot(t - T)1u(T)lsgn(hu(T)) dT. (43) 

We used Laplace's integral to express the double in- 
tegral. Note also that Xav  changes sign at most once. 
We therefore consider separately the cases where 
does and does not change sign. It is found that there 
are two maximizing perturbations (for 6 = -1 and 
€ = l ) ,  

Sv(T)  = €1' lU(t) ldt  (44) 
T 

dt(T) = ( T - t ) l u ( t ) l d t  (45) 

with 6u*(t) =. ~ ( t )  Since both are equivalent, we 
shall work with c = 1 in what follows. One can either 
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state the accuracy for this problem in terms of the 
above integrals over the control, or work with the 
dynamics of the (worst) perturbation states: 

Bv = /U1 (46) 
6 2  = sv (47) 

with terminal objective function i ( 6 v 2 ( T )  + 6z2(T)).  
Now we are ready to consider the different optimal 
policies corresponding to the various performance in- 
dices. 

Maximum Accuracy Control 
Here the Hamiltonian for the combined problem is 

For each t the Hamiltonian is minimal if AWu + IU 
input U must be impulsive. From first principles, it 
is clear that such a control will involve at least two 
impulses: u(t) = uo6(t) + q 6 ( t  - T).  We get 

H = A ~ v  + Auu + X6zbv + A6ulul.  (48) 

is minimal. So, if U is not constrained, the optim a 
v(O+) = U O  v(T-)  = uo v(T+) = uo +UT 
~(0s) = 0 z(T-) = UOT t(T+) = UOT, 

from which t i0 = -UT = y. This gives for the accu- 
racy measure with (34) and (45) 

(49) 

(50) -(6v2 1 + 6x2) = - (1+ 1 F I X f .  4 2  
2 2 

If the control is constrained, say 1.1 5 UO, then it 
follows from (48) that the control only assumes the 
values -UO, 0 and UO. For U = 0, the u-dependent 
term is zero. For U = -UO and u = uo respectively, 
this term is linear in t .  Thus the control policy is one 
of the sequences from the set: 
{(-~0,0,~0),(~0,0, - U o ) ,  ( - ~ o , ~ o ) , ~ ~ o , - - z L o ~ , ( ~ , - - u o ) ,  

( - U o , O ) ,  ( ~ o , ~ ) , ~ ~ , ~ o ~ , ~ ~ o ~ , ~ - ~ o ~ , ~ ~ ~ ~ .  
In order to match the given boundary conditions on 
x and v ,  one must start with U = uo and end with 
U = -IQ. So let’s assume we have the policy: 

U = { 0”’ t E [o,T-to/ . (51) 

The symmetry of the nominal control is rather obvi- 
ous and is here used as a shortcut. We get 

t E %to] 

-UO t E  T-to,T 

There are two solutions, but checking the accuracy 
term gives with (45) 

SV(T) = 2~oto (53) 
6 1 ( t )  = U O t O T ,  (54) 

which shows that the perturbation term is propor- 
tional to t i ,  hence the solution with the minus sign, 

I 

T - ,/T2 - 4% 

2 
t;, = (55) 

must be chosen to maximize accuracy. The accuracy 

is in this case iu iT2(4  + T 2 )  [l - 4-1’. In 
the limit for uo -+ 03, we retrieve the impulsive input 
solution with accuracy 3 (& + 1) xy. For T + CO, 

the accuracy gets bigger and bigger with the above 

policy, but tg --+ 0 as +. We conclude: 
With to = 0,vo = 0 and goal state xf > 0,vj  = 0,  
then as long as the reachability condition 4% < T 2  
holds, a solution exists. The optimal control con- 
sists of a maximal acceleration for a time t i  = 
$[T - 4-1, followed by coasting until time 
t; = T - t;,  and deceleration for the remainder time. 

Maximum Accuracy - Minimum Time Control 
The Hamiltonian for the combined problem is simply 

(56) 
The solution is virtually the same as in the maxi- 
mal accuracy case. Since the final time T is free, the 
transversality condition H = 0 needs to be added. 
Alternatively, one may take advantage of the solution 
obtained in the previous maximal accuracy problem. 
To this effect, consider the performance we obtained 
for f ixed T and with input constraint lu(t)l 5 UO. This 
was i u i t i ( 4  + 7‘’) where = Tto - t:. Thus the 
accuracy-time trade off gives a performance index 

H = 1 + Azv 4- 4- Aaz6v + Asu lul. 

