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1 Parameter Optimization with Equality Constraints

Consider the standard constraint minimization problem

min L(y) such that f(y) = c

Let it be given that the scalar functions f and L are differentiable (hence automatically
continuous). Assume that the parameter y lives in a parameter space Θ, whose dimension,
n, may be infinity, but is at least equal to 2, in order to avoid the trivial case. Let also
f : D ⊂ Rn → Rm. We shall refer to this problem as Problem EC (for Equality Constraint).
Assume that the problem has a solution, for y = y∗. The corresponding value of L, namely
V = L(y∗) will be called the value of the minimization problem.

1.1 The Problem EC: Necessary Conditions

We analyzed the unconstrained parameter optimization problem:

min L(y) with y ∈ D

where D is a compact (i.e. closed and bounded) set in the parameter space Rn. If L is
differentiable, we know by Weierstrass’s theorem that the minimum of L exists, and either
is achieved in the interior Int D or on the boundary ∂D. A necessary condition for a point
y∗ ∈ IntD to be a minimum is that for a perturbation in any arbitrary direction dy, one has

dL =
∂L

∂y
dy = 0. (1)
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But this can only be true for all infinitesimal dy if ∂L
∂y

= 0. It follows that an equivalent

condition is ∂L
∂y

= 0. For the problem EC this is no longer the case. This is so because now
the perturbations are no longer completely arbitrary. Only a perturbation in a direction
that leaves f invariant is allowed. But the manifold f(y) = c has dimension n −m, where
m is the number of independent constraints, fi(y) = ci, constituting the vector constraint
equation f(y) = c.

We invoke now a very fundamental theorem from multivariate analysis: The Implicit
Function Theorem, stating in its elementary form that under some mild conditions any im-
plicit function, f(y1, . . . , yn) = 0, in n variables can be written in a form where one of the
variables is an explicit function of the n − 1 remaining variables. Before giving the precise
statement, some definitions are in order.

Definitions:
Let D be an open set in Rn.

• A map f : D ⊂ Rn → Rm is differentiable at a point y0 ∈ D if the partial derivatives
∂fi

∂yj
evaluated at the point y0 exist for all i = 1, . . . , m and j = 1, . . . n.

• A map f : D ⊂ Rn → Rm is called differentiable in D if it is differentiable at every
point in D.

• The map f : open U ⊂ Rn → open V ⊂ Rm is called a diffeomorphism, if it is
bijective (one-to-one and onto), and both f and f−1 are differentiable in the appropriate
domains.

• The Jacobian matrix of f at y0 ∈ D is the m × n matrix whose ij-th entry is ∂fi

∂yj

evaluated at the point y0. Consistent with our notation, the Jacobian is the gradient
matrix ∂f

∂y
, which we shall also denote by the simple form Df (the latter notation is

standard in the theory of functions in several variables and differential geometry).

• The rank of a differentiable map f : D ⊂ Rn at a point y0 ∈ D is the rank of the
Jacobian matrix Df evaluated at the point y0.

• The differentiable map f : D ⊂ Rn → Rm is said to have constant rank in U ∈ D, if
for every point y ∈ U , the rank is k, for some k ≤ min(m,n).

Inverse Function Theorem
Let f be a differentiable map from an open domain D in Rn to Rn. If the Jacobian of f at
y0 is nonsingular, then there exists an open neighborhood U of y0 in D such that V = f(U)
is open in Rn and the restriction of f to U is a diffeomorfism onto V .

Rank Theorem
Let f be a differentiable map from an open domain A ⊂ Rn to B ⊂ Rm. If the rank of f in
A is k, then there exists for each point y0 ∈ A a neighborhood A0 of y0 in A, a neighborhood
B0 of f(y0) in B, two open sets U ⊂ Rn, V ⊂ Rm, and two diffeomorphisms g : U → A0 and
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h : B0 → V such that for all y ∈ U , (h ◦ f ◦ g)(y) = [y1, . . . , yk, 0, . . . , 0]′.

Implicit Function Theorem
Let A ⊂ Rm and B ⊂ Rp be open sets. Let f : A × B → Rm be a differentiable map such
that the Jacobian ∂f

∂x
at the point y′0 = (x′0, u

′
0) ∈ A× B is nonsingular, and f([x′0, u

′
0]
′) = 0,

then there exist neighborhoods V of x0 in A, and U of u0 in B and a unique differentiable
map g : U → V such that

f(g(u), u) = 0 , ∀ u ∈ U.

For the proofs of these theorems, we refer to Boothby, Dieudonné or Spivak.

