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Application of partial observability for analysis and design
of synchronized systems
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Synchronization in identical drive-response systems is a problem that can be cast in anobserver
designframework. In this paper we extend this approach by studying the analysis/design of partial
synchronization by means of observer theory. In doing so, we introduce the concept of partial
observer—an observer to reconstruct a part of the system state vector. It is also shown how the
observability condition can be utilized to analyze the dynamics in an array of coupled identical
systems. ©2003 American Institute of Physics.@DOI: 10.1063/1.1499596#
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When synchronization sets in, coupled systems oscillat
in a coherent way. It is possible to also observe som
intermediate regimes characterized by incomplete syn-
chrony which are referred to as partial synchronization.
The paper is devoted to two problems: design of partially
synchronized systems and analysis of partial synchroni-
zation in a network of coupled oscillators. A connection
with the so-called observer design problem borrowed
from control theory is emphasized.

I. INTRODUCTION

The task of retrieving knowledge about the full sta
vector of a dynamical system from the measurement of
output signal is commonly known in control theory as t
observer problem. This is a well-developed problem in con
trol theory, for which a solution exists for linear system1

while only partial results exist for nonlinear systems, s
Refs. 2–4, for example.

Observability is also a necessary condition to build
synchronizing copy of a given dynamical system. In fact
standard approach in solving the observer problem in con
theory is to build the observer as an identical copy of
plant ~with unknown initial state! modified with an innova-
tion term depending on the difference between the trans
ted output from the plant and its prediction derived from t
observer. This analogy, introduced in Ref. 5, will be e
plained in more detail in Sec. II.

This paper deals with the following problem: can o
servability also be related to other forms of synchronizatio
After all, full synchronization ~defined, briefly, as the
asymptotic equality of corresponding state variables of tw
or many, identical systems suitably coupled! is not the only
possible state of ‘‘synchrony,’’ although it is the one mo
commonly associated with this term. With specific applic
tion to chaotic systems, many different physical situatio
have been considered to be different forms of synchroni
behavior.6,7

a!Electronic mail: a.pogromsky@tue.nl
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In this paper we apply observability techniques to par
synchronization. The latter is a state, typical of coupled c
lular networks, for instance, in which some coupled units
a network can show equal corresponding outputs, but no
of them. Here we do not discuss the observability condit
applied to phase synchronization and the so-called gene
ized synchronization. We dealt with the first case in Ref.
where we built an observer for a periodically perturb
minimum-phase system. The difficulty in dealing with a
observability theory for any general synchronous pheno
enon lies first in its definition which, in its more exhaustiv
formulation, should take into consideration synchrony as
ciated with a functional, where outputs of different syste
with eventual temporal shift appear.9 We believe it is impor-
tant to develop an engineering approach to synchroniza
in its different forms for control applications, where synchr
nous motion can be induced to ensure the proper function
of a particular device. Consider, for example, active in
grated antennas10 that can be built as arrays of multipl
coupled oscillators to generate circular polarization.11 In ro-
botics, the problem of synchronization is usually referred
as coordination, or cooperation.12,13 Another interesting
problem is to study~and control! spatiotemporal patterns in
an ensemble of coupled systems, for communicat
purposes.14

The first problem we address here deals with wha
partial coherence between oscillators forming a cellular n
work. The second problem, instead, can be formulated
follows: given dynamics with output, design an observer t
reconstructs a part of its state components.

The paper is organized as follows: in Sec. II we rec
some basic facts on the observer design problem. Sectio
presents an application of the observability condition to a
lyze the dynamics of a simple cellular network. Section
deals with the partial synchronization and partial observa
ity in a diffusive cellular network. In Sec. V we introduce th
concept of partial observer and the concluding remarks
presented in Sec. VI.
© 2003 American Institute of Physics
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II. OBSERVABILITY AND DESIGN OF A
SYNCHRONOUS SYSTEM

It is well understood that the design of a synchrono
system is equivalent to the design of an observer. Cons
the case in which systemA acts on systemB ~an identical
copy of A! via the transmission of an output signal, a fun
tion of the state variables ofA. Synchronization analysis
deals with finding conditions under which synchrony ofA
and B is possible. Observer design, instead, addresses
problem of building a suitable systemB whose purpose is to
estimate or reconstruct the full state vector ofA. For this
purpose, systemB does not need to be an identical copy
A.

