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1 Central Theme of Optimization Problems

There are five central questions for any optimization problem:

1. Existence: Do there exist solutions to the problem? If the answer is negative, no further
effort should be spent. The question of existence is therefore important, and not just
a technicality for mathematicians.

2. Uniqueness: If a solution exists, is it the onbly one, or are there more solutions?

3. Sufficient Conditions: When are we certain that a candidate solution is indeed a solu-
tion?

4. Necessary Conditions: What clues do we have to find a solution? If we know what
conditions are necessary, then we now that if a candidate does not satisfy this condition,
it cannot be a solution to the problem.

5. Computational Methods: What are efficient algorithms to solve a problem?

Remark: Computational methods are always finite methods, involving algebraic opera-
tions. It is well known that typically such methods will yield solutions. Think for instance
about solving ordinary differential equations via discretization. Such a “solution” can always
be constructed even if the original differential equation can be proven to have no solution!
Therefore, the questions of solvability, stability, and necessary and sufficient conditions are
not just mathematical oddities or purely academic problems, but are indeed very important,
and should form an integral part of every analysis and design. Too often a blind belief in
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computer power has led to catastrophic failures!

The simplest optimization problems are the problems of extremizing smooth functions of
several variables. Several techniques are available.

i) Geometric Methods. These involve the optimization of the Euclidean distances. Recall
that the shortest distance between two points is the length of a straight line segment
between these points, many problems can be reduced to this. The parametrization
may enter in the choice of intermediate points.

ii) Algebraic Methods. This involves in particular the use of inequalities. If one can show
that the objective function is bounded by a simpler expression, and if it can be shown
that the bound is actually achievable, then the optimum is readily found.

iii) Analytic Methods. If the objective function is a smooth function of the parameters,
then the extrema are determined by setting the partial derivatives equal to zero. Special
care must be taken if the parameter domain is bounded.

iv) Numerical Methods. Basic methods are the gradient method (steepest descent) and
Newton’s method.

2 Geometric Methods

Euclidean geometry has a wealth of simple (and not so simple) distance minimization prob-
lems. A basic one is the following:

Problem 1: Let A and B be two points on the same side of a line `. Find a point C ∈ `
such that the sum of the distances, d(A,C) + d(C,B), is minimal.

This problem was first posed by Heron of Alexandria, first century A.D. Mirror symmetry
is the technique that leads to the quick solution of this problem.

Here are some additional problems:

Problem 2: Let C be a given point in the interior of a given angle aOb. Find a point A on
Oa and B on Ob such that the perimeter of the triangle ABC is a minimum.
Be sure to look at all possible cases for the angle aOb from 0 to 2π.

Problem 3: Given an angle aOb and two points, C and D, in its interior, determine a point
A on Oa and B on Ob such that d(A,B) + d(B,C) + d(C,D) + d(D,A) is a minimum.

Problem 4: Given three points A,B,C, find the point D such that the sum of the distances
d(D,A) + d(D,B) + d(D,C) is a minimum. This problem is known as Steiner’s problem.
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Its solution is known as the Torricelli point of the triangle

Problem 5: Solve Problem 4 for four points.

Note that all these problems have practical relevance. For instance Problems 4 and 5
ask for the minimal length of freeway (cables, pipelines or canals) linking three or four towns.

Problem 6: Will the answer to Problem 5 change if one does not require that the highways
intersect in one point?

Problem 7: This is a “dual” to Steiner’s problem: Find a point A from which the sum of
the distances to three given lines, a, b, and c, is a minimum.

We do not have to stick to problems in the plane: One may ask for instance for the
shortest distance between two points on a cube, a pyramid, etc. These are easily solved by
“unfolding and flattening”. A typical application is the following problem.

Problem 8: Find the path for the minimal length of cable between a provider P and user
U, for a given mountainous terrain.

Here is a problem from the first textbook known to mankind: Euclid’s Elements, written
in the 4-th century B.C.

