1. Parameter Optimization Problems:

1.2. Equality Constrained Optimization
© Erik I. Verriest*

November 19, 2008

1 Parameter Optimization with Equality Constraints

Consider the standard constraint minimization problem

$$
\min L(y) \text { such that } f(y)=c
$$

Let it be given that the scalar functions f and L are differentiable (hence automatically continuous). Assume that the parameter y lives in a parameter space Θ, whose dimension, n, may be infinity, but is at least equal to 2 , in order to avoid the trivial case. Let also $f: \mathcal{D} \subset \mathbf{R}^{n} \rightarrow \mathbf{R}^{m}$. We shall refer to this problem as Problem EC (for Equality Constraint). Assume that the problem has a solution, for $y=y^{*}$. The corresponding value of L, namely $V=L\left(y^{*}\right)$ will be called the value of the minimization problem.

1.1 The Problem EC: Necessary Conditions

We analyzed the unconstrained parameter optimization problem:

$$
\min L(y) \text { with } y \in \mathcal{D}
$$

where \mathcal{D} is a compact (i.e. closed and bounded) set in the parameter space \mathbf{R}^{n}. If L is differentiable, we know by Weierstrass's theorem that the minimum of L exists, and either is achieved in the interior $\operatorname{Int} \mathcal{D}$ or on the boundary $\partial \mathcal{D}$. A necessary condition for a point $y^{*} \in \operatorname{Int} \mathcal{D}$ to be a minimum is that for a perturbation in any arbitrary direction $d y$, one has

$$
\begin{equation*}
d L=\frac{\partial L}{\partial y} d y=0 \tag{1}
\end{equation*}
$$

[^0]But this can only be true for all infinitesimal $d y$ if $\frac{\partial L}{\partial y}=0$. It follows that an equivalent condition is $\frac{\partial L}{\partial y}=0$. For the problem $E C$ this is no longer the case. This is so because now the perturbations are no longer completely arbitrary. Only a perturbation in a direction that leaves f invariant is allowed. But the manifold $f(y)=c$ has dimension $n-m$, where m is the number of independent constraints, $f_{i}(y)=c_{i}$, constituting the vector constraint equation $f(y)=c$.

We invoke now a very fundamental theorem from multivariate analysis: The Implicit Function Theorem, stating in its elementary form that under some mild conditions any implicit function, $f\left(y_{1}, \ldots, y_{n}\right)=0$, in n variables can be written in a form where one of the variables is an explicit function of the $n-1$ remaining variables. Before giving the precise statement, some definitions are in order.

Definitions:

Let \mathcal{D} be an open set in \mathbf{R}^{n}.

- A map $f: \mathcal{D} \subset \mathbf{R}^{n} \rightarrow \mathbf{R}^{m}$ is differentiable at a point $y_{0} \in \mathcal{D}$ if the partial derivatives $\frac{\partial f_{i}}{\partial y_{j}}$ evaluated at the point y_{0} exist for all $i=1, \ldots, m$ and $j=1, \ldots n$.
- A map $f: \mathcal{D} \subset \mathbf{R}^{n} \rightarrow \mathbf{R}^{m}$ is called differentiable in \mathcal{D} if it is differentiable at every point in \mathcal{D}.
- The map $f:$ open $U \subset \mathbf{R}^{n} \rightarrow$ open $V \subset \mathbf{R}^{m}$ is called a diffeomorphism, if it is bijective (one-to-one and onto), and both f and f^{-1} are differentiable in the appropriate domains.
- The Jacobian matrix of f at $y_{0} \in \mathcal{D}$ is the $m \times n$ matrix whose $i j$-th entry is $\frac{\partial f_{i}}{\partial y_{j}}$ evaluated at the point y_{0}. Consistent with our notation, the Jacobian is the gradient matrix $\frac{\partial f}{\partial y}$, which we shall also denote by the simple form $D f$ (the latter notation is standard in the theory of functions in several variables and differential geometry).
- The rank of a differentiable map $f: \mathcal{D} \subset \mathbf{R}^{n}$ at a point $y_{0} \in \mathcal{D}$ is the rank of the Jacobian matrix $D f$ evaluated at the point y_{0}.
- The differentiable map $f: \mathcal{D} \subset \mathbf{R}^{n} \rightarrow \mathbf{R}^{m}$ is said to have constant rank in $U \in \mathcal{D}$, if for every point $y \in U$, the rank is k, for some $k \leq \min (m, n)$.