Consider a dynamical system given by the followi
system of differential equations:

ẋ5 f ~x!, x~0!5x0PRn, tPR1 ~1!

with the output signal

y~ t !5h~x~ t !!, yPRm, hPC` ~2!

available for on-line measurements. Throughout the pa
we assume thatm51 and f is smooth, so that existence an
uniqueness of solutions of~1! are locally guaranteed. Addi
tionally, we will assume that solutions exist for alltPR1 and
all initial points x0 .

Let us denote byx(t,x0) the solution of Eq.~1! that
starts fromx0 as initial condition, andẋ(t,x0)5 f (x(t,x0)).

Definition 1: The system (1) with output (2) is local
observable at x0 if for all initial conditions x1 ,x2 in some
neighborhood U of x0 , if h(x(t,x1))5h(x(t,x2)) for all t
such that x(t,x1),x(t,x2)PU implies x15x2 . The system (1)
with output (2) is called locally observable if it is locall
observable at any x0PRn.

In other words, the output of a locally observable syst
always sees the evolution of different points as different.

The observation spaceO is the linear space overR of
the functionsL f

kh(x), k50,1,2,..., where L f
0h(x)5h(x),

L f
k11h(x)5L f(L f

kh(x)), and L fh(x)5S i(]h(x)/]xi) f i(x).
L fh(x) denotes the directional derivative ofh in the direc-
tion of f , or Lie derivative ofh with respect to the vecto
field f . Consider the observability codistribution

dO~x!5span$Dh~x!, DL fh~x!,...%,

where D denotes the Jacobian. As a standard result fr
nonlinear control we mention a theorem which claims t
the condition

dimdO~x!5n ~3!

is equivalent to the local observability of system~1! at x.4

For linear dynamics, i.e., when Eq.~1! has the formf (x)
5Ax, and the output~2! is h(x)5Cx, APRn3n, C
PR13n, condition~3! reduces to

rankS C
CA
A

CAn21
D 5n. ~4!

In this case the pair (A,C) is said to beobservable, and it is
possible to find a matrixK, such that the matrixA2KC has
Downloaded 21 Feb 2003 to 131.155.209.192. Redistribution subject to A
s
er

-

he

er

m
t

arbitrary prespecified eigenvalues, and particularlyA2KC
can be made Hurwitz by suitably choosing the output inj
tion matrix K.

As the reader may expect, in the case of nonlinear
namics there are no general results on the existence o
observer, nor does the fulfillment of the observability con
tion ~3! imply the existence of an observer that synchroniz
with ~1!. If the output function is linear, a similar conditio
as in Eq.~4! can be formulated, with the Jacobian matrix
f in Eq. ~1! replacing the matrixA. Conditions~3!, or ~4!,
will therefore be state dependent, so there will be zones
the phase space in which condition~3! is violated.

In order to apply the observer approach we need to c
struct an observer such that the error dynamics between
observer and the plant goes to zero asymptotically. The s
plest way to do this is to choose observers that have lin
izable error dynamics under output rescaling. Consider
example the Ro¨ssler system,x5(x1 ,x2 ,x3),

ẋ152x22x3 ,

ẋ25x11ax2 , ~5!

ẋ35c1x3~x12b!

with positive parametersa,b,c and measured output

h~x!5~0 0 1!x5x3 .

Using results developed in Ref. 3 one can see that the n
linear system~5! with the outputy5x3 is globally diffeo-
morphic to a system in Lur’e form~linear system plus
output-dependent nonlinearity! via an appropriate output res
caling. This can be achieved considering the following co
dinate change:j15x1 ,j25x2 ,j35 logx3. This coordinate
change is well defined since, ifx3(t0).0, it follows from the
third equation in~5! that x3(t).0 for all t.t0 . In the new
coordinates the system~5! with outputx3 takes the form

S j̇1

j̇2

j̇3

D 5S 0 21 0

1 a 0

1 0 0
D S j1

j2

j3

D 1S 2eh

0
2b1ce2h

D ,

~6!
h5~0 0 1!j5j3 ,

which is in Lur’e form, with a linear observable part plu
nonlinearity which depends only on the measured outpuh
5j3 . As a natural candidate for an observer for the syst
~6! one can take the following system:

S j̇̂1

j̇̂2

j̇̂3

D 5S 0 21 0

1 a 0

1 0 0
D S ĵ1

ĵ2

ĵ3

D
1S 2eh

0
2b1ce2h

D 1S K1

K2

K3

D ~h2ĥ !, ~7!

where ĥ5(0 0 1)ĵ5 ĵ3 and K1 ,K2 ,K3 are the gain coeffi-
cients which can be chosen to provide the error system w
arbitrarily desirable dynamics. Clearly, system~7! synchro-
IP license or copyright, see http://ojps.aip.org/chaos/chocr.jsp
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nizes with Eq.~6! and the observer~7! can afterwards be
transformed in terms of the original dynamics~5!.

