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In this section an important technique for analyzing nonlinear systems is discussed. First
the notion of an equilibrium is defined. Then it is shown how in the neighborhood of a
static equilibrium point a system may be linearized. In many situations (e.g., trajectory
control for spacecraft) one may want to build systems that automatically steers a perturbed
trajectory back to the nominal one. If the perturbations are sufficiently small, analysis and
design problems benefit from linearization about the nominal trajectory. Generically such
situations lead to time varying linear models, even if the original nonlinear model is time
invariant.

1 Equilibria for Nonlinear Systems

Consider a nonlinear system given by the state equations

ẋ = f(x, u) (1)

y = h(x), (2)

where x ∈ IR, f : IRn × IR→ IRn and h : IRn → IR. Let the input u be identically zero, then
if there exists a vector x such that f(x, 0) = 0, it follows that ẋ = 0, so that the system will
remain in the state x. One says that the system is in equilibrium and such a state is called
an equilibrium state.

Example: The scalar system ẋ = x(x2 − 1) has three equilibrium states: −1, 0 and +1.

Note that a linear system, ẋ = Ax + bu, always has the zero state as equilibrium state.
It is possible that there are infinitely many equilibria, but then the A-matrix must be de-
generate (singular). Any state in the nullspace N (A) is then an equilibrium. Note however
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that a linear system cannot have isolated equilibria.
The definition of an equilibrium can be generalized. Suppose that instead of u(t) ≡ 0 one
allows also constant inputs u0.

Definition: The system (2) has the equilibrium solution (u0, x0) if u0 is constant and

f(x0, u0) = 0.

It is possible that no equilibria exist. For example: ẋ = 1 + u2 has no equilibrium solu-
tion. There is however a certain “steadyness” present in this system: for u ≡ 0, the second
derivate of x is identically zero, so that one could speak of a uniform motion.
The system ẋ = x2 + u2 has only one equilibrium solution: (0,0), whereas ẋ = Ax+ bu with
nonsingular A has infinitely many equilibrium solutions (−A−1bu0, u0), one for each value of
u0.

2 Linearization about an Equilibrium

Consider again the system (2), and assume that it has the equilibrium solution (x0, u0). Let
the state x be in a neighborhood of x0, and set

x(t) = x0 + x̃(t).

Likewise, let
u(t) = u0 + ũ(t).

Substituting in (2) one gets, since x0 is constant,

x̃ = f(x0 + x̃, u0 + ũ) (3)

= f(x0, u0) +
∂f(x0, u0)

∂x
x̃+

∂f(x0, u0)

∂u
ũ+ h.o.t. (4)

where h.o.t. stands for ‘higher order terms’. If x̃ and ũ are sufficiently small, then the above
is well approximated by the linear system

ż =
∂f(x0, u0)

∂x
z +

∂f(x0, u0)

∂u
ũ

This system is called the linearized system about the equilibrium (x0, u0). Note that in
general, the realization parameters A and b

A =
∂f(x0, u0)

∂x
, b =

∂f(x0, u0)

∂u

depend on the particular equilibrium. The matrix ∂f(x0,u0)
∂x

is referred to as the Jacobian of
f w.r.t. x evaluated at (x0, u0).
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Example: Consider the pendulum of mass m, length l, and friction k. The tangential forces
are: gravity component: −mg sin θ, inertia: mlθ̈ and the friction: −klθ̇. Balancing these
tangential forces gives

mlθ̈ = −klθ̇ −mg sin θ.

Letting r = k/m, one gets

θ̈ + rθ̇ +
g

l
sin θ = 0.

A state space model is

θ̇ = ω (5)

ω̇ = −rω +
g

l
sin θ. (6)

The equilibria follow from sin θ = 0, i.e., for θ = 0 , we get the stable equilibrium, while for
θ = π, the equilibrium is unstable. A small perturbation away from the equilibrium will not
tend to restore the equilibrium.

Consider now the linearization about the stable point θ0 = 0, ω0 = 0. The Taylor
expansion of sin θ about 0 yields sin θ ∼ θ. The linearized model is[

ẋ1

ẋ2

]
=

[
0 1
−g

l
−r

] [
x1

x2

]
. (7)

If we consider the pendulum without friction, the linearized second order equation in θ is

θ̈ +
g

l
θ = 0.

The solution is oscillatory with period Tp = 2π
√

l
g
, which is independent of the amplitude.

Careful: the period of the linearized system does not depend on the amplitude of the oscil-
lation. One cannot deduce from this that this still holds for the exact but nonlinear system.
In fact, detailed analysis shows such an amplitude dependence!.

