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Synchronization in identical drive-response systems is a problem that can be castbhsesmer
designframework. In this paper we extend this approach by studying the analysis/design of partial
synchronization by means of observer theory. In doing so, we introduce the concept of partial
observer—an observer to reconstruct a part of the system state vector. It is also shown how the
observability condition can be utilized to analyze the dynamics in an array of coupled identical
systems. ©2003 American Institute of Physic§DOI: 10.1063/1.1499596

When synchronization sets in, coupled systems oscillate In this paper we apply observability techniques to partial
in a coherent way. It is possible to also observe some synchronization. The latter is a state, typical of coupled cel-
intermediate regimes characterized by incomplete syn- |ular networks, for instance, in which some coupled units of
chrony which are referred to as partial synchronization. 3 network can show equal corresponding outputs, but not all
The paper is devoted to two problems: design of partially  of them. Here we do not discuss the observability condition
synchronized systems and analysis of partial synchroni- 5 jieq to phase synchronization and the so-called general-
zatlon in a network of coupled 0§C|Ilators. A connection ized synchronization. We dealt with the first case in Ref. 8,
with the so-called _observer Qe3|gn problem borrowed where we built an observer for a periodically perturbed
from control theory is emphasized. - e . ; .
minimum-phase system. The difficulty in dealing with an
observability theory for any general synchronous phenom-
|. INTRODUCTION enon lies first in its definition which, in its more exhaustive
formulation, should take into consideration synchrony asso-

vector of a dynamical system from the measurement of al ifated with a functional, vyhere outputs O].c diffgr(.ent. systems
output signal is commonly known in control theory as theWlth eventual temporal ,‘c’h'ﬁ gppe%\We believe it is |mp9r- )
observer problemThis is a well-developed problem in con- t@nt to develop an engineering approach to synchronization
trol theory, for which a solution exists for linear systelns, N its different forms for control applications, where synchro-
while only partial results exist for nonlinear systems, seel0us motion can be induced to ensure the proper functioning
Refs. 2—4, for example. of a particular device. Consider, for example, active inte-
Observability is also a necessary condition to build agrated antennd$ that can be built as arrays of multiple
synchronizing copy of a given dynamical system. In fact, acoupled oscillators to generate circular polarizafibm ro-
standard approach in solving the observer problem in contrdbotics, the problem of synchronization is usually referred to
theory is to build the observer as an identical copy of theas coordination, or cooperatidfi’®> Another interesting
plant (with unknown initial statg modified with an innova-  problem is to studyand control spatiotemporal patterns in
tion term depending on the difference between the transmifan ensemble of Coup|ed SystemS, for communication
ted output from the plant and its prediction derived from thepyrposed?
observer. This analogy, introduced in Ref. 5, will be ex-'  The first problem we address here deals with what is
plained in more detail in Sec. II. partial coherence between oscillators forming a cellular net-

Th'.s. paper deals with the following problem: can (_)b' work. The second problem, instead, can be formulated as
servability also be related to other forms of synchronization?,

After all, full synchronization (defined, briefly, as the follows: given dynam|c_s with output, design an observer that
. . ; . reconstructs a part of its state components.
asymptotic equality of corresponding state variables of two,

or many, identical systems suitably couplésl not the only The paper 1s organized as fOHOW.S: In Sec. Ilhwe rgcall
possible state of “synchrony,” although it is the one most Some basic facts on the observer design problem. Section Il

commonly associated with this term. With specific aIOIO|ica_presents an application of the observability condition 'FO ana-
tion to chaotic systems, many different physical situationdyz€ the dynamics of a simple cellular network. Section IV
have been considered to be different forms of synchronizedeals with the partial synchronization and partial observabil-

The task of retrieving knowledge about the full state

behavio’ ity in a diffusive cellular network. In Sec. V we introduce the
concept of partial observer and the concluding remarks are

3E|ectronic mail: a.pogromsky@tue.nl presented in Sec. VI.
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II. OBSERVABILITY AND DESIGN OF A
SYNCHRONOUS SYSTEM

It is well understood that the design of a synchronous
system is equivalent to the design of an observer. Consider

the case in which systerA acts on systenB (an identical

copy of A) via the transmission of an output signal, a func-

tion of the state variables oA. Synchronization analysis
deals with finding conditions under which synchrony Aof

and B is possible. Observer design, instead, addresses t

problem of building a suitable systeBiwhose purpose is to
estimate or reconstruct the full state vectorAaf For this

purpose, systerB does not need to be an identical copy of

A.