The theory of nonlinear observers and the conside
example highlight that the observer viewpoint is very con
nient for the problem of design of~fully ! synchronized sys-
tems.

III. OBSERVABILITY AND ANALYSIS OF A
SYNCHRONOUS SYSTEM

As we previously mentioned, there may be regions of
phase space where the observability condition~3! is not ful-
filled. It is interesting, therefore, to ask how special the
regions are. Consider the special case of this simple sch
of two coupled identical systems

ẋ15 f ~x1!2K~x12x2!,
~8!

ẋ25 f ~x2!2K~x22x1!.

It is easily recognized thatx15x2 is an invariant manifold
for Eq. ~8!. It is customary in investigating the stability o
this invariant manifold to decompose the whole phase sp
in a subspace containing the invariant manifold, and the s
space transverse to it. In a more mathematical setting, in
coordinates

v5 1
2 ~x11x2!, w5 1

2 ~x12x2!

the system takes the form, forw.0,

v̇5 f ~v !,
~9!

ẇ5~D f ~v !22K !w

that is in a cascade form. The importance of this struct
will be further highlighted in Sec. V. From the second equ
tion in Eq. ~9! one can see thatẇ50 if w50, that is,w
50 is, in the new coordinates, the previous invariant ma
fold. If the output of system~8! is a function ofv coordinates
only, y5h(v)5h(x11x2), system~9! cannot be fully ob-
servable. All Lie derivatives ofy do not contain terms de
pendent onw, hence condition~3! is not fulfilled. By mea-
suringv, for trajectories on the invariant manifold, we ga
no information onw. If the output of Eq.~8! is, instead, a
function of w coordinates only,y5h(w)5h(x12x2) with,
specifically,h(0)50, the observability condition is not sa
isfied wheneverw50, because the output becomes iden
cally zero, regardless of the dynamics ofv. The observabil-
ity condition~3! is not fulfilled when the trajectory lies on a
invariant manifold, since the dynamics is confined on
lower dimensional subset of the full state space.

While the fulfillment of condition~3! is helpful in de-
signing a synchronizing system for Eq.~1!, the converse situ-
ation is helpful to detect the presence of invariant manifol
At the same time, it tells us whether the system can be
written in a cascade structure, even if in the new coordina
the system might not have direct physical interpretation.

The examples we introduce now on partial synchroni
tion and partial observability will help to clarify these point
To analyze observability properties of networks of partia
synchronized systems, we first present some results relat
partial synchronization in diffusive networks.
Downloaded 21 Feb 2003 to 131.155.209.192. Redistribution subject to A
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IV. PARTIAL SYNCHRONIZATION

As the name suggests, partial synchronization is a s
in which there is some~but not full! coherence between
coupled oscillators. The higher the number of oscillators t
form a network, the richer the pattern of possible synch
nous states may be~see Ref. 15, for example!, hence it is
important to study properties of the network itself, in order
predict some of its possible synchronous states.

Consider adiffusive cellular networkof k coupled iden-
tical dynamical systems of the form

ẋ j5 f ~xj !1Buj ,
~10!

yj5Cxj ,

where j 51,...,k, xj (t)PRn is the state of thej th system,
uj (t)PRm andyj (t)PRm are, respectively, the input and th
output of thej th system, andB,C are constant matrices o
appropriate dimension. In this representation we can say
thek systems~10! arediffusively coupledif the matrixCB is
similar to a positive definite matrix, and thek systems are
interconnected through mutual linear output coupling,

uj52g j 1~yj2y1!2g j 2~yj2y2!2¯2g jk~yj2yk!,
~11!

whereg i j 5g j i >0 are constants such thatS j Þ i
k g j i .0 for all

i 51,...,k. Without loss of generality we can assume thatCB
is positive definite. Define the symmetrick3k matrix G as