Let us now resume the problem EC. First of all notice that if m ≥ n we do not have an
optimization problem anymore, so we shall always assume that n > m. Let us also assume
that f has full rank in the domain of interest, if not we could have reduced the number of
constraints until we end up with a set of independent constraints. Without loss of generality
(e.g. by proper relabeling of variables), we can assume then that the first m columns of
the Jacobian Df constitute a nonsingular submatrix. Let the corresponding parameters
be denoted by x, and the remaining ones by u, thus xi = yi, for i = 1, . . . , n − m ; and
uj = ym+j for j = 1, . . . , n−m. With some abuse of notation, let us rewrite the constraint
as f(x, u) = 0. The necessary condition for minimality is that dL = 0 for arbitrary du, while
holding df = 0. Thus,

dL = Lxdx + Ludu = 0 (2)

for all u that satisfy
df = fxdx + fudu = 0. (3)

Since fx is by assumption invertible, u determines x, i.e., dx = −f−1
x fudu, from which also

dL = (Lu − Lxf
−1
x fu)du (4)

follows. In this expression the perturbation du is completely arbitrary. Thus this is as in the
unconstrained problem. If the above is to hold for all du, the equivalent condition is that
the term within brackets vanishes. Define now

λ = −Lxf
−1
x ,

the condition for optimality is then

Lu + λfu = 0, (5)

while the definition of λ can be restated as

Lx + λfx = 0. (6)

Together (5) and (6) can be restated as the following
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1.2 Method of Lagrange Multipliers

Define a Hamiltonian: H(y, λ) = L(y)+λf(y), containing n+m parameters (n components
of y, and m Lagange multipliers λ). Consider now the unconstrained optimization problem
of H over the parameters y and λ. The necessary conditions are [Hy, Hλ] = 0, from which
thus Hy = 0 yields the necessary conditions (5) and (6), and Hλ = 0 yields precisely the
constraint equations f = 0.

The Lagrange multiplier technique ‘reduces’ the constrained optimization problem to an
unconstrained optimization problem, albeit of larger dimension.

Another approach to the same problem can be obtained as follows:
Consider again

dL = Lxdx + Ludu

df = fxdx + fudu.

In matrix form, the necessary conditions for an extremum of the constrained problem are
[

Lx Lu

fx fu

] [
dx
du

]
=

[
0
0

]
(7)

Consistency requires that the rank of the above matrix is less than n+1, otherwise the only
solution is du = 0 and dx = 0. Thus, there must be linear combinations of the rows adding
to zero. Since row-operations are performed by left multiplications, there exists a vector
[1, λ] such that

[1, λ]

[
Ly

fy

]
= 0,

which gives the usual form
Ly + λfy = 0.

This expresses the fact that at the extremum, the gradient of the performance index has to
lie in the subspace spanned by the gradients of the constraints. The Lagrange multipliers are
then exactly the coefficients in this linear combination.

In the following subsection, we will derive another interpretation of the Lagrange multi-
pliers.

1.3 Embedding of the Problem EC

Consider the problem EC, but with the constraint equation now parametrized by ω ∈ Ω This
creates a family of EC problems, which we shall refer to as ECΩ. For each ω ∈ Ω, there will
be a solution of the EC-optimization problem ECω. The corresponding optimizing point and
value will then be parametrized by this ω as well, i.e., we get y∗(ω) and V (ω) = L(y∗(ω)).
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We shall refer to this V (ω) as the value function. A central question is now: “What nice
properties does V (ω) have as function of ω?” Typical questions are:

1. Is V (ω) finite in the neighborhood of some ω0?

2. Is V (ω) continuous near ω0?

3. Is V (ω) differentiable near ω0?

Note that even if we are only interested in one particular optimization problem, say ECω0 ,
it still is of interest to consider a family in the neighborhood of ω0 since each of the above
cited properties deals with a particular aspect of the practical solution of ECω0 .

The first has to with solvability, or, in the appropriate context controllability. Indeed,
if f(y, ω0) = 0 has no solution, then the admissible set of parameters is empty. The usual
convention is to define the infimum of L over the empty set as ∞. (If there does not exist a
control such that x(tf ) = 0, then the system is uncontrollable. Any finite amount of control
energy (however measured) will not do the job, hence the minimal control energy or cost
must be infinite.)

The second has to do with well-posedness of the solution. The continuity of V near ω0 is
a necessary statement to display a “nice” dependence on the parameters of the problem. Dif-
ferent types of continuity can be defined. For instance Lipshitz continuity, | V (ω)−V (ω0) |≤
K | ω − ω0 |, is a stability property that is useful in error estimates if not ECω0 but ECω is
to be solved, but only V (ω0) is evaluated.

The third property leads to asymptotic analysis or perturbation methods. If ECω0 has a
simple solution, but ECω does not, then if differentiability holds, we can evaluate

V (ω) = V (ω0) + <(ω − ω0), Vω(ω0)> + o(ω − ω0). (8)

The bracketts denote the inner product of (ω − ω0) with the gradient of V with respect to
ω for parameter ω0.
Other appropriate and nice properties one may want to impart on the value function are
discussed by Clarke.