Consider a dynamical system given by the following

system of differential equations:

x=1f(x), x(0)=xgeR", teR, (1)
with the output signal
y()=h(x(1)), yeR"™ heC~ 2

available for on-line measurements. Throughout the paper

we assume thah=1 andf is smooth, so that existence and
uniqueness of solutions @f) are locally guaranteed. Addi-
tionally, we will assume that solutions exist for b R and
all initial pointsxg.
Let us denote byx(t,xg) the solution of Eq.(1) that
starts fromxg as initial condition, and(t,xg) = f(x(t,Xg)).
Definition 1: The system (1) with output (2) is locally
observable at ¥ if for all initial conditions x;,X, in some
neighborhood U of ¥, if h(x(t,x;))=h(x(t,x,)) for all t
such that Xt,x;),Xx(t,x,) € U implies % =X,. The system (1)
with output (2) is called locally observable if it is locally
observable at any ge R".

In other words, the output of a locally observable system

always sees the evolution of different points as different.

The observation spac® is the linear space ovdt of
the functionsL¥h(x), k=0,1,2,.., where L?h(x)=h(x),
LK Th(x) =L¢(L¥h(x)), and L¢h(x)=3;(dh(x)/ax;)fi(X).
L:h(x) denotes the directional derivative bfin the direc-
tion of f, or Lie derivative ofh with respect to the vector
field f. Consider the observability codistribution

dO(x)=spafDh(x), DL;h(x),...},
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arbitrary prespecified eigenvalues, and particulaly KC

can be made Hurwitz by suitably choosing the output injec-
tion matrix K.

As the reader may expect, in the case of nonlinear dy-
namics there are no general results on the existence of an
observer, nor does the fulfillment of the observability condi-
tion (3) imply the existence of an observer that synchronizes

with (1). If the output function is linear, a similar condition

in Eqg.(4) can be formulated, with the Jacobian matrix of
in Eq. (1) replacing the matriXA. Conditions(3), or (4),
will therefore be state dependent, so there will be zones of
the phase space in which conditi@®) is violated.

In order to apply the observer approach we need to con-
struct an observer such that the error dynamics between the
observer and the plant goes to zero asymptotically. The sim-
plest way to do this is to choose observers that have linear-
izable error dynamics under output rescaling. Consider for
example the Rssler systemx=(X;,X5,X3),

).(l: _X2_X3,

©)

Xo=Xq+axy,

Xz=C+Xz(X;—Db)

with positive parametera,b,c and measured output
h(x)=(0 0 1)x=Xxj.

Using results developed in Ref. 3 one can see that the non-
linear system(5) with the outputy=xs is globally diffeo-
morphic to a system in Lur'e formlinear system plus
output-dependent nonlinearjtyia an appropriate output res-
caling. This can be achieved considering the following coor-
dinate changeé;=x4,&,=X,,&3=l0gx3. This coordinate
change is well defined since M§(tgy) >0, it follows from the
third equation in(5) thatx;(t)>0 for all t>t;. In the new
coordinates the systei®) with outputx; takes the form

& 0 -1 0\ /g —e7
LEl=|11 a 0| &|+ 0 ,
& 1 0 o \é& —b+ce 7

6
=0 0 D=, ©

which is in Lur’e form, with a linear observable part plus

where D denotes the Jacobian. As a standard result fromyqnjinearity which depends only on the measured output
nonlinear control we mention a theorem which claims that_ ¢&5. As a natural candidate for an observer for the system

the condition
dimdO(x)=n

is equivalent to the local observability of systdf) at x.
For linear dynamics, i.e., when E@l) has the formf(x)
=Ax, and the output(2) is h(x)=Cx, AeR"™", C
e R¥™*" condition(3) reduces to

C
CA

3

4

=nN.

ran : (4)
C An -1

In this case the pair/,C) is said to beobservableand it is
possible to find a matriX, such that the matriA—KC has

(6) one can take the following system:

