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Abstract: In this paper partial synchronization of diffusively coupled Chua systems
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synchronize with each other, while others do not. An experimental setup, consisting
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to show the existence of linear invariant manifolds corresponding to the partial
synchronized state. Copyright c© 2006 IFAC
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1. INTRODUCTION

Synchronization of coupled dynamical systems re-
ceives much attention in literature. One of the
reasons for this is that synchronization can be
found in several fields such as nature (Strogatz
and Stewart, 1993), brain dynamics (Gray, 1994)
and robotics (Nijmeijer and Rodrigues-Angeles,
2003). Also, the potential use of synchronization
in communication and coordination forms a ma-
jor reason for this interest. Recently partial syn-
chronization in networks of identical systems is
receiving particular interest. Some examples of
partial synchronization can be found in (Hasler
et al., 1998; Zhang et al., 2001; Pogromsky et
al., 2002).
Although there are many papers describing global
synchronization of a network of coupled Chua
circuits (Wu and Chua, 1995; Mat́ıas et al., 1997;
Sánchez et al., 2000), less attention sofar has been
devoted to experimental results for bidirectional
coupled systems. In this paper attention will be
drawn to partial synchronization of Chua circuits.
Partial synchronization is defined as the situation

where some circuits synchronize with each other,
while others do not. It is shown that under certain
conditions it is possible to obtain partial syn-
chronization of diffusively coupled Chua circuits.
An experimental setup consisting of four coupled
Chua circuits is build to show the possibility of
partial synchronization. The experimental results
obtained qualitatively confirm simulation results.
The remainder of this paper is organized as fol-
lows. In section 2 some preliminaries about the
used notation are given. Further passive and con-
vergent systems are described and the conditions
for partial synchronization are stated. Section 3
deals with the experimental setup that is used.
In section 4 and 5 synchronization of two and
three diffusively coupled systems is shown, while
in section 6 global and partial synchronization of
four diffusively coupled systems is presented and
discussed. Finally conclusions are drawn in section
7.



2. PRELEMINARIES

First a mathematical description for a network of
coupled systems is introduced by adopting the
notation used in (Pogromsky et al., 2002). A
general system description for k identical systems
is given by

ẋi = f(xi) + Bui, yi = Cxi (1)

where f is a vector field, i = 1, . . . , k, xi(t) ∈ Rn

is the state of the ith system, ui(t) ∈ Rm and
yi(t) ∈ Rm are the input and output of the ith
system, while B, C are matrices of appropriate
dimension.
The k systems are coupled through linear outputs

ui = −γi1(yi−y1)−γi2(yi−y2)−· · ·−γik(yi−yk).
(2)

By defining the symmetric k × k matrix Γ as

Γ =




k∑

i=2

γ1i −γ12 · · · −γ1k

−γ21

k∑

i=1,i 6=2

γ2i · · · −γ2k

...
...

. . .
...

−γk1 −γ2k · · ·
k−1∑

i=1

γ1i




, (3)

the collection of k systems, with the matrix Γ and
feedback ui, can be rewritten as

ẋ = F(x) + (Ik ⊗B)u, y = (Ik ⊗C)x (4)

with the feedback

u = −(Γ⊗ Im)y (5)

where x = col(x1, . . . ,xk), F(x) = col(f(x1),
. . . , f(xk)) ∈ Rkn, y = col(y1, . . . ,yk) and
u = col(u1, . . . ,uk) ∈ Rkm. The notation
col(x1, . . . ,xk) stands for the column vector com-
posed of the vectors x1, . . . ,xk. The notation ⊗
stands for the Kronecker product.

A system

ẋ = f(x,u), y = h(x) (6)

is called passive, see (Willems, 1972), if the fol-
lowing inequality holds

d

dt
V (x) =

∂V (x)
∂x

f(x,u) ≤ yT u (7)

where V (x) is a nonnegative function (storage
function) defined on Rn, for which V (0) = 0. If
the dissipation inequality (7) is satisfied only for
x lying outside some ball

V̇ (x,u) ≤ yT u−H(x) (8)

where the function H : Rn → R is nonnegative
outside some ball

∃ρ > 0, |x| ≥ ρ ⇒ H(x) ≥ 0, (9)

then the system is semipassive, see (Pogromsky et
al., 2002).