Inverse Function Theorem

Let f be a differentiable map from an open domain \mathcal{D} in \mathbf{R}^{n} to \mathbf{R}^{n}. If the Jacobian of f at y_{0} is nonsingular, then there exists an open neighborhood U of y_{0} in \mathcal{D} such that $V=f(U)$ is open in \mathbf{R}^{n} and the restriction of f to U is a diffeomorfism onto V.

Rank Theorem

Let f be a differentiable map from an open domain $\mathcal{A} \subset \mathbf{R}^{n}$ to $\mathcal{B} \subset \mathbf{R}^{m}$. If the rank of f in \mathcal{A} is k, then there exists for each point $y_{0} \in \mathcal{A}$ a neighborhood \mathcal{A}_{0} of y_{0} in \mathcal{A}, a neighborhood \mathcal{B}_{0} of $f\left(y_{0}\right)$ in \mathcal{B}, two open sets $U \subset \mathbf{R}^{n}, V \subset \mathbf{R}^{m}$, and two diffeomorphisms $g: U \rightarrow \mathcal{A}_{0}$ and
$h: \mathcal{B}_{0} \rightarrow V$ such that for all $y \in U,(h \circ f \circ g)(y)=\left[y_{1}, \ldots, y_{k}, 0, \ldots, 0\right]^{\prime}$.

Implicit Function Theorem

Let $\mathcal{A} \subset \mathbf{R}^{m}$ and $\mathcal{B} \subset \mathbf{R}^{p}$ be open sets. Let $f: \mathcal{A} \times \mathcal{B} \rightarrow \mathbf{R}^{m}$ be a differentiable map such that the Jacobian $\frac{\partial f}{\partial x}$ at the point $y_{0}^{\prime}=\left(x_{0}^{\prime}, u_{0}^{\prime}\right) \in \mathcal{A} \times \mathcal{B}$ is nonsingular, and $f\left(\left[x_{0}^{\prime}, u_{0}^{\prime}\right]^{\prime}\right)=0$, then there exist neighborhoods V of x_{0} in \mathcal{A}, and U of u_{0} in \mathcal{B} and a unique differentiable map $g: U \rightarrow V$ such that

$$
f(g(u), u)=0 \quad, \quad \forall u \in U
$$

For the proofs of these theorems, we refer to Boothby, Dieudonné or Spivak.
Let us now resume the problem $E C$. First of all notice that if $m \geq n$ we do not have an optimization problem anymore, so we shall always assume that $n>m$. Let us also assume that f has full rank in the domain of interest, if not we could have reduced the number of constraints until we end up with a set of independent constraints. Without loss of generality (e.g. by proper relabeling of variables), we can assume then that the first m columns of the Jacobian $D f$ constitute a nonsingular submatrix. Let the corresponding parameters be denoted by x, and the remaining ones by u, thus $x_{i}=y_{i}$, for $i=1, \ldots, n-m$; and $u_{j}=y_{m+j}$ for $j=1, \ldots, n-m$. With some abuse of notation, let us rewrite the constraint as $f(x, u)=0$. The necessary condition for minimality is that $d L=0$ for arbitrary $d u$, while holding $d f=0$. Thus,

$$
\begin{equation*}
d L=L_{x} d x+L_{u} d u=0 \tag{2}
\end{equation*}
$$

for all u that satisfy

$$
\begin{equation*}
d f=f_{x} d x+f_{u} d u=0 \tag{3}
\end{equation*}
$$

Since f_{x} is by assumption invertible, u determines x, i.e., $d x=-f_{x}^{-1} f_{u} d u$, from which also

$$
\begin{equation*}
d L=\left(L_{u}-L_{x} f_{x}^{-1} f_{u}\right) d u \tag{4}
\end{equation*}
$$

follows. In this expression the perturbation $d u$ is completely arbitrary. Thus this is as in the unconstrained problem. If the above is to hold for all $d u$, the equivalent condition is that the term within brackets vanishes. Define now