Problem 9 (Euclid’s Problem). In a given triangle ABC, inscribe a parallelogram ADEF
(EF//AB, DE//AC) of maximal area.

Finally, we state also the classical jewel: Dido’s problem, which while not a minimum
distance problem, it still is amenable to solution by geometric reasoning:

Problem 10: Find the closed curve of fixed length for which the enclosed area is maximal.
This was the first extremal problem discussed in the scientific literature. It appeared in the
ninth century B.C., in the Aeneid of Vergil, although stated somewhat differently:

They bought as much land - and called it Birsa -as could be encircled by a bull’s
hide.

Its solution was surely well known to Aristotle (4-th century B.C.) The geometric solution,
due to Steiner is sketched below:

0. The tacit assumption is that there exists such a curve. (This is justified).

1. The extremal curve is convex. Prove by contradiction.
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2. If points A and B halve the length of the extremal curve, then the chord AB halves
the area it encloses. Prove by contradiction.

3. Suppose that points A and B halve the extremal curve. If C is any point on the curve,
then the angle ACB is a right angle.

3 Fundamental Inequalities

As mentioned, many extremal problems are concealed in various inequalities. An inequality
is called exact if equality is actually attained. (e.g. 2 ≤ 3 is not exact, whereas a2 ≥ 0 is,
since equality holds if a = 0).

3.1 Arithmetic-Geometric Means

Let a and b be nonnegative numbers. Their arithmetic mean is a+b
2

, and the geometric mean√
ab. The following inequality holds:

√
ab ≤ a+ b

2
. (1)

This inequality is exact (equality holds when a = b.)

3.2 Arithmetic-Geometric Means (General Case)

For nonnegative numbers x1, x2, . . . , xn we have the inequality

[x1 · · · xn]1/n ≤ x1 + · · · xn
n

(2)

Equality holds if all numbers are equal.

3.3 Inequality of Arithmetic-Quadratic Means

The quadratic mean of the numbers x1, . . . , xn is defined by
√

x2
1+···+x2

n

n
. The following holds:

x1 + . . . xn
n

≤
√
x2

1 + · · ·+ x2
n

n
(3)

It is an equality if all numbers are equal. It follows from this and the previous inequality
that

[x1 · · · xn]1/n ≤
√
x2

1 + · · ·+ x2
n

n
(4)
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3.4 Cauchy-Bunyakovskii Inequality

For arbitrary numbers x1, . . . xn, y1, . . . , yn, we have the inequality

x1y1 + . . .+ xnyn ≤ (x2
1 + . . .+ x2

n)1/2(y2
1 + . . .+ y2

n)1/2. (5)

This inequality is again exact: Equality holds for x1 = y1, . . . , xn = yn.

3.5 Hölder Inequality

This is an important generalization of the Cauchy-Bunyakowskii inequality:
For nonnegative numbers x1, . . . xn, y1, . . . , yn, and for p > 1 and q satisfying

1

p
+

1

q
= 1

we have:
x1y1 + . . .+ xnyn ≤ (xp1 + . . .+ xpn)1/p(yq1 + . . .+ yqn)1/q. (6)

3.6 Matrix Inequalities

Some concepts from matrix theory, which have plenty of applications in systems theory,
optimization, and numerical linear algebra, are introduced. The first section deals with the
eigen decomposition of symmetric matrices and some related optimization problems. Some
important matrix groups are discovered along the way.

A square matrix A ∈ Rn×n is called symmetric if A = A′, and anti (or skew-) symmetric
if A = −A′. Any matrix P ∈ Rn×n can be decomposed in a symmetric and an anti (or
skew-) symmetric part:

P =
1

2
(P + P )′ +

1

2
(P − P ′) = PSym + PAsym. (7)

Consider now the quadratic form, x′Px =
∑n
i=1 xixjPij, where x ∈ Rn, and P ∈ Rn×n. First,

we show that the symmetric part, PSym, is the only quantity that matters. Indeed, since
x′Px is a scalar quantity, we have x′Px = (x′Px)′ = x′P ′x. Hence: x′Px = x′PSymx. Next
we show that the eigenvalues of symmetric matrices have remarkable properties:

3.6.1 Eigen Decomposition

Proposition: Any real symmetric matrix P ∈ Rn×n has n real eigenvalues, and one can
always find a set of n mutually orthogonal eigenvectors.