Consider a system

ż = q(z, w(t)), (10)

with z ∈ Rl, driven by an external signal w(t)
taking values from a compact set. The system (10)
is called convergent if for any bounded input w(t)
the solution of (10) converges to a solution zw(t),
in other words, the solution of (10) will forget their
specific initial condition. If there exists a positive
definite symmetric l × l matrix P such that all
eigenvalues λi(Q) of the symmetric matrix

Q(z, w) =
1
2

[
P

(
∂q
∂z

(z, w)
)

+
(

∂q
∂z

(z, w)
)T

P

]

(11)
are negative and separated from zero, such that

λi(Q(z, w)) ≤ ε < 0, (12)

with ε > 0 and i = 1 . . . l for all z, w ∈ Rl, then
system (10) is convergent, cf (Pavlov et al., 2004).

If the network contains repeating patterns, the
permutation of some elements of Γ leave the
network invariant. Such a permutation matrix Π
is a symmetry for the network if Π commutes
with Γ, i.e. ΠΓ−ΓΠ = 0. A permutation matrix
Π commuting with Γ defines a linear invariant
manifold of the closed loop system (4) and (5) as

ker(Ikn −Π⊗ In). (13)

The stability of such manifolds depends on the
asymptotic stability of sets. Due to converse Lya-
punov theorem, e.g. (Lin et al., 1996), the asymp-
totic stability of a set is equivalent to the existence
of a scalar storage function V , which is zero only
on the set and decays along the trajectories other-
wise. In the context of the coupled systems (1, 2)
a Lyapunov function should be found as a sum of
two functions. The first function depends on the
input-output relations of the systems (1), while
the second function depends on the interacting
due to the coupling of systems.
Under the assumption that the matrix CB is non-
singular (and positive definite) a linear coordinate
transformation xi → (yi, zi) exists such that

żi = q(zi,yi), ẏi = g(zi,yi) + CBui, (14)

where zi ∈ Rn−m and q and g are vector func-
tions. Then the stability of the manifolds given
by (13) is determined by the following theorem.

Theorem 1 (Pogromsky et al., 2002). Let λ′

be the minimal eigenvalue of Γ under restriction
that the eigenvectors of Γ are taken from the set
range(Ik −Π). Suppose that:

1. Each individual system (1) is strictly semi-
passive with respect to the input ui and output



yi with a radially unbounded storage function
V (xi,ui).
2. There exists a positive definite matrix P such
that inequality (12) holds for some ε > 0 for the
matrix Q defined as in (11) for q as in (14).
Then all solutions of the diffusive cellular network
(4) and (5) are ultimately bounded and there
exists a positive λ̄ such that if λ′ > λ̄ the set
ker(Ikn −Π ⊗ In) contains a globally asymptoti-
cally stable compact subset.

3. SETUP

An experimental setup consisting of a network of 4
Chua circuits is used, shown in figure 1. Consider
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Fig. 1. Schematic layout of four symmetrically
coupled Chua circuits.

the well known system description of a single Chua
circuit (Matsumoto, 1985)

C1ẋi1 = G(xi2 − xi1)− f(xi1)

C2ẋi2 = G(xi1 − xi2) + xi3 (15)

Lẋi3 =−xi2 −R0xi3

with G = 1
R and the function f(xi1) defined as

Gbxi1 + 1
2 (Ga−Gb)(|xi1 +Bp|− |xi1−Bp|). (16)

In these equations the variables xi1 and xi2 are the
voltages across the capacitors, C1 and C2, xi3 is
the current flowing through the inductor L, which
has an internal resistance R0. Ga and Gb are the
conductances of the piecewise characteristic for
|xi1| < Bp and |xi1| ≥ Bp respectively. Bp is
voltage of the breakpoint. Measurements of xi1

and xi2 are available. For the coupling between
systems the matrices B and C are as follows

B = [1 0 0]T C = [1 0 0]. (17)

The coupling strength between systems is con-
trolled by four variable resistors. The nonlin-
ear resistor, Nr, in the circuits is build with

operational amplifiers (AD712JN) as described
in (Kennedy, 1992). The nominal values of the
components can be found in table 1, however
due to tolerances of the components each circuit
is slightly different. Therefore synchronization in
the sense that |xi(t) − xj(t)| = 0 is not pos-
sible and practical synchronization is defined as
|xi(t)− xj(t)| ≤ δ, for some fixed δ > 0.