$$
\lambda=-L_{x} f_{x}^{-1}
$$

the condition for optimality is then

$$
\begin{equation*}
L_{u}+\lambda f_{u}=0 \tag{5}
\end{equation*}
$$

while the definition of λ can be restated as

$$
\begin{equation*}
L_{x}+\lambda f_{x}=0 \tag{6}
\end{equation*}
$$

Together (5) and (6) can be restated as the following

1.2 Method of Lagrange Multipliers

Define a Hamiltonian: $H(y, \lambda)=L(y)+\lambda f(y)$, containing $n+m$ parameters (n components of y, and m Lagange multipliers λ). Consider now the unconstrained optimization problem of H over the parameters y and λ. The necessary conditions are $\left[H_{y}, H_{\lambda}\right]=0$, from which thus $H_{y}=0$ yields the necessary conditions (5) and (6), and $H_{\lambda}=0$ yields precisely the constraint equations $f=0$.

The Lagrange multiplier technique 'reduces' the constrained optimization problem to an unconstrained optimization problem, albeit of larger dimension.

Another approach to the same problem can be obtained as follows:
Consider again

$$
\begin{aligned}
d L & =L_{x} d x+L_{u} d u \\
d f & =f_{x} d x+f_{u} d u
\end{aligned}
$$

In matrix form, the necessary conditions for an extremum of the constrained problem are

$$
\left[\begin{array}{cc}
L_{x} & L_{u} \tag{7}\\
f_{x} & f_{u}
\end{array}\right]\left[\begin{array}{l}
d x \\
d u
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

Consistency requires that the rank of the above matrix is less than $n+1$, otherwise the only solution is $d u=0$ and $d x=0$. Thus, there must be linear combinations of the rows adding to zero. Since row-operations are performed by left multiplications, there exists a vector $[1, \lambda]$ such that

$$
[1, \lambda]\left[\begin{array}{c}
L_{y} \\
f_{y}
\end{array}\right]=0
$$

which gives the usual form

$$
L_{y}+\lambda f_{y}=0
$$

This expresses the fact that at the extremum, the gradient of the performance index has to lie in the subspace spanned by the gradients of the constraints. The Lagrange multipliers are then exactly the coefficients in this linear combination.

In the following subsection, we will derive another interpretation of the Lagrange multipliers.

1.3 Embedding of the Problem EC

Consider the problem $E C$, but with the constraint equation now parametrized by $\omega \in \Omega$ This creates a family of $E C$ problems, which we shall refer to as $E C_{\Omega}$. For each $\omega \in \Omega$, there will be a solution of the $E C$-optimization problem $E C_{\omega}$. The corresponding optimizing point and value will then be parametrized by this ω as well, i.e., we get $y^{*}(\omega)$ and $V(\omega)=L\left(y^{*}(\omega)\right)$.

We shall refer to this $V(\omega)$ as the value function. A central question is now: "What nice properties does $V(\omega)$ have as function of ω ?" Typical questions are:

1. Is $V(\omega)$ finite in the neighborhood of some ω_{0} ?
2. Is $V(\omega)$ continuous near ω_{0} ?
3. Is $V(\omega)$ differentiable near ω_{0} ?

Note that even if we are only interested in one particular optimization problem, say $E C_{\omega_{0}}$, it still is of interest to consider a family in the neighborhood of ω_{0} since each of the above cited properties deals with a particular aspect of the practical solution of $E C_{\omega_{0}}$.

The first has to with solvability, or, in the appropriate context controllability. Indeed, if $f\left(y, \omega_{0}\right)=0$ has no solution, then the admissible set of parameters is empty. The usual convention is to define the infimum of L over the empty set as ∞. (If there does not exist a control such that $x\left(t_{f}\right)=0$, then the system is uncontrollable. Any finite amount of control energy (however measured) will not do the job, hence the minimal control energy or cost must be infinite.)