1.4 The Value Function

We will now look at the value function V (ω) as function of ω. To fix on the ideas with-
out unnecessary detail, we will assume that there is only one scalar constraint f = c, so
m = 1, and the constraint parameter ω = c. We define the image set as the set of pairs
{(f(y), L(y)) | y ∈ Θ}. Note that this set lies in R2, even if Θ is infinite dimensional. Since
L(y) and f(y) are both continuous, the image set is a smooth curve in R2.
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The value of V (c) corresponds to the ordinate of the lowest point on the image set and
the vertical f(y) = c. It is clear from figure 1 that the value function will be nondifferentiable
with respect to c.

L(y)

f (y)

c1 c2 c3

Figure 1: Illustrating the Value Function

In the open interval (c1, c2) the value function is continuous and differentiable. At c1,
the value is finite, but to the left of c1, the value is ∞, since there are no points in Θ for
which f(y) = c. At c2, the value function V (c) is continuous, but not differentiable: It has a
“corner”. In (c2, c3) the V (c) is again differentiable, whereas at c3 it is discontinuous, while
being finite locally.

Thus, we conclude from this example that in order to study the differential properties of
V we must either find and impose a priori conditions that will imply the smoothness of V
at a given point, or else deal with and confront the nondifferentiability of it. Recently, new
techniques have been developed to do exactly that.

Reference: Frank H. Clarke, Methods of Dynamic and Nonsmooth Optimization, SIAM
CBMS-NSF No. 57, 1989.

Problem: Try to find a simple example, suitable for class presentation of a constraint op-
timization problem illustrating such nondifferentiable behaviors of the value function. Can
you find an example with a value function that is nowhere differentiable?

If V (c) is a value function for the above problem, then we must have, for any y:

V (f(y)) ≤ L(y). (9)

If y∗ solves the optimization problem, then V (f(y∗)) = L(y∗). Combining both observations,
it follows that y∗ is the unconstrained optimizer for the function H : y → L(y) − V (f(y))
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A necessary condition is therefore that at y∗, we have dH(y)
dy

= 0, i.e.,

Ly − V ′(c))fy = 0. (10)

We recognize the Lagrange multiplier as λ = −V ′(c).

This gives a nice re-interpretation of the Lagrange multiplier, but it does not provide a
“proof” for the method, since it has a fatal flaw: We have assumed the differentiability of
V (c), and we know now better than to do that!

We will next derive more rigorously this second interpretation of the Lagrange multipliers.
Consider again a family of minimization problems ECΩ. The value function V is, as seen
before, parametrized by ω ∈ Ω. We shall proceed assuming that the value function is
differentiable, just to interpret the Lagrange multiplier λ, but heed the warnings we made
about this. We have in general:

df = fx dx + fu du + fω dω (11)

and just as before, dL = Lx dx + Lu du. Note that the increment in the constraint due
to a change of the parameter is df |(u,x) = fω dω. The notation df |(x,u) emphasizes that
the differential is computed keeping u and x constant, thus du = 0 and dx = 0. At each
neighboring ω we need to fulfill the constraint for this ω, that is f(x, u, ω) ≡ 0, since to
compute the optimal solution at each ω, the ω is kept constant. Thus we have, for fixed dω,
the constraint:

dx = −(fx)
−1fu du + (fx)

−1 fω dω. (12)

Substituted in the expression for dV = dL |opt this gives

dV = Lu du− Lx(fx)
−1fu du− Lx(fx)

−1 fω dω

= [Lu + λ |ω0 ]du + λ |ω0 fω dω (13)

The bracketted term on the right hand side was set to zero to find the optimal u∗ω0
and x∗ω0

.
So it remains that

dV (ω0) = dL∗(ω0) = λ |ω0 fω dω, (14)

hence
dL∗

df

∣∣∣∣
x,u

= λ |ω0 . (15)

If the value function is differentiable, the Lagrange multiplier gives the influence or sensitivity
of the value with respect to a change in the constraint. For this reason the Lagrange multipli-
ers are sometimes referred to as the sensitivity or influence functions (they are functions of ω.)
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2 Sufficient Conditions for Constrained Optimality

Up to second order, one has

dL = [Lx, Lu]

[
dx
du

]
+

1

2
[dx′, du′]

[
Lxx Lxu

Lux Luu

] [
dx
du

]
+ · · · , (16)

df = [fx, fu]

[
dx
du

]
+

1

2
[dx′, du′]

[
fxx fxu

fux fuu

] [
dx
du

]
+ · · · . (17)