G5S (
i 52

k

g1i 2g12 ¯ 2g1k

2g21 (
i 51,iÞ2

k

g2i ¯ 2g2k

A A � A

2gk1 2gk2 ¯ (
i 51

k21

gki

D , ~12!

whereg i j 5g j i >0 and all row sums are zero. The matrixG
is symmetric and therefore all its eigenvalues are real. W
the definition~12!, the feedback~11! can be rewritten in the
more compact form

u52~G ^ I m!y,

wherey5col(y1 ,...,yk), u5col(u1 ,...,uk)PRkm.
The closed loop system~10! and~11! can show full syn-

chrony, i.e., a state characterized by the equality of all co
dinates of all systems forming the network:x15x25¯

5xk , but it is also possible that the closed loop system~10!
and ~11! possesses an invariant manifold described by
number of equations of the formxi5xj for some i , j . We
definepartial synchronizationas the situation in which the
states ofsomesystems are identical. Stability of this parti
synchronization regime is the subject of this section. If t
manifold contains a~globally! asymptotically stable compac
subset, this situation will be referred to as~global! partial
synchronization. Analysis of possible symetries of the clos
loop system~10! and ~11! helps in determining some of it
IP license or copyright, see http://ojps.aip.org/chaos/chocr.jsp
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linear invariant manifolds. Particularly, it is not difficult t
prove that if there is a permutation matrixP commuting with
G then the set

ker~ I kn2P ^ I n! ~13!

is a linear invariant manifold for the system~10! and ~11!.
From this result it is clear that the set of symmetries for
networks defined by the matricesP gives rise to a number o
linear invariant manifolds for the closed loop system. T
set of symmetries is calledglobal symmetries, since they ar
independent of the equations that model a particular uni
the network. Along with the global symmetries it is useful
considerinternal symmetries too, that are associated with t
systems modeling the units of the network. In this pap
however, we are going to consider only global symmetr
while a more general approach can be found in our forthco
ing paper.19

To obtain a stability criterion for the compact invaria
subset of Eq.~13! it is convenient first to rewrite the system
~10! in a different coordinate system. Let us differentiateyj ,

ẏ j5C f~xj !1CBuj .

Then, choosing somen2m coordinateszj complementary to
yj it is possible to rewrite the system~10! in the form

żj5q~zj ,yj !,
~14!

ẏ j5a~zj ,yj !1CBuj ,

wherezjPRn2m, andq anda are some vector functions. I
is important to emphasize that the coordinate cha
xj°col(zj ,yj ) is linear. Note that, owing to the linear input
output relations, this transformation is globally defined. T
transformation is explicitly computed in, for example, Re
17. Now we can formulate the main result of this section

Theorem 1: SupposeP is a permutation matrix com
muting withG. Let g8 be the minimal eigenvalue ofG under
restriction that the eigenvectors ofG are taken from the se
range(I k2P). Suppose the following.

( i ) There exists a non-negative radially unbounded fu
tion V satisfying the following conditions:

]V

]x
f ~x!<2H~x!,

]V

]x
B5xTCT

with xPRn, uPRn2m and the function H is positive outsid
some compact set inRn.

( i i ) There exists a positive definite matrix P such that
eigenvaluesl i(Q) of the symmetric matrix

Q~z,w!5
1

2 FPS ]q

]z
~z,w! D1S ]q

]z
~z,w! D T

PG
are negative and separated from zero, i.e., there isd.0 such
that l i(Q)<d,0 with i51,...,n2m, for all z,wPRn2m.
Then there exists a positiveḡ such that if g8.ḡ the set
ker(I kn2P ^ I n) contains a globally asymptotically stabl
compact subset.

The first assumption of the theorem ensures ultim
boundedness, of the solutions of the closed loop system
is referred to assemipassivity condition~see, e.g., Refs. 16–
18!. The second assumption requires some sort of stabilit
Downloaded 21 Feb 2003 to 131.155.209.192. Redistribution subject to A
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some internal dynamics of system~14!. It guarantees that the
z dynamics of system~14! is exponentially convergent~see,
e.g., Refs. 16 and 18!. The proof of this theorem can b
found in our forthcoming paper.19 As an illustrative example,
consider a ring of four coupled Lorenz systems,xj

5(xj ,1 ,xj ,2 ,xj ,3),

ẋ j ,15s~xj ,22xj ,1!1uj ,

ẋ j ,25rx j ,12xj ,22xj ,1xj ,3 ,

ẋ j ,352bxj ,31xj ,1xj ,2 ,

where j 51,...,4, s,r ,b.0 with outputsyj5xj ,1 and cou-
pling provided by the inputsuj ,

u152K0~y12y2!2K1~y12y4!,

u252K0~y22y1!2K1~y22y3!,
~15!

u352K0~y32y4!2K1~y32y2!,

u452K0~y42y3!2K1~y42y1!.