Table 1. Nominal values for each circuit.

Component Value

C1 10 [nF]
C2 100 [nF]
L 22 [mH]
R0 22 [Ω]
R 1.5-2.0 [kΩ]
Ga -0.758 [mS]
Gb -0.409 [mS]
Bp 1.75 [V]

4. TWO SYSTEMS

Before synchronization of four systems is consid-
ered, the threshold value for synchronization of
two circuits is determined, i.e., the minimal value
K such that practical synchronization occurs. The
two circuits are diffusely coupled with a variable
resistor, Rc, which gives the coupling constant K
as 1

Rc
and a coupling matrix

Γ1 =
[

K −K
−K K

]
. (18)

The variable resistor R is set to 1775 [Ω] on both
circuits, so the circuits operate on the double
scroll attractor. Synchronization is visualized by
the phase portrait of x11 and x21, shown in figure
2(b). The value of Rc for the synchronization
threshold is around 3400 [Ω] with δ = 0.15 [V ].

Remark: If the value Rc is increased, desynchro-
nization occurs and at about Rc = 10 [kΩ] the
trajectories are no longer bounded. A possible
explanation for this phenomena is the following.
A single circuit (15), with u = 0, can have un-
bounded trajectories. No storage function V (x)
can be found such that inequality (8) is satisfied
to prove semipassivity for system (15). Therefore
it is not guaranteed that the solutions are ul-
timately bounded. This may cause the bursting
phenomenon above 10 [kΩ]. For Rc = 30 [kΩ] and
above the current through the coupling resistor
becomes negligible such that both circuits operate
as free systems and the trajectories of both are
bounded by their attractors again.

5. THREE SYSTEMS

When the network is expanded by adding a cir-
cuit, see figure 3, the following coupling matrix Γ
is obtained
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Fig. 2. Experimental synchronization for Rc =
3430 [Ω].

Γ2 =




2K −K −K
−K 2K −K
−K −K 2K


 . (19)

The coupling constant needed to globally syn-
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Fig. 3. Layout of three coupled systems.

chronize this structure can be estimated using the
conjecture stated in (Wu and Chua, 1996):

µ1α1 = µ2α2 (20)

where µi, i = 1, 2 is the smallest nonzero eigen-
value of the coupling matrix Γi and αi the cou-
pling coefficient. Although it has been pointed out
in (Pecora, 1998) that this conjecture is in general
wrong, it holds in this particular case.
The synchronization threshold for three systems,
using (20), requires a resistor value of 5100 [Ω].
The threshold value in experiments is found to be
4950 [Ω], confirming that three systems, coupled
in a ring structure, synchronize with a lower cou-
pling constant K.

6. FOUR SYSTEMS

Four systems are symmetrically coupled in a ring
structure with two coupling constants K0 and K1.
With the proposed coupling, as shown in figure 4,
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Fig. 4. Layout of four coupled systems.

the coupling matrix Γ can be written as follows

Γ3 =




K0 + K1 −K0 0 −K1

−K0 K0 + K1 −K1 0
0 −K1 K0 + K1 −K0

−K1 0 −K0 K0 + K1




(21)
If K0 = K1 = K the smallest nonzero eigenvalue
of Γ3, µ3, is equal to the smallest eigenvalue of Γ1,
and the ring structure should synchronize with Rc

around 3400 [Ω]. In figure 5 global synchronization
is shown for Rc = 3200 [Ω] again with δ =
0.15 [V ].