The second has to do with well-posedness of the solution. The continuity of V near ω_{0} is a necessary statement to display a "nice" dependence on the parameters of the problem. Different types of continuity can be defined. For instance Lipshitz continuity, $\left|V(\omega)-V\left(\omega_{0}\right)\right| \leq$ $K\left|\omega-\omega_{0}\right|$, is a stability property that is useful in error estimates if not $E C_{\omega_{0}}$ but $E C_{\omega}$ is to be solved, but only $V\left(\omega_{0}\right)$ is evaluated.

The third property leads to asymptotic analysis or perturbation methods. If $E C_{\omega_{0}}$ has a simple solution, but $E C_{\omega}$ does not, then if differentiability holds, we can evaluate

$$
\begin{equation*}
V(\omega)=V\left(\omega_{0}\right)+<\left(\omega-\omega_{0}\right), V_{\omega}\left(\omega_{0}\right)>+o\left(\omega-\omega_{0}\right) \tag{8}
\end{equation*}
$$

The bracketts denote the inner product of $\left(\omega-\omega_{0}\right)$ with the gradient of V with respect to ω for parameter ω_{0}.
Other appropriate and nice properties one may want to impart on the value function are discussed by Clarke.

1.4 The Value Function

We will now look at the value function $V(\omega)$ as function of ω. To fix on the ideas without unnecessary detail, we will assume that there is only one scalar constraint $f=c$, so $m=1$, and the constraint parameter $\omega=c$. We define the image set as the set of pairs $\{(f(y), L(y)) \mid y \in \Theta\}$. Note that this set lies in \mathbf{R}^{2}, even if Θ is infinite dimensional. Since $L(y)$ and $f(y)$ are both continuous, the image set is a smooth curve in \mathbf{R}^{2}.

The value of $V(c)$ corresponds to the ordinate of the lowest point on the image set and the vertical $f(y)=c$. It is clear from figure 1 that the value function will be nondifferentiable with respect to c.

Figure 1: Illustrating the Value Function

In the open interval $\left(c_{1}, c_{2}\right)$ the value function is continuous and differentiable. At c_{1}, the value is finite, but to the left of c_{1}, the value is ∞, since there are no points in Θ for which $f(y)=c$. At c_{2}, the value function $V(c)$ is continuous, but not differentiable: It has a "corner". In $\left(c_{2}, c_{3}\right)$ the $V(c)$ is again differentiable, whereas at c_{3} it is discontinuous, while being finite locally.

Thus, we conclude from this example that in order to study the differential properties of V we must either find and impose a priori conditions that will imply the smoothness of V at a given point, or else deal with and confront the nondifferentiability of it. Recently, new techniques have been developed to do exactly that.

Reference: Frank H. Clarke, Methods of Dynamic and Nonsmooth Optimization, SIAM CBMS-NSF No. 57, 1989.

Problem: Try to find a simple example, suitable for class presentation of a constraint optimization problem illustrating such nondifferentiable behaviors of the value function. Can you find an example with a value function that is nowhere differentiable?

If $V(c)$ is a value function for the above problem, then we must have, for any y :

$$
\begin{equation*}
V(f(y)) \leq L(y) \tag{9}
\end{equation*}
$$

If y^{*} solves the optimization problem, then $V\left(f\left(y^{*}\right)\right)=L\left(y^{*}\right)$. Combining both observations, it follows that y^{*} is the unconstrained optimizer for the function $H: y \rightarrow L(y)-V(f(y))$

A necessary condition is therefore that at y^{*}, we have $\frac{d H(y)}{d y}=0$, i.e.,

$$
\begin{equation*}
\left.L_{y}-V^{\prime}(c)\right) f_{y}=0 \tag{10}
\end{equation*}
$$

We recognize the Lagrange multiplier as $\lambda=-V^{\prime}(c)$.
This gives a nice re-interpretation of the Lagrange multiplier, but it does not provide a "proof" for the method, since it has a fatal flaw: We have assumed the differentiability of $V(c)$, and we know now better than to do that!