Proof: See class notes.
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It follows from the proposition that a symmetric matrix can always be diagonalized by a
real similarity transformation. Namely let the transformation matrix Y be formed by putting
n mutually orthogonal eigenvectors (such a set can always be found) ‘shoulder to shoulder’.

Now the eigenvectors can always be normalized. A matrix X formed by putting n mu-
tually orthonormal vectors shoulder to shoulder has the property that

(X ′X)ij = x′ixj = δij, or, X ′X = I (8)

It then follows at once that XX ′ = I as well, and hence det(X) = ±1. The subset of matrices
in Rn×n with the property X ′X = I forms a group under composition (matrix product). It
is a subgroup of the general linear group Gln(R), called the orthogonal group, and denoted
by On. Clearly, it has two disjoint components. (In order to talk about disjointness, one
needs to introduce a distance function; it is easily checked that a distance, induced by an

inner product d(X, Y ) = ‖X − Y ‖ =
√

Tr (X − Y )′(X − Y ) satisfies all needs.) The two
components are the set of orthogonal matrices with unit determinant, and the set of orthog-
onal matrices with determinant −1. The first set forms itself a group under composition,
and is therefore a subgroup of On, called the special orthogonal group, and denoted by SOn.
The group SOn is also a subgroup of the special linear group, denoted Sln(R), which is itself
a subgroup of Gln(R), consisting of the matrices with determinant equal to 1. The group
SOn correponds to the pure rotations. Orthogonal matrices with determinant −1 are also
called improper rotations. A determinant −1 is associated geometrically with a reflection.
We summarize the above in the very important

Theorem 3.6.1: Eigen decomposition of a symmetric matrix
Any symmetric matrix S ∈ Rn×n can be decomposed in the product U ′ΛU , where the columns
of U ∈ On are the orthonormal eigenvectors of S, and Λ is the diagonal matrix of the (real)
eigenvalues of S.

This eigen decomposition, also called spectral decomposition, is closely related to the singular
value decomposition, to be discussed further. Quadratic forms play also an important role
in optimization problems. The smallest and largest eigenvalues of a symmetric matrix are
solutions to a constraint optimization problem, as discovered by Rayleigh and Ritz.

Therorem 3.6.2: Rayleigh-Ritz
Let S be a real symmetric matrix, then the smallest and the largest eigenvalue are respectively
the solutions:

λmin = min
x′x=1

x′Sx

λmax = max
x′x=1

x′Sx

Proof: Let S have the eigen decomposition U ′ΛU , with the eigenvalues ordered as λmin =
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λ1 ≤ λ2 ≤ · · · ≤ λn = λmax, so that

x′Sx = x′U ′ΛUx =
n∑
i=1

λi(Ux)2
i =

n∑
i=1

λiy
2
i ,

where we have set y = Ux. Since U is an orthogonal matrix, the constraint x′x = 1 is equiv-
alent to y′y = 1. Hence the optimization problems are solved if one chooses for y respectively
the vectors e1 and en. QED

Note that, when one goes back to the original problem, the optimizing vectors are re-
spectively x∗ = Ue1 = u1 and x∗ = Uen = un. The Rayleigh-Ritz theorem can be extended
further to:

λk = min
x′x = 1

x ⊥ span{u1, . . . , uk−1}

x′Sx,

where the ui are the eigenvectors of S, i.e. the columns of U . We cite a related result, not
involving the exact knowledge of the eigenvectors of S, known as the ”min-max theorem”.
For a proof, we refer to [2, p. 179]:

Theorem 3.6.3: (Courant-Fisher)
Let S be a symmetric matrix, with eigenvalues ordered by λmin = λ1 ≤ λ2 ≤ · · · ≤ λn = λmax,
and let k be any integer 1 ≤ k ≤ n. Then