& 0 -1 0\ /%
L=l1 a 0||&
5 1 0 0/\¢&
—e” Ky
+ 0 +| Kz | (n—7), (7)
—b+ce 7 Ks

where7=(00 1)%=%3 andK,,K,,K; are the gain coeffi-
cients which can be chosen to provide the error system with
arbitrarily desirable dynamics. Clearly, systém synchro-
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nizes with Eq.(6) and the observe(7) can afterwards be V. PARTIAL SYNCHRONIZATION

transformed in terms of the original dynamics. . T
The theory of nonlinear observers and the considered ~AS the name suggests, partial synchronization is a state

example highlight that the observer viewpoint is very conveln Which there is somebut not full) coherence between

nient for the problem of design dfully) synchronized sys- coupled oscillators. The higher the number of oscillators that
form a network, the richer the pattern of possible synchro-

tems. nous states may besee Ref. 15, for examplehence it is
important to study properties of the network itself, in order to
Ill. OBSERVABILITY AND ANALYSIS OF A predict some of its possible synchronous states.
SYNCHRONOUS SYSTEM Consider adiffusive cellular networlof k coupled iden-
As we previously mentioned, there may be regions of the,Ilcal dynamical systems of the form
phase space where the observability conditi®nis not ful- x:=f(x;)+Bu ,
filled. It is interesting, therefore, to ask how special these . . . (10)

regions are. Consider the special case of this simple scheme y;=Cxj,

of two coupled identical systems
wherej=1,...k, xj(t)eR" is the state of thgth system,

X =1(x1) —K(x1= %), u;(t) e R™ andy;(t) e R™ are, respectively, the input and the
o= F(Xp) — K (Xa—Xy). (8) output qf thej.th sygtem, an@S,C are cons_tant matrices of
) ) ) ) ) ] ) appropriate dimension. In this representation we can say that
It is easily recognized that, =X, is an invariant manifold hek systemg10) arediffusively coupledf the matrix CB is
for Eq. (8). It is customary in investigating the stability of gimilar to a positive definite matrix, and thesystems are

this invariant manifold to decompose the whole phase spacgerconnected through mutual linear output coupling,
in a subspace containing the invariant manifold, and the sub-

space transverse to it. In a more mathematical setting, in the  u;=—v;1(Y;—Y1) = ¥j2(Yj = ¥2) = = ¥i(Y; = Vi),

coordinates (11)
v=3(X1 X)), W= (X~ Xo) yvhereyij = ‘yji>0 are constants s_uch trﬁlf;&i ¥;i=>0 for all

i=1,... k. Without loss of generality we can assume t6&

the system takes the form, for=0, is positive definite. Define the symmetite< k matrix I as
v="F(v), K
W= (Df(v) —2K)w © Do vz T

that is in a cascade form. The importance of this structure k

will be further highlighted in Sec. V. From the second equa- — v > v v

tion in Eq. (9) one can see that=0 if w=0, that is,w I'= i=Ti#2 : (12

=0 is, in the new coordinates, the previous invariant mani-
fold. If the output of systeni8) is a function ofv coordinates K—1
only, y=h(v)=_h(x14_— xz)_, system(9) cannot pe fully ob- — Y ~ Yo E Vi
servable. All Lie derivatives off do not contain terms de- i=1
pendent onw, hence conditior(3) is not fulfilled. By mea-
suringv, for trajectories on the invariant manifold, we gain
no information onw. If the output of Eq.(8) is, instead, a
function of w coordinates onlyy=h(w)=h(x;—Xx,) with,
specifically,h(0)=0, the observability condition is not sat-
isfied whenevew=0, because the output becomes identi- u=—(rel,)y,
cally zero, regardless of the dynamicswof The observabil-
ity condition (3) is not fulfilled when the trajectory lies on an wherey=col(y;,...,yx), u=col(uy,...,u,) € Rk™.
invariant manifold, since the dynamics is confined on a  The closed loop systeif10) and(11) can show full syn-
lower dimensional subset of the full state space. chrony, i.e., a state characterized by the equality of all coor-
While the fulfillment of condition(3) is helpful in de- dinates of all systems forming the network;=x,="--
signing a synchronizing system for Ed), the converse situ- =x,, but it is also possible that the closed loop systd®)
ation is helpful to detect the presence of invariant manifoldsand (11) possesses an invariant manifold described by a
At the same time, it tells us whether the system can be reaumber of equations of the form =x; for somei,j. We
written in a cascade structure, even if in the new coordinatedefine partial synchronizatioras the situation in which the
the system might not have direct physical interpretation.  states ofsomesystems are identical. Stability of this partial
The examples we introduce now on partial synchronizasynchronization regime is the subject of this section. If this
tion and partial observability will help to clarify these points. manifold contains @globally) asymptotically stable compact
To analyze observability properties of networks of partially subset, this situation will be referred to égloba) partial
synchronized systems, we first present some results related sgnchronization. Analysis of possible symetries of the closed
partial synchronization in diffusive networks. loop system(10) and (11) helps in determining some of its