We will next derive more rigorously this second interpretation of the Lagrange multipliers. Consider again a family of minimization problems $E C_{\Omega}$. The value function V is, as seen before, parametrized by $\omega \in \Omega$. We shall proceed assuming that the value function is differentiable, just to interpret the Lagrange multiplier λ, but heed the warnings we made about this. We have in general:

$$
\begin{equation*}
d f=f_{x} d x+f_{u} d u+f_{\omega} d \omega \tag{11}
\end{equation*}
$$

and just as before, $d L=L_{x} d x+L_{u} d u$. Note that the increment in the constraint due to a change of the parameter is $\left.d f\right|_{(u, x)}=f_{\omega} d \omega$. The notation $\left.d f\right|_{(x, u)}$ emphasizes that the differential is computed keeping u and x constant, thus $d u=0$ and $d x=0$. At each neighboring ω we need to fulfill the constraint for this ω, that is $f(x, u, \omega) \equiv 0$, since to compute the optimal solution at each ω, the ω is kept constant. Thus we have, for fixed $d \bar{\omega}$, the constraint:

$$
\begin{equation*}
d x=-\left(f_{x}\right)^{-1} f_{u} d u+\left(f_{x}\right)^{-1} f_{\omega} d \bar{\omega} . \tag{12}
\end{equation*}
$$

Substituted in the expression for $d V=\left.d L\right|_{\text {opt }}$ this gives

$$
\begin{align*}
d V & =L_{u} d u-L_{x}\left(f_{x}\right)^{-1} f_{u} d u-L_{x}\left(f_{x}\right)^{-1} f_{\omega} d \bar{\omega} \\
& =\left[L_{u}+\left.\lambda\right|_{\omega_{0}}\right] d u+\left.\lambda\right|_{\omega_{0}} f_{\omega} d \bar{\omega} \tag{13}
\end{align*}
$$

The bracketted term on the right hand side was set to zero to find the optimal $u_{\omega_{0}}^{*}$ and $x_{\omega_{0}}^{*}$. So it remains that

$$
\begin{equation*}
d V\left(\omega_{0}\right)=d L^{*}\left(\omega_{0}\right)=\left.\lambda\right|_{\omega_{0}} f_{\omega} d \bar{\omega} \tag{14}
\end{equation*}
$$

hence

$$
\begin{equation*}
\left.\frac{d L^{*}}{d f}\right|_{x, u}=\left.\lambda\right|_{\omega_{0}} \tag{15}
\end{equation*}
$$

If the value function is differentiable, the Lagrange multiplier gives the influence or sensitivity of the value with respect to a change in the constraint. For this reason the Lagrange multipliers are sometimes referred to as the sensitivity or influence functions (they are functions of ω.)

2 Sufficient Conditions for Constrained Optimality

Up to second order, one has

$$
\begin{align*}
d L & =\left[L_{x}, L_{u}\right]\left[\begin{array}{c}
d x \\
d u
\end{array}\right]+\frac{1}{2}\left[d x^{\prime}, d u^{\prime}\right]\left[\begin{array}{cc}
L_{x x} & L_{x u} \\
L_{u x} & L_{u u}
\end{array}\right]\left[\begin{array}{c}
d x \\
d u
\end{array}\right]+\cdots, \tag{16}\\
d f & =\left[f_{x}, f_{u}\right]\left[\begin{array}{c}
d x \\
d u
\end{array}\right]+\frac{1}{2}\left[d x^{\prime}, d u^{\prime}\right]\left[\begin{array}{cc}
f_{x x} & f_{x u} \\
f_{u x} & f_{u u}
\end{array}\right]\left[\begin{array}{c}
d x \\
d u
\end{array}\right]+\cdots . \tag{17}
\end{align*}
$$

Combining, and evaluating at the extremal point:

$$
\begin{align*}
d L+\sum_{i=1}^{n} \lambda_{i} d f^{(i)} & =\frac{1}{2}\left[d x^{\prime}, d u^{\prime}\right]\left[\begin{array}{ll}
L_{x x}+\sum_{i=1}^{n} \lambda_{i} f_{x x}^{(i)} & L_{x u}+\sum_{i=1}^{n} \lambda_{i} f_{x u}^{(i)} \\
L_{u x}+\sum_{i=1}^{n} \lambda_{i} f_{x u}^{(i)} & L_{u u}+\sum_{i=1}^{n} \lambda_{i} f_{u u}^{(i)}
\end{array}\right]\left[\begin{array}{c}
d x \\
d u
\end{array}\right]+\cdots \\
& =\frac{1}{2}\left[d x^{\prime}, d u^{\prime}\right]\left[\begin{array}{ll}
H_{x x} & H_{x u} \\
H_{u x} & H_{u u}
\end{array}\right]\left[\begin{array}{c}
d x \\
d u
\end{array}\right]+\cdots \tag{18}
\end{align*}
$$

