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1 Kuhn-Tucker Problem

We will now develop the necessary conditions for y∗ ∈ Rn to be a local minimum for the
function L(y), with the p-dimensional constraint f(y) ≤ 0. We denote by x ≤ 0, for a vector
x, the scalar conditions xi ≤ 0 , i = 1, . . . p.

If for some of the constraints f1(y
∗) < 0, we say that the corresponding constraint is

inactive, and it may be eliminated from the set. If on the other hand fi(y) = 0, then this
constraint is said to be active. Clearly if at y∗ all constraints are inactive, the necessary
condition for optimality is that Ly = 0 as before.

Consider the more interesting case where 0 < m ≤ p of the p given constraints are active.
Consequently, we’ll only look at these m constraints, and with some abuse of notation, we’ll
denote this m-vector of constraints again by f(y). At this point m may be larger or smaller
than n. We will also assume that the rank of f at y∗ is r. This means that at the point y∗,
the m× n gradient matrix satisfies

rank fy(y∗) = r ≤ min(m,n)

Equivalently, this expresses that the gradients of the effective constraints span an r-dimensional
subspace of Rn.
In what follows we shall also make use of the class of selection matrices. An r−m selection
matrix Γ is an r × m matrix whose rows are arbitrarily chosen from the m × m identity
matrix. There always exists a selection matrix Γ such that rank Γfy f

′
yΓ′ = r.

If r < n, denote by Γc the complementary selection matrix, so that the rows of f are a

permutation of the rows of

[
Γfy

Γcfy

]
.
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First we will derive the set of admissible perturbations dy. A suitable basis for the tangent
space at y∗, i.e., the vector space attached at y∗ (or with origin at y∗), are the r selected
gradients (the rows of Γfy) augmented (if r < n) with n − r independent row vectors η in
the orthogonal complement of the rowspace of Γfy. Denoting this space by f⊥y , we also have
that f⊥y = [Γfy]⊥. Recall that vectors in the tangent space are row vectors. These rows, η,
satisfy Γfyη

′ = 0. Changing back to columns (more precisely: the dual space), any arbitrary
(column)-vector dy of dimension n can then be expressed as

dy = (Γfy)′(Γfyf
′
yΓ′)−1ε+ η′ ; Γfyη

′ = 0 (1)

where ε ∈ Rr. Note that (Γfyf
′
yΓ′)−1ε selects a particular linear combination of the columns

of (Γfy)′. The vector η may also be expressed as

η = f⊥
′

y ν, (2)

with ν ∈ Rn−r. If r = n, then f⊥y = 0. This may seem like a strange parametrization, but
the reason will become clear shortly. Admissibility of the perturbation, requires that the
corresponding changes in f satisfy the constraint, or df ≤ 0. Thus

df = fydy = fy(Γfy)′(Γfyf
′
yΓ′)−1ε+ fyf

⊥′

y ν (3)

from which:

Γdf = ε, (4)

Γcdf = 0, (5)

since fyf
⊥′
y = 0 by definition. The condition for admissibility is thus ε ≤ 0.

What is now the effect on dL of such an admissible perturbation? We express the gradient
Ly also in terms of the basis in the tangent space. Let thus for some row vectors λ and µ

Ly = −λΓfy + µf⊥y (6)

be the expansion of the gradient Ly in the chosen basis for the tangent space. Then the
change in L due to the admissible perturbation dy is

dL = Lydy = [−λΓfy + µf⊥y ][(Γfy)′(Γfyf
′
yΓ′)−1ε+ η′]

= −λε+ µf⊥y η
′

= −λε+ µf⊥y f
⊥′

y ν (7)

The two other terms vanish because fyf
⊥
y = 0. As ν is arbitrary, the second term can have

either sign unless µ = 0. If y∗ is a stationary solution to the problem IC, then at y∗, dL
is necessarily nonnegative for all admissible excursions. The increment dL is positive for
all admissible excursions dy if λ ≥ 0 and µ = 0. The second condition is equivalent to
Ly ∈ rowspanfy, while the first further restricts Ly to be in the cone spanned by the rows
of −fy (the negative gradients of the constraints). This means that Ly = −λfy, where λ
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cannot have negative components. This proves the following.

Kuhn-Tucker Theorem
The necessary conditions for y∗ to minimize L(y), subject to the m constraints, fy ≤ 0, are
that

Ly(y∗) + λfy(y∗) = 0

λf(y∗) = 0

λ ≥ 0 with λi = 0 if fi(y
∗) < 0.