The particular geometry of the coupling defines the follo
ing coupling matrix:

G5S K01K1 2K0 0 2K1

2K0 K01K1 2K1 0

0 2K1 K01K1 2K0

2K1 0 2K0 K01K1

D . ~16!

The four permutation matrices for whichPG5GP are

P15S E O

O ED , P25S O I2

I 2 OD ,

P35S O E

E OD , P45I 4 , ~17!

where we denoted

E5S 0 1

1 0D
and O is the 232 zero matrix. Let us analyze what th
action of these matricesP is. The action ofP1 is to switch
simultaneously x1 with x2 and x3 with x4 . One can easily
notice that this operation leaves the network unchanged, w
respect to its connections. Similar actions are brought u
by P2 and P3 , while P4 is the identity, that leaves every
thing unchanged.

From expression~13!, we derive that the linear invarian
manifolds associated withP1 , P2 and P3 in Eq. ~16! are,
respectively,

A15$xPR12:x15x2 ,x35x4%,

A25$xPR12:x15x3 ,x25x4%, ~18!

A35$xPR12:x15x4 ,x25x3%.

The intersection of any two of these linear manifolds giv
the linear manifold describing full synchronization~i.e., x1

5x25x35x4!.
IP license or copyright, see http://ojps.aip.org/chaos/chocr.jsp
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Once the invariant manifolds in the form~13! are found
one has to check conditions (i ) and (i i ) of the theorem. To
check condition (i ), consider the following function:

V~xj ,1 ,xj ,2 ,xj ,3!5 1
2 ~~xj ,1!

21~xj ,2!
21~xj ,32s2r !2!.

The second equation from condition (i ) trivially holds, so it
remains to check the first inequality. To this end differenti
V along the trajectories of the free system (uj50):

V̇~xj ,1 ,xj ,2 ,xj ,3 ,u!5H~xj ,1 ,xj ,2 ,xj ,3!,

where

H~xj ,1 ,xj ,2 ,xj ,3!5s~xj ,1!
2

1~xj ,2!
21bS xj ,32

s1r

2 D 2

2b
~s1r !2

4
,

so, condition (i ) is satisfied. To check condition (i i ), one
can considerP5I 2 , for which Q5diag(212b), and condi-
tion (i i ) is satisfied as well. Note that, for Lorenz system, t
transformationxj°col(zj ,yj ) is simply yj5xj ,1 ~the output
given! andzj5col(xj ,2 ,xj ,3).

Let us analyze the conclusions of the theorem. The
genvalues of the matrix ~16! are l150, l2

5min$2K0,2K1%, l35max$2K0,2K1%, l452(K01K1).
Hence, for the permutation described byP1 in Eq. ~17! we
have l852K0 . Similarly, l85min$2K0,2K1% for P2 and
l852K1 for P3 . According to the theorem, for largeK0 and
small K1 one can expect asymptotic stability of a subset
the setA1 in Eq. ~18!. For the permutationP3 , for smallK0

and largeK1 , leads to asymptotic stability of a subset of t
setA3 . Asymptotic stability of the full synchronization oc
curs forK0 andK1 both large enough. The subset of the s
A2 is stable only as a stable intersection ofA1 and A3 ,
which describes full synchronization. This situation is sch
matically shown in Fig. 1.

The observability rank condition. Let us test the observ
ability rank condition on this ring structure of coupled sy
tems. Assume, for simplicity, that the units forming the ce
are one dimensional, i.e.,xjPR. The extension to highe
dimension can be treated similarly, but in different notatio
The ring of four systems is represented by

FIG. 1. Synchronization and partial synchronization in a ring of four Lore
systems.
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ẋ j5 f ~xj !1Buj , j 51, . . . ,4, ~19!

with inputs as previously defined in Eq.~15!, and choose the
output for Eq.~19! as

y5(
j 51

4

yj5C(
j 51

4

xj . ~20!