Thus sufficient conditions for a local minimum are the stationarity conditions:

$$
\begin{align*}
f(x, u) & =0 \tag{19}\\
\frac{\partial H}{\partial x} & =0 \tag{20}\\
\frac{\partial H}{\partial u} & =0 \tag{21}
\end{align*}
$$

together with the the positive definiteness condition of the matrix

$$
\left[\begin{array}{ll}
H_{x x} & H_{x u} \tag{22}\\
H_{u x} & H_{u u}
\end{array}\right]>0 .
$$

Note that if we keep the constraint satisfied, i.e., $d x=-f_{x}^{-1} f_{u} d u$ we get

$$
\begin{align*}
d L & =\frac{1}{2} d u^{\prime}\left[-f_{u}^{\prime} f_{x}^{-T}, I\right]\left[\begin{array}{cc}
H_{x x} & H_{x u} \\
H_{u x} & H_{u u}
\end{array}\right]\left[\begin{array}{c}
-f_{x}^{-1} f_{u} \\
I
\end{array}\right] d u+\cdots \\
& =\frac{1}{2} d u^{\prime}\left[\frac{\partial^{2} L}{\partial u^{2}}\right]_{f=0} d u+\cdots \tag{23}
\end{align*}
$$

where

$$
\left.\frac{\partial^{2} L}{\partial u^{2}}\right]_{f=0}=H_{u u}-f_{u}^{\prime} f_{x}^{-T} H_{x u}-H_{u x} f_{x}^{-1} f_{u}+f_{u}^{\prime} f_{x}^{-T} H_{x x} f_{x}^{-1} f_{u}
$$

The sufficient conditions for a local minimum may thus be expressed as:

$$
\begin{array}{ll}
H_{u}=0 \tag{24}\\
H_{x}=0 \\
H_{\lambda}=0
\end{array} \quad \frac{\partial^{2} L}{\partial u^{2}}{ }_{f=0}>0
$$

3 Neighboring Solutions

Suppose that the minimum solution to $L(y)$ under the constraint $f(y)=0$ was found, say y^{0}. Now we perturb the constraint to $f(y)=d f$, for small $d f$. The new optimum solution is located at y^{*}. We want now to relate y^{*} to y^{0}.

The new Hamiltonian is $H^{*}(x, u, \lambda)=L(x, u)+\lambda^{\prime} f(x, u)-d f$, with the new optimum

$$
\begin{align*}
x^{*} & =x^{0}+d x \tag{25}\\
u^{*} & =u^{0}+d u \tag{26}\\
\lambda^{*} & =\lambda^{0}+d \lambda \tag{27}
\end{align*}
$$

Obviously, the stationarity conditions still need to be satisfied, thus

$$
\left.\begin{array}{rl}
H_{x}^{*} & =0 \tag{28}\\
H_{u}^{*} & =0 \\
H_{\lambda}^{*} & =0
\end{array}\right\} \quad \text { for } \quad(x, u, \lambda)=\left(x^{*}, u^{*}, \lambda^{*}\right)
$$

If $L(\cdot)$ and $f(\cdot)$ are sufficiently smooth, then for small $d f$ one expects small $d x, d u$ and $d \lambda$, hence using a Taylor expansion about $\left(x^{0}, u^{0}, \lambda^{0}\right)$,

$$
\begin{align*}
H_{x}^{*} & =H_{x}^{0}+\left(H_{x x}^{0} d x\right)^{\prime}+\left(H_{x u}^{0} d u\right)^{\prime}+\left(f_{x}^{0} d \lambda\right)^{\prime}=0 \tag{29}\\
H_{u}^{*} & =H_{u}^{0}+\left(H_{u x}^{0} d x\right)^{\prime}+\left(H_{u u}^{0} d u\right)^{\prime}+\left(f_{u}^{0} d \lambda\right)^{\prime}=0 \tag{30}\\
H_{\lambda}^{*} & =H_{\lambda}^{0}+\left[f_{x}^{0} d x+f_{u}^{0} d u\right]^{\prime}=0 \tag{31}
\end{align*}
$$