One can also linearize the equations about the other (unstable) equilibrium. Letting now
ω0 = 0, θ0 = π one finds, since now

sin(θ) = sin(π + θ̃) = − sin θ̃ ≈ −θ̃

the linearized state model [
ẋ1

ẋ2

]
=

[
0 1
g
l
−r

] [
x1

x2

]
. (8)

or equivalently the second order equation

¨̃
θ + r

˙̃
θ − g

l
θ̃ = 0.
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Exercise: We have set up state equations for the free pendulum with mass m, length l and
friction k, from the dynamical equation

θ̈ + rθ̇ +
g

l
sin θ = 0, r =

k

m

by linearization about the equilibrium position θ0 = 0. This is a model for the ‘grandfather
clock’ (pendulum clock). It is well known that if the clock is placed in a constant draft, it
goes faster. Show that this effect is theoretically predictable, by computing the factor by
which the period of the free frictionless (k = 0) pendulum

T = 2π

√
l

g

is decreased, assuming that the pendulum is suspended in a constant horizontal wind, im-
parting a constant force w on the bob. (Show first that the corresponding force balance leads
to

θ̈ + rθ̇ +
g

l
sin θ − w

m
cos θ = 0,

and then linearize about the equilibrium, letting k = 0).

3 Linearization about a Nominal Trajectory

Here we consider the system (2) for which a nominal trajectory xn(t) corresponding to a
nominal input un(t) is known. Again we define the deviations away from the nominal as

ũ(t) = u(t)− un(t) (9)

x̃(t) = x(t)− xn(t) (10)

and substitute in the nonlinear state equation:

˙̃x(t) + ẋn(t) = f(x̃(t) + xn(t), ũ(t) + un(t)) (11)

= f(xn(t), un(t)) +
∂f(xn(t), un(t))

∂x
x̃(t) +

∂f(xn(t), un(t))

∂u
ũ(t) + h.o.t. (12)

(13)

Since the nominal variables satisfy

ẋn(t) = f(xn(t), un(t)), (14)

we obtain the linearized equations

ż(t) = A(t)z(t) + b(t)ũ(t), (15)
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such that x̃(t) ≈ z(t) for sufficiently small x̃(t). Note that now the matrices A and b are
time varying, even though the original nonlinear system is not.

Example: The system ẋ = x2 + u2 has no equilibrium solution, except for (0,0). A lin-
earization about this equilibrium yields

ż =
∂(x2 + u2)

∂x

∣∣∣∣
(0,0)

z +
∂(x2 + u2)

∂u

∣∣∣∣
(0,0)

ũ

= 0 · z + 0 · ũ = 0.

This is a bad situation, since this gives constant solutions. Let us now consider a nominal
trajectory for un(t) = 0. Since ẋ = x2 has the solution xn(t) = x(0)/(1− tx(0)), we find for
the linearized system (ũ = u)

ż =
∂(x2 + u2)

∂x

∣∣∣∣
(xn(t),0)

z +
∂(x2 + u2)

∂u

∣∣∣∣
(xn(t),0)

u

=
2x(0)

1− tx(0)
z.

There still is no linear term in u. If however we consider the nominal trajectory for u ≡ 1,
then

xn(t) =
x(0) + tan t

1− x(0) tan t

and the linearized system is

ż =
∂(x2 + u2)

∂x

∣∣∣∣
(xn(t),0)

z +
∂(x2 + u2)

∂u

∣∣∣∣
(xn(t),0)

ũ

=
2(x(0) + tan t)

1− x(0) tan t
z + 2ũ.

A more justifiable procedure would be not to break off the Taylor expansion after the linear
term, but after the first nonzero term of smallest order. Obviously, a linear system does not
result in that case.

4 Stability Properties of the Equilibrium

In this section the asymptotic stability of an equilibrium solution (xe, ue) is investigated.
One wants to analyze if for u(t) = ue the solution x(t) will converge towards xe, or more
generally, what is the behavior of x(t) for sufficiently small deviations x(0)−xe? Let A = ∂f

∂x

evaluated at (xe, ue). The linearized system is ζ̇ = Aζ. What does asymptotic stability of A
imply about the stability of the equilibrium for the nonlinear system? Note, that if we can
say anything at all about this, it surely will have to be a local result in view of the fact that
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the deviation x(t)− xe needs to be kept small to warrant the linearization.

The following holds:
If Reλ(A) < 0, then (xe, ue) is locally asymptotically stable.
If there is an eigenvalue of A with positive real part, then the equilibrium is locally unstable.
However, in the latter case, it may be possible that x(t) in the long run does not diverge
towards infinity. This because of the local nature of the instability property.
If an eigenvalue of A is purely imaginary, then no conclusion can be drawn from the lin-
earized model about the stability properties of the equilibrium.
We summarize:

Definition: The equilibrium (xe, ue) of ẋ = f(x, u) is said to be hyperbolic if Reλ(A) 6= 0,
where A = ∂f

∂x
evaluated at (xe, ue).

Theorem: If (xe, ue) is a hyperbolic equilibrium, then global stability of the linearized model
implies the local stability of the equilibrium for the nonlinear system.

A stronger result exists: The orbits (trajectories) of the original nonlinear system with
fixed input u(t) = ue, in a neighborhood of the equilibrium (xe, ue) are qualitatively similar
to those of the linear system near the origin. More precisely:

Hartman-Groβman Theorem: For a hyperbolic equilibrium, the orbits about (xe, ue) can
be continuously deformed in some neighborhood of (xe, ue) into the corresponding orbits of
the linearized system near the origin.