Let D stand for the Jacobian, as previously done. The
derivatives of the output are given by

h~x!5C(
j 51

4

xj ,

L fh~x!5C(
j 51

4

f ~xj !,

L f
2h~x!5C(

j 51

4

@D f ~xj ! f ~xj !1D f ~xj !Buj #,

L f
3h~x!5¯ .

We consider only the explicit formula for the Lie derivative
up to the second. The Jacobians of these derivatives
given byDh(x)5C(1111), and the Jacobian of the first d
rivative is a row vector of components

$DL fh~x!% i5CD f~xi !. ~21!

The second derivative can be written as a row vector
components

$DL f
2h~x!% i5CFa~xi !1D2f ~xi !Bui1(

j 51

4

D f ~xj !B
]uj

]xi
G ,

~22!

wherea(xi) is some function of the coordinatexi only, and
it is important to note that]uj /]xi52G j i , with G given in
Eq. ~16!. Let us see what values the row vectors~21! and
~22! assume for trajectories on one of the invariant manifo
~18!. Consider the manifoldA1 first. This manifold is defined
by the relationshipsx15x2 ,x35x4 . For a trajectory lying on
A1 we haveu15u252u352u4 , and for the last term in
Eq. ~22!, we have, using Eqs.~15! and~16!, a row vector of
components

K1@D f ~x4!2D f ~x1!#BC,

K1@D f ~x3!2D f ~x2!#BC,

K1@D f ~x2!2D f ~x3!#BC,

K1@D f ~x1!2D f ~x4!#BC.

Hence, for any trajectory inA1 the first and second compo
nents of Eqs.~21! and~22! are identical. The third and fourth
components are identical too, though different from the fi
and second. Therefore, the observability condition~3! is not
fulfilled whenever a trajectory of Eq.~19! lies on the invari-
ant manifoldA1 , and the same result holds for all oth
invariant manifolds in Eq.~18!.

The result of this section indicates that in the network
coupled identical systems loss of the observability condit
can play a role of necessary condition for the existence
invariant manifolds. However, note that invariance is a pro
erty of the dynamics alone, which exists regardless of w
output is considered, although the output chosen in Eq.~20!
is better suited for their observation.

z
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V. PARTIAL OBSERVERS

We previously mentioned that there is a class of syste
for which the observability condition~3! is not satisfied.
Therefore, one can pose the following question: how mu
information can we derive from on-line measurements of
output if the observability condition fails? An alternativ
way of posing this question is: how wide is the range
functions of the state variables we can observe, for a gi
output?

Consider the dynamical system given by Eq.~1! with
output ~2! available for on-line measurements. The proble
we want to address is to make an on-line estimation of
signal

z~ t !5g~x~ t !!, zPRp, gPC`. ~23!

This problem is referred to as the partial observer des
problem. It is worth mentioning that the problem differs fro
the classical reduced observer design problem. Indeed, in
reduced observer design problem, the estimation ofz(t) and
measurements ofy(t) allows the reconstruction of the whol
statex(t). Contrary to this, the partial observer design pro
lem requires only the estimation of the signalz(t). In the
sequel we will discuss the problem for the scalar casem
5p51.

Although a complete solution of the problem posed
this paper is unavailable, we will discuss a partial answ
based on the concept of partial observers~see Ref. 20!. To
our knowledge, this problem is new in case system~1! with
output ~2! is not observable~detectable!. One possible solu-
tion of the problem is by proving that system~1! is diffeo-
morphic via a differentiable and invertible coordinate chan
f:x°(j,z) to a cascade system of the form

j̇5 f 1~j!,
~24!

ż5 f 2~j,z!,

wherejPRn1,zPRn2,n11n25n and, additionally, the pair
( f 1 ,h+f) is observable~detectable! and in the new coordi-
natesz depends only onj: z(t)5c(j).

In this case it is possible to design an observer for
first ~drive! subsystem giving an estimateĵ(t) of j(t). Then
the signalc( ĵ(t)) is an estimate forz(t), providedj(t) is
bounded. An observer for the first~drive! subsystem will
then be referred to as apartial observer, since it can observe
only part of system~24!. It is important therefore to stat
some conditions which ensure the existence of a coordi
transformation such that in the new coordinates system~1! is
of the form ~24!.