With the symmetric coupling matrix (21) there
are four permutation matrices Π commuting with
Γ3

Π1 =
[
A O
O A

]
, Π2 =

[
O I2

I2 O

]

Π3 =
[
O A
A O

]
, Π4 = I4 (22)

where

A =
[

0 1
1 0

]
, O =

[
0 0
0 0

]
. (23)

Three linear invariant manifolds associated with
(22) exist independently of systems (1) and are
given by

A1 = x ∈ R4n : x1 = x2,x3 = x4 (24)

A2 = x ∈ R4n : x1 = x3,x2 = x4 (25)

A3 = x ∈ R4n : x1 = x4,x2 = x3. (26)

The intersection of any two of these mani-
folds describes the full synchronization manifold
(x1 = x2 = x3 = x4). There are two possible ways
to global synchronization depending on the ratio
K0 and K1

A1 →A1 ∩ A2 (27)

A3 →A3 ∩ A2. (28)

Theorem 1, to prove stability of these manifolds,
depends on two conditions. It is already pointed
out that the first condition is not satisfied, since
system (15) is not semipassive. However on an
experimental setup the solutions are normally
bounded by the attractor.
With x1 chosen as the external signal in (14) and
z = [x2 x3]T and the parameter values in table
1, it is possible to find a matrix P such that (12)
is satisfied and therefore system (15) is conver-
gent. Hence it is expected that these manifolds
are locally stable on the Chua circuits as long as
the solutions remain bounded by the attractor.
This is confirmed as shown in figures 6 and 7.
In figure 6 it can be seen that the circuits one
and two and also three and four are synchronized
with a coupling constant K0 = 1

Rc0
. Circuits two



and three, coupled with K1 = 1
Rc1

, are, as well as
one and four, not synchronized. This corresponds
to manifold A1 (24). In figure 7 the situation
corresponding to manifold A3 (26) is depicted.
These manifolds are robust to parameter variation
of the variable resistors R of the circuits. However
if the coupling resistances are increased the same
phenomena with two coupled systems occurs, i.e.,
the trajectories are no longer bounded. And again
above a second threshold the four circuits operate
as free systems. All these phenomena are summa-
rized in a stability diagram shown in figure 8.
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Fig. 5. Phase portraits for global synchronization
with Rc0 = Rc1 = 3200 [Ω].
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Fig. 6. Phase portraits for partial synchronization
with Rc0 = 3200 and Rc1 = 9300.

This stability diagram can also be obtained by nu-
merically integrating four Chua systems (15), tak-
ing the tolerances of the components into account.
The presented experimental results are qualitative
comparable with numerical simulations. As an il-
lustrative numerical example partial synchroniza-
tion is considered. For the individual systems the
capacitors and variable resistor are chosen as in
table 2, while the other parameters of system (15)
are the same as in table 1. The coupling constants
K0 and K1 are 1

8500 and 1
3200 respectively. In figure

9 the error signals xi1 − xj1, i, j = 1, 2, 3, 4 are
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Fig. 7. Phase portraits for partial synchronization
with Rc0 = 9300 and Rc1 = 3200.
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shown. After the transients are vanished systems
two and three synchronize as well as one and four.
This simulation result matches with the experi-
mental partial synchronization as shown in figure
7.

Table 2. Parameter values for individual
circuits.

System Component Value

1 C1 10.90 [nF]
C2 97.93 [nF]
R 1775 [Ω]

2 C1 10.80 [nF]
C2 99.60 [nF]
R 1778 [Ω]

3 C1 10.98 [nF]
C2 101.90 [nF]
R 1770 [Ω]

4 C1 10.65 [nF]
C2 100.50 [nF]
R 1780 [Ω]
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Fig. 9. Simulation synchronization errors for
Rc0 = 8500 and Rc1 = 3200.

7. CONCLUSIONS

In this paper experimental partial synchronization
of diffusively coupled Chua circuits is presented.
With the experimental setup it is impossible to
achieve a zero synchronization error due to tol-
erances of the electrical components. Therefore a
form of practical synchronization is introduced to
be able to specify synchronization of two systems.
Besides global synchronization of two circuits, a
bursting phenomena is observed if the diffusive
coupling between two systems is above a certain
threshold value. At this point the trajectories are
no longer bounded by the double scroll attractor.
In the case where four circuits are symmetrically
coupled it shown that partial synchronization is
possible. The stability of the linear invariant man-
ifolds, describing this partial synchronization, can
not be proven globally. However the manifolds are
locally stable if the solutions remain bounded by
the double scroll attractors.
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