λk = min
w1,w2,...,wn−k∈Rn

max
x′x = 1

x ⊥ span{w1, . . . , wn−k}

x′Sx

λk = max
w1,w2,...,wk−1∈Rn

min
x′x = 1

x ⊥ span{w1, . . . , wk−1}

x′Sx

Note that if k = 1 or k = n, then the outer optimization is over an empty set, and does
therefore not take place. In these cases this theorem coincides with the Rayleigh-Ritz results.
An important consequence of the Courant-Fisher theorem is the following property of the
eigenvalues of a bordered symmetric matrix.

Definition: Let A be a symmetric matrix, then a bordered matrix extension of A is the
matrix

A(a, α) =

[
A a
a′ α

]
∈ Rn×n

with α ∈ R and a ∈ Rn

Theorem 3.6.4: Let the eigenvalues of the bordered matrix A be µ1 ≥ µ2 ≥ · · · ≥ µn+1, and
the eigenvalues of A be λ1 ≥ λ2 ≥ · · · ≥ λn, then the interlacing inequalities

µ1 ≥ λ1 ≥ µ2 ≥ λ2 · · · ≥ λn ≥ µn+1,
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hold.

Proof: Uses the Courant-Fisher variational characterization [2, p. 179]. QED
For a nice exposition of other applications of the min-max theorem, or the variational char-
acterization of the eigenvalues, we refer to the book [2].

3.6.2 Definiteness

A symmetric matrix P is called positive semi-definite if, ∀x ∈ Rn, the quadratic form
x′Px ≥ 0. It is called positive definite if, ∀x 6= 0 ∈ Rn, x′Px > 0. The following properties
of positive definite matrices are easily shown:

1. Any principal submatrix of a positive definite matrix is positive definite.

2. Any nonnegative linear combination of positive definite matrices is positive definite.
One can also express this property by saying that the set of positive definite matrices
forms a positive cone in the vector space Rn×n.

3. Each eigenvalue of a positive definite matrix is real and positive.

4. If P ∈ Rn×n is positive definite, then for arbitrary M ∈ Rp×n, MPM ′ is positive semi-
definite. Since ρ(MPM ′) = ρ(M), the matrix MPM ′ is positive definite iff ρ(M) = p.
(ρ(M) is the rank of M .)

Obviously, for all x 6= 0 the quadratic form x′Ax > 0 iff ASym is positive definite.

Finally, a matrix P is called negative definite (semi-definite) iff the matrix −P is positive
definite (semi-definite). A matrix that is neither positive nor negative definite is called
indefinite.

3.6.3 Sums of Hermitian Matrices

Consider the triple of Hermitian matrices A,B and C = A + B. Let their eigenvalues
respectively be enumerated as α1 ≥ α2 ≥ · · · ≥ αn; β1 ≥ β2 ≥ · · · ≥ βn; γ1 ≥ γ2 ≥ · · · ≥ γn.
It follows from the previous section that

γ1 ≤ α1 + β1

γn ≥ αn + βn.

Weyl proved the following more general inequalities:

γi+j−1 ≤ αi + βj for i+ j − 1 ≤ n. (9)

In 1949 Ky Fan proved that

k∑
j=1

γj ≤
k∑
j=1

αj +
k∑
j=1

βj 1 ≤ k ≤ n. (10)
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In turn, this was further generalized by Lidskii (1950) and Wielandt (final proof). Let
1 ≤ k ≤ n and let 1 ≤ i1 ≤ i2 · · · ≤ ik ≤ n. Then

k∑
j=1

γij ≤
k∑
j=1

αij +
k∑
j=1

βj. (11)

4 Calculus: the Great Extremal Problem Solver

4.1 Weierstrass’s Theorem

4.1.1 One dimension

i) Necessary conditions for a minimum at x∗ ∈ [a, b]:

a) f ′(x∗) = 0, and f ′′(x∗) ≥ 0 if a < x∗ < b

b) f ′(x∗) ≥ 0, if x∗ = a

c) f ′(x∗) ≤ 0, if x∗ = b

In b) and c), the one sided derivatives are understood.