Noting that H_{x}^{0}, H_{u}^{0} and H_{λ}^{0} are all necessarily zero, since $\left(x^{0}, u^{0}, \lambda^{0}\right)$ is an extremum, and $d f=\left[f_{x}^{0} d x+f_{u}^{0} d u\right]$. Thus:

$$
\begin{align*}
d H_{x}^{0} & =H_{x x}^{0} d x+H_{x u}^{0} d u+f_{x}^{0} d \lambda=0 \tag{32}\\
d H_{u}^{0} & =H_{u x}^{0} d x+H_{u u}^{0} d u+f_{u}^{0} d \lambda=0 \tag{33}\\
d f & =f_{x}^{0} d x+f_{u}^{0} d u . \tag{34}
\end{align*}
$$

From which:

$$
\begin{equation*}
d x=\left(f_{x}^{0}\right)^{-1} d f-\left(f_{x}^{0}\right)^{-1} f_{u}^{0} d u \tag{35}
\end{equation*}
$$

and

$$
\begin{equation*}
d \lambda=-\left(f_{x}^{0}\right)^{-1}\left(H_{x x}^{0} d x+H_{x u}^{0} d u\right) \tag{36}
\end{equation*}
$$

Substituting in the second equation:

$$
\begin{gather*}
\left(H_{u x}^{0}\left(f_{x}^{0}\right)^{-1}-f_{u}^{0^{\prime}}\left(f_{x}^{0}\right)^{-T} H_{x x}^{0}\left(f_{x}^{0}\right)^{-1}\right) d f+ \tag{37}\\
+\left(H_{u u}^{0}-H_{u x}^{0}\left(f_{x}^{0}\right)^{-1} f_{u}^{0}-f_{u}^{0^{\prime}}\left(f_{x}^{0}\right)^{-T} H_{x x}^{0}\left(f_{x}^{0}\right)^{-1} f_{u}^{0}\right) d u=0 \tag{38}
\end{gather*}
$$

or:

$$
\begin{equation*}
d u=-\left(\frac{\partial^{2} L}{\partial u^{2}}\right)_{f=0}^{-1}\left(H_{u x}^{0}-f_{u}^{0^{\prime}}\left(f_{x}^{0}\right)^{-T} H_{x x}^{0}\right)\left(f_{x}^{0}\right)^{-1} d f \tag{39}
\end{equation*}
$$

Hence, knowing the optimum $\left(u^{0}, x^{0}\right)$ for the constraint $f=0$, we can compute directly the neighboring optimum for the perturbed constraint $f=d f$, without computing the optimum by resolving the equations $H_{x}^{*}=0, H_{u}^{*}=0, H_{\lambda}^{*}=0$. All that is needed is the evaluation of $d x$ and $d u$ at the nominal point $\left(u^{0}, x^{0}\right)$, then

$$
\begin{align*}
x^{*} & =x^{0}+d x \tag{40}\\
u^{*} & =u^{0}+d u \tag{41}
\end{align*}
$$

Notice again that we assumed the differentiablility of the value function in this analysis. Furthermore, writing $d x$ and $d u$ in terms of $d f$ yields:

$$
\begin{equation*}
d L=-\lambda^{0^{\prime}} d f+\frac{1}{2} d f^{\prime} M^{0} d f+\cdots \tag{42}
\end{equation*}
$$

where M^{0} is positive definite if the Hessian of H is. This last formula expresses again the change in L from u^{0} to u^{*} due to a change in the constraint of $d f$. It is in fact the change in the value function. Thus, once again $\frac{\partial L_{\min }}{\partial f}=-\lambda^{\prime}$. The Lagrange multiplier expresses the sensitivity of $L_{\text {min }}$ with respect to the constraint.

[^0]: *School of ECE, Georgia Tech, Atlanta, GA, USA. Presently with SCD, ESAT, KULeuven.