where y;; = v;;=0 and all row sums are zero. The matfix
is symmetric and therefore all its eigenvalues are real. With
the definition(12), the feedback11) can be rewritten in the

more compact form
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linear invariant manifolds. Particularly, it is not difficult to some internal dynamics of systgid). It guarantees that the

prove that if there is a permutation matfikcommuting with ~ z dynamics of systenil4) is exponentially convergerisee,

I" then the set e.g., Refs. 16 and 18The proof of this theorem can be
ker(l o~ TI®1,) (13 founc_i in our fo_rthcoming papéf.As an illustrative example,

consider a ring of four coupled Lorenz systems,

is a linear invariant manifold for the systet0) and (11). =(Xj.1,Xj 2:Xj 3

From this result it is clear that the set of symmetries for the

networks defined by the matricékgives rise to a number of

linear invariant_ me_mifolds for the closeq Ioop system. This Xj 2= X 1~ X} 2~ X] 1X] 3

set of symmetries is calleglobal symmetries, since they are

independent of the equations that model a particular unit of ~ Xj 3= —bX; 31 X; 1X; 2,

the n.etvv_ork. Along with t_he global symmetries !t is useful to wherej=1,...,4, o,r,b>0 with outputsy;=x: ; and cou-

considerinternal symmetries too, that are associated with thepling provided by the inputs: o

systems modeling the units of the network. In this paper, I

however, we are going to consider only global symmetries, u;=—Kg(y;—VY2) —Ki(Y1—VYa),

while a more general approach can be found in our forthcom-

Xj 1= (X 2= X 1) Uy,

ing paper® U= —Ko(y2—Y1) —Ki(y2—Va),

To obtain a stability criterion for the compact invariant _ (15
uz=—K —y4)—K —Y2),

subset of Eq(13) it is convenient first to rewrite the system 3 oys~¥a) ~Ka(Ys=y2)

(10) in a different coordinate system. Let us differentigte Us=—Ko(Ya—VY3) —Ki(Ya—V1).
yj=Cf(x;)+CBuy;. The particular geometry of the coupling defines the follow-

Then, choosing some—m coordinateg; complementary to "9 coupling matrix:

y;j it is possible to rewrite the syste(0) in the form Ko+tK, —Kg 0 K,
z;=4q(z,y)), r— —Ko  KotKi =Ky 0 (16)
yi=a(z;,y;)+CBu, (14) 0 —Ki KotKy =Ky

- Kl O - KO Ko+ Kl

wherez; e R"™™, andq anda are some vector functions. It
output relations, this transformation is globally defined. This _
O E
. ; ; ; ) O E
Theorem 1 Supposdl is a permutation matrix com 3:( ) =1, (17)
range(l,—1IT). Suppose the following where we denoted

is important to emphasize that the coordinate chang&he four permutation matrices for whidbhI'=TI"II are
Xj—>col(z; ,y;) is linear. Note that, owing to the linear input—
E O (O Iz)
= y H = y
transformation is explicitly computed in, for example, Ref. ! 2 I, O
17. Now we can formulate the main result of this section.
muting withI'. Let v’ be the minimal eigenvalue ®f under E O
restriction that the eigenvectors @f are taken from the set
(i) There exists a non-negative radially unbounded func- 0 1
tion V satisfying the following conditions E= 1 0

ﬂf(x)s_H(X), ﬂBszCT and O is the 22 zero matrix. Let us analyze what the
X X action of these matricel is. The action oflI, is to switch

with xe R", ue R" ™ and the function H is positive outside simultaneously x with x, and x5 with x,. One can easily

some compact set iR". notice that this operation leaves the network unchanged, with
(i) There exists a positive definite matrix P such that all"®SPect to its connections. Similar actions are brought upon

thing unchanged.