Combining, and evaluating at the extremal point:

dL +
n∑

i=1

λi df
(i) =

1

2
[dx′, du′]

[
Lxx +

∑n
i=1 λif

(i)
xx Lxu +

∑n
i=1 λif

(i)
xu

Lux +
∑n

i=1 λif
(i)
xu Luu +

∑n
i=1 λif

(i)
uu

] [
dx
du

]
+ · · ·

=
1

2
[dx′, du′]

[
Hxx Hxu

Hux Huu

] [
dx
du

]
+ · · · (18)

Thus sufficient conditions for a local minimum are the stationarity conditions:

f(x, u) = 0 (19)

∂H

∂x
= 0 (20)

∂H

∂u
= 0, (21)

together with the the positive definiteness condition of the matrix
[

Hxx Hxu

Hux Huu

]
> 0. (22)

Note that if we keep the constraint satisfied, i.e., dx = −f−1
x fu du we get

dL =
1

2
du′[−f ′uf

−T
x , I]

[
Hxx Hxu

Hux Huu

] [ −f−1
x fu

I

]
du + · · · ,

=
1

2
du′

[
∂2L

∂u2

]

f=0

du + · · · , (23)

where
∂2L

∂u2

]

f=0

= Huu − f ′uf
−T
x Hxu −Huxf

−1
x fu + f ′uf

−T
x Hxxf

−1
x fu.

The sufficient conditions for a local minimum may thus be expressed as:

Hu = 0
Hx = 0
Hλ = 0

∂2L

∂u2 f=0
> 0. (24)
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3 Neighboring Solutions

Suppose that the minimum solution to L(y) under the constraint f(y) = 0 was found, say
y0. Now we perturb the constraint to f(y) = df , for small df . The new optimum solution is
located at y∗. We want now to relate y∗ to y0.

The new Hamiltonian is H∗(x, u, λ) = L(x, u) + λ′f(x, u)− df , with the new optimum

x∗ = x0 + dx (25)

u∗ = u0 + du (26)

λ∗ = λ0 + dλ. (27)

Obviously, the stationarity conditions still need to be satisfied, thus

H∗
x = 0

H∗
u = 0

H∗
λ = 0



 for (x, u, λ) = (x∗, u∗, λ∗). (28)

If L(·) and f(·) are sufficiently smooth, then for small df one expects small dx, du and dλ,
hence using a Taylor expansion about (x0, u0, λ0),

H∗
x = H0

x + (H0
xxdx)′ + (H0

xudu)′ + (f 0
xdλ)′ = 0 (29)

H∗
u = H0

u + (H0
uxdx)′ + (H0

uudu)′ + (f 0
udλ)′ = 0 (30)

H∗
λ = H0

λ + [f 0
xdx + f 0

udu]′ = 0 (31)

Noting that H0
x, H0

u and H0
λ are all necessarily zero, since (x0, u0, λ0) is an extremum, and

df = [f 0
xdx + f 0

udu]. Thus:

dH0
x = H0

xxdx + H0
xudu + f 0

xdλ = 0 (32)

dH0
u = H0

uxdx + H0
uudu + f 0

udλ = 0 (33)

df = f 0
xdx + f 0

udu. (34)

From which:
dx = (f 0

x)−1df − (f 0
x)−1f 0

udu, (35)

and
dλ = −(f 0

x)−1(H0
xxdx + H0

xudu). (36)

Substituting in the second equation:

(H0
ux(f

0
x)−1 − f 0′

u (f 0
x)−T H0

xx(f
0
x)−1)df+ (37)

+(H0
uu −H0

ux(f
0
x)−1f 0

u − f 0′
u (f 0

x)−T H0
xx(f

0
x)−1f 0

u)du = 0 (38)

or:

du = −
(

∂2L

∂u2

)−1

f=0

(H0
ux − f 0′

u (f 0
x)−T H0

xx)(f
0
x)−1df. (39)
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Hence, knowing the optimum (u0, x0) for the constraint f = 0, we can compute directly
the neighboring optimum for the perturbed constraint f = df , without computing the opti-
mum by resolving the equations H∗

x = 0, H∗
u = 0, H∗

λ = 0. All that is needed is the evaluation
of dx and du at the nominal point (u0, x0), then

x∗ = x0 + dx (40)

u∗ = u0 + du (41)

Notice again that we assumed the differentiablility of the value function in this analysis.
Furthermore, writing dx and du in terms of df yields:

dL = −λ0′df +
1

2
df ′M0df + · · · , (42)

where M0 is positive definite if the Hessian of H is. This last formula expresses again the
change in L from u0 to u∗ due to a change in the constraint of df . It is in fact the change
in the value function. Thus, once again ∂Lmin

∂f
= −λ′. The Lagrange multiplier expresses the

sensitivity of Lmin with respect to the constraint.