Recall the observability condition~3! introduced in Sec.
II. A proof is based on the coordinate transformations:Rn

→Rn, wheres(x)5(h(x), L fh(x),...,L f
n21h(x)). The ob-

servability rank condition ensures that this coordinate tra
formation is well defined~at least locally!. Now suppose tha

dimdO~x!5n1,n, n1Þ0 ~25!

in some neighborhoodVPRn. In this case, system~1! is not
locally observable. However, the mappings:Rn→Rn1, where
s(x)5(h(x), L fh(x),...,L f

n121h(x)) allows one to rewrite
system~1! locally in V in the form ~24! wherej5s(x) and
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z are some coordinates complementary toj. Moreover, the
pair (f 1 ,h) satisfies in this case the observability rank co
dition ~locally in V!. In this case, condition~25! can be re-
ferred to as the partial observability condition, while the co
cept of partial ~local! observability can be introduce
similarly to the concept of~local! observability.4

Clearly, partial observability is a necessary condition
the ~local! design of a partial observer for the first subsyste
of Eq. ~24!, given the outputy. Once such an observer ha
been designed, if the first subsystem has bounded traject
and, additionally,g depends only onj, it is possible to esti-
mate the functionz.

A. Example

Consider the following six-dimensional system,

ẋ152x12v1x22ex31x4 ,

ẋ25v1x11ax2 ,

ẋ352c1x11be2x3,
~26!ẋ452v2x22v2x52ex6,

ẋ552v1x11v2x41ax5 ,

ẋ652c1x41be2x6,

where a,b,c,v1 , and v2 are real constants. The local ob
servability condition described in Sec. V can tell us wheth
there are parts of the dynamics described by Eq.~26! that are
unobservable using a specific output. Let it first bey5h(x)
5x6 . The Lie derivatives of the outputy5h(x)5x6 along
the trajectories of system~26! are

h~x!5x6 ,

L fh~x!52c1x41be2x6,

L f
2h~x!52v2x22v2x52ex61bce2x6

2bx4e2x62b2e22x6,

L f
3h~x!52av2x22v2

2x42av2x51~c2x4!ex62b

1@bc22bcx41bv2~x21x5!#e2x6

2~b13b2c12b2x4!e22x612b3e23x6,

L f
4h~x!5¯

and the respective Jacobians are

Dh~x!5~0,0,0,0,0,1!,

DL fh~x!5~0,0,0,1,0,2be2x6!,

DL f
2h~x!5~0,2v2,0,2be2x6,2v2 ,* !,

DL f
3h~x!5~0,2av21bv2e2x6,0,* ,2av21bv2e2x6,* !,

DL f
4h~x!5¯ .

We do not need to calculate Lie derivatives of the outp
higher than the third one to realize that the observabi
codistribution is of dimension at most three. Therefore, th
must be a subsystem of Eq.~26! ~that evidently includes the
output x6! that acts as a driving for the remaining part,
that the whole system~26! can be rewritten locally in a cas
cade form.
IP license or copyright, see http://ojps.aip.org/chaos/chocr.jsp
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FIG. 2. Left-hand panel. Three-dimensional plot of a trajectory of system~28!, in coordinates (z4 ,z5 ,z6), for parameter valuesa50.2, b50.2, c59.0,
v1,2516Dv, with Dv50.05, generated with initial conditionsz4(0)522.156,z5(0)53.546,z6(0)523.989. Right-hand panel: Its reconstruction in th
coordinates (s1 ,s2 ,s3), from Eq. ~27!.
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A coordinate change that puts system~26! in a cascade
form can be explicitly constructed from the Lie derivativ
of the output. Lets15h(x)5x6 and s25L fh(x)52c1x4

1be2x6. At this stage we already have that coordinates ofx4

andx1 of the first system can be represented asx65s1 , x4

5s21c2be2s1. We can choose the third coordinate ass3

5L f
2h(x), i.e., s352v2(x21x5)2e2s1. The term

2v2( ẋ21 ẋ5) contains only derivatives ofx4 andx6 , there-
fore the evolution of (s1 ,s2 ,s3) is a system in closed loop
form. We can actually chooses35x21x5 , still resulting in a
closed loop system, but in a simpler analytical form. T
driving part of system~26! is then reconstructed as

ṡ15s2 ,

ṡ25v2s32es12bs2e2s1, ~27!

ṡ35v2~s21c2bes1!1as3 ,

and, considering auxiliary coordinates for the remaining p
in the simple forms45x1 , s55x2 , ands65x3 , the driven
part is expressed as

ṡ452s42v1s52es62c1be2s1,

ṡ55v1s41as5 ,

ṡ652c1s41be2s6.