ii) Sufficient conditions for a local minimum at x∗ ∈ [a, b]:
If we have the strict inequalities:

f ′(x∗) > 0 for b)
f ′(x∗) < 0 for c)
f ′′(x∗) > 0 for a),

then there exists a neighborhood, N (x∗), of x∗, such that

f(x∗) < f(x),∀x ∈ N (x∗) ∩ [a, b] \ x∗.

iii) Existence of a minimum:
If f is continuous on [a,b], then f has a minimum there. (In fact it suffices that f is lower-
semicontinuous.)

Uniqueness of the minimum:
If f is strictly convex on [a,b], it has a minimum at a unique point x∗ ∈ [a, b]. A sufficient
condition for f to be strictly convex on [a, b] is

f ′′(x) > 0 on [a, b].
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4.1.2 Multi Parameter Space

Weierstrass Theorem: Every function which is continuous in a closed domain D of the vari-
ables possesses a largest and a smallest value in the interior or on the boundary of the region.

A necessary condition for the differentiable function J = L(u1, . . . , un) to have an ex-
tremum at an interior point is

∂L

∂u1

=
∂L

∂u2

= · · · = ∂L

∂un
= 0.

4.2 Gradients - Notation

If u is the column vector [u1, . . . , un]′, then we shall denote the gradient of L as the row
vector

∂L

∂u
=

[
∂L

∂u1

,
∂L

∂u2

, . . . ,
∂L

∂un

]
.

Thus we may write the total differential

dL =
n∑
i=1

∂L

∂ui
dui

simply as

dL =
∂L

∂u
du.

4.3 Matrixfunctions and their Gradients

More generally, if X is an n×m matrix of parameters, then we shall define the gradient of
the scalar matrix function f(X) as(

∂f(X)

∂X

)
α,β

=
∂f(X)

∂Xβ,α

Note the reordering of the indices, consistent with considering the gradient with respect to
a column vector as a row vector.

It follows now easily from the definition that

∂ TrAX

∂X
= A

and for a symmetric matrix P ,
∂ TrX ′PX

∂X
= 2X ′P

In computing matrix gradients, the following identities are helpful:

TrP = TrP ′
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and the cyclic permutation property:

TrABC = TrBCA = TrCAB.

The following general gradient rule is easily established for a matrix functionA(·). It provides
a ‘product’ rule for the matrix calculus.

∂ TrA(X)X

∂X
= A(X) +

∂ TrA(Y )X

∂Y

∣∣∣∣∣
Y=X

.

Example: Let X be a square matrix:

∂ TrXX ′X

∂X
= XX ′ +X ′X + (X ′)2.

For matrix functions involving the inverse matrix, note that

∂ X−1

∂Xα,β

= −X−1Mα,β,

where
Mα,β

i,j = δαj
(
X−1

)
βj

Example: Let X be nonsingular:

∂ TrAX−1

∂X
= −X−1AX−1.

For matrix functions involving the determinant, Laplace’s expansion easily shows for non-
singular X that:

∂ detX

∂X
= AdjX = detX ·X−1.

Combining with the product rule we get, letting A(X) be a square matrix function:

∂ detA(X)

∂X
=
∂ Tr [AdjYA(X)]

∂X

∣∣∣∣∣
Y=A(X)

.

Example:
∂ detAX

∂X
= Adj (AX) ·X.

Example:
∂ detX ′X

∂X
= 2Adj (X ′X) ·X ′.

Example:
∂ detXX ′

∂X
= 2X ′Adj (XX ′).

As an interesting application, consider the gradient of the closed loop characteristic polyno-
mial αK(s) = det [sI − A+BK] with respect to the feedback gain:

∂ det [sI − A+BK]

∂K
= (sI − A+BK)−1B αK(s)
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5 Numerical Methods

5.1 Steepest Descent

5.2 Newton’s Algorithm
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