Jacc = P. i t i (4  + T2)  + T. 
2 

Substituting 
t; + T =  - 

to 
yields 

(57) 

X f  + t o  + -1 (59) Jam = p t o  4 + t o  + - [ ( uoto 
Minimizing over to and introducing the new parame- 
ters 

R = 2pu; (60) 

(61) 
x = -  “ f  

U0 
the optimality condition yields 

Rt: + R(2 + X)tg + t i  - X = 0 ,  (62) 
which can be solved for to, and finally the optimum 
time follows from 

(63) 
X 
to 

T*=to+- .  

Graphically, the solution can be obtained by plotting 
for given X ,  the parametrized curve (R*(to), T*(to)) 

Figure 1 gives the optimal time T* for this problem 
as function of R for the case X = 100. For R = 0, the 
accuracy is not important, and the solution is the well 
known bang-bang solution [4], giving a minimal time 
T* = 20. The rapid increase of the optimal time with 
R requirement of higher accuracy) is striking, but is 

solution. 

Maximum Accuracy - Minimum Fuel Control 
Here the Hamiltonian for the combined problem is 

The solution will be of the same form as in the pre- 
vious two problems, i.e. a bang-zero-bang solution. 
This problem is rephrased as the optimization of 

to 6 e expected from the sensitivity of the bang-bang 

H = 1.1 + Azv + Auu + h s 6 v  + A6ulul.  (65) 

J,, = %;t;(4 2 + T 2 )  + 2uoto. (66) 
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The second term in the above expression gives the 
fuel consumed during the (symmetrical) acceleration 
and deceleration time. In order to reach the required 
final state, we need to impose the constraint (55). 
Substituting, one finds, using parameters R and X :  

This function is increasing with t o ,  and has no min- 
imum in the open set t o  > 0. The smaller t o  the 
less fuel is used. For an arbitrarily small acceleration 
time, a nonzero but infinesimal velocity is reached, al- 
lowin an extremely long coasting period, after which 
an inanitesimal amount of fuel needs to be spent in 
the deceleration period. These near-extreme trajec- 
tories ,have the property that the smaller the boost 
period is, the higher the accuracy will be. The min- 
imum fuel, free terminal time problem turns out to 
be not well posed, since accuracy and fuel require- 
ments are not antagonistic. In case the terminal time 
is k e d ,  the bang-zero-bang policy is the optimal one. 
The final constraint imposes t: = !j [T - d-1 
and there is no freedom left to optimize (67). The 
solution for the control u*( t )  is R-independent. 

Maximum Accuracy - Minimum Energy 
In this case the Hamiltonian for the combined prob- 
lem is 

For comparison, let again u(t)l 5 UO. The U- 

two segments of convex parabolas, joined at u = 0. 
Consider first the segment for U < 0. The minimal 
value can either occur at  one of the the boundaries 
U = -UO, or U = 0; or else it occurs at the coor- 
dinate of the top of this parabola, (if the value of 
~ ~ ~ + A , u + A ~ , l u l  is negative there). A similar state- 
ment holds for the the branch U > 0. 
The costate equations for A, and A, are 

dependent part of the Hami I tonian. consists now of 

A, = 0 (69) 
A, = -A, (70) 

which gives a solution A,( t )  = A,(T) + (T - t)A,(T) 
which is similar to the erturbation costate (41). 
Hence both A, + a n a h ,  - A& are h e a r  in t ,  
and can therefore change sign at most once. 

In order to meet the final and initial conditions, 
one must have for t = 0, the control u(0) > 0, while 
at  the final time T, u(T) < 0, the type of solution is 
a sequence of the form 

(satlu0l[-2(Au + A ~ u ) ] ,  0, Satluol [-2(Au - Abu)I)* (71) 
where satluol(.) is the saturation function: 

-U0 2 < -U0 
s q u & )  = 2 1.1 5 2 1 0  (72) { U0 2 > U0 

We shall solve the problem by matching the parame- 
ters on a symmetric control 

t E O,tl] 
t E tl,t21 
t E t2 ,T- t2]  

t E [T-- t l ,T]  
-a(T- t )  - p  t E I T - t h T - t l ]  

u( t )  = { r : f l  
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and integrating. One constraint expresses that the 
terminal position needs to be matched, another that 
the control is continuous at  the point where satura- 
tion sets in. The energy spent is 

U = uit lS3a2(t~-t:)+aP(t~-t:)+P2(tz- t l ) .  1 (74) 

Finally the perturbation term follows from (45). A 
constrained parameter optimization problem is then 
solved to find a , P , t l ,  and t 2  for the fixed terminal 
time problem. If the terminal time is free, optimiza- 
tion with respect to T is required in addition. 
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