This example is better understood when we explain that
tem~26! had been derived from two coupled Ro¨ssler systems
as in the form~6!,

ż152v1z22ez32~z12z4!,

ż25v1z11az2 ,

ż352c1z11be2z3,
~28!ż452v2z52ez6,

ż55v2z41az5 ,

ż652c1z41be2z6,

after the linear change of coordinates that putsx55z52z2

and leaves all other coordinates unchanged. The two sys
~27! and the left-hand part of system~28! are indeed equiva
lent, related by a smooth~linear in this case! coordinate
Downloaded 21 Feb 2003 to 131.155.209.192. Redistribution subject to A
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change. Figure 2 shows the driving part of the original s
tem ~28! ~left!, and its reconstruction~27! in the s coordi-
nates via the observability condition~right!. Details of the
simulation are given in the caption of Fig. 2. This example
inspired by a coupled systems model reported in Ref. 6
can produce chaotic phase synchronization.

B. Linear error dynamics

Note that the driving part~27! is in Lur’e form, hence it
admits an observer with linear error dynamics. All results
presented are coordinate-free, but this does not oversimp
the methods for observer design. The best condition is
achieve output linearization, since linear error dynamics
ways provide asymptotic stability. To illustrate this idea, su
pose for a moment that the drive system is represented by
following:

j̇5F 0 1 ¯ 0

A � � A

A ¯ � 1

0 ¯ ¯ 0

G j1F a1~j1!

A
A

an1
~j1!.

G , y5j1 , ~29!

wherea j (j1) are some functions of the outputy5j1 . Then
the system

j̇̂5F 0 1 ¯ 0

A � � A

A ¯ � 1

0 ¯ ¯ 0

G ĵ1F a1~j1!

A
A

an1
~j1!

G1K~j12 ĵ1!,

ŷ5 ĵ1 ~30!

is a partial observer for Eq.~1! with K such that it ensures
fulfillment of the following observation goal:

uuj~ t !2 ĵ~ t !uu→0 as t→`.

It is important to observe that in this case the error dynam
is linear. Thus it is important to find conditions under whic
system~1! has a partial observer with a linear error dyna
ics. To find a solution to this problem, following Ref. 4, w
IP license or copyright, see http://ojps.aip.org/chaos/chocr.jsp
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363Chaos, Vol. 13, No. 1, 2003 Synchronized systems
look for the existence of a transformations:Rn→Rn1,
s:x°j such that in the new coordinates thej subsystem
takes the form~29! and hence admits the observer~30!. The
conditions of equivalence via state transformation of syste
~1! and ~24! with the j subsystem in the form~29! are the
following:

~1! Local observability of a part of variables dimdO(x)
5n1 , ;xPV,Rn.

~2! There is a vector fieldr on V,Rn that satisfiesLrh(x)
5LrL fh(x)5¯5LrL f

n122h(x)50, LrL f
n121

~x!51 such
that @r ,adf

kr #50, ;k51,3,5,...,2n121.

If, additionally, g5c+s, and j is bounded, then the signa
c( ĵ) is an estimate for the signalz.

VI. CONCLUSIONS

In this paper we presented an observer viewpoint on
partial synchronization problem. While in case of full sy
chronization the observer design problem is equivalent to
problem of designing a system synchronizing with a giv
system, in case of partial synchronization the situation
different. Partial observability serves two purposes. Supp
one needs to build an observer for a part of the state ve
only; the observability condition can tell us which part
observable for a given output. Alternatively, the search
those regions of the phase space where the observability
dition is not met can provide information on some invaria
manifolds of the system. With the improvement of numeri
techniques to span the observability distribution of a giv
system for a given output, the possibility of mapping so
invariant subspaces of the system under investigation
follow. Additionally, the violation of the observability condi
tion leads to the advantage of being able to rewrite the s
tem in an explicit cascade structure. This property leads
some advantages in modeling and analysis of dynamical
tems. It shows that it is possible to find a set of coordina
in which the system is rewritten in a simpler form, althou
the new governing equations may lose their original phys
meaning. To summarize, both approaches have somethin
common: not fully observable systems are not generic~as
follows from the Takens theorem!, at the same time the ne
work of identical oscillators is not generic either, since sy
metry is involved.
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