From expressioiil3), we derive that the linear invariant
manifolds associated withl;, I, andIl; in Eq. (16) are,
respectively,

1
Q(z,w)= > +

9q Jq !
P(E(z,w) E(Z’W)) P

are negative and separated from zero, i.e., ther&3 such

that \;(Q)=< <0 with i=1,...n—m, for all z,we R"™™ Ar={xe R¥Zx;=X,,X3=X4},
Then there exists a positivg such that if y' >y the set 1
ker(l,,—II®1,) contains a globally asymptotically stable Ap={xe R™X1=X3,X2= Xq}, (18)

compact subset

The first assumption of the theorem ensures ultimate
boundedness, of the solutions of the closed loop system arithe intersection of any two of these linear manifolds gives
is referred to asemipassivity conditiofsee, e.g., Refs. 16— the linear manifold describing full synchronizatidne., x;
18). The second assumption requires some sort of stability of X, =X3=X,).

Az={xe R¥Zx;=X4,X,=X3}.
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FIG. 1. Synchronization and partial synchronization in a ring of four Lorenz

systems.

Once the invariant manifolds in the for(@3) are found
one has to check conditions)(and (i) of the theorem. To
check condition i), consider the following function:

V(X 1.%j 2.X.3) = 3((X), )2+ (X 2°+ (X 3= a—1)?).

The second equation from condition) (rivially holds, so it

remains to check the first inequality. To this end differentiate

V along the trajectories of the free system£0):
\./(Xj,lvxj,ZIXj,Svu):H(Xj,laxj,21xj’3)a

where
H(Xj,l,Xj,z,Xj,a):U(Xj,l)z

o+r\?  (o+r1)?
Xj’3_ 2 —b 4 s
so, condition () is satisfied. To check conditioriij, one
can consideP=1,, for which Q=diag(—1—b), and condi-

+(Xj’2)2+b

Santoboni, Pogromsky, and Nijmeijer

Xj:f(Xj)+BUj, j:].,...,4, (19)
with inputs as previously defined in EGL5), and choose the
output for Eq.(19) as

4 4

y=2, ¥;=C> X;.
=1 =1

Let D stand for the Jacobian, as previously done. The Lie
derivatives of the output are given by

(20

4
h(x)=CEl X;
=

4
th<x>=cj§1 f(x)),
4
szh(x)=Czl [Df(x;)f(x;)+Df(x,)Bu],
e

L3h(x)="-".

We consider only the explicit formula for the Lie derivatives
up to the second. The Jacobians of these derivatives are
given byDh(x)=C(1111), and the Jacobian of the first de-
rivative is a row vector of components

{DLh(x)}=CDf(x,). (21)

The second derivative can be written as a row vector of
components
4

{DLEh()}=C| a(x)+D*f(x)Bu+ 2, Df(x;)B%},
=1 i
(22

where a(x;) is some function of the coordinatg only, and

it is important to note thadu; /9x;= —1I';; , with I" given in

Eqg. (16). Let us see what values the row vect¢2d) and
(22) assume for trajectories on one of the invariant manifolds
(18). Consider the manifolti; first. This manifold is defined

by the relationshipg,=xX,,x3=X,. For a trajectory lying on

tion (ii ) is satisfied as well. Note that, for Lorenz system, thel1 we haveu;=u,=—uz=—u,, and for the last term in

transformatiorx;—col(z; ,y;) is simplyy;=x; ; (the output
given andz;=col(X; »,X; 3)-

Let us analyze the conclusions of the theorem. The ei-

genvalues of the matrix (16) are X\;=0, )\,
:min{ZKo,ZKl}, )\3:max{2K0,2K1}, )\4:2(K0+ K]_)
Hence, for the permutation described Hy in Eq. (17) we
have \'=2K,. Similarly, N\ =min{2K,,2K,} for II, and
N =2K, for I15. According to the theorem, for larg&, and

Eqg. (22), we have, using Eq$15) and(16), a row vector of
components

K1[Df(x4)—Df(x1)]BC,
K,[Df(xs)—Df(x,)]BC,
K,[Df(x,)—Df(xs)]BC,
K4 Df(x;)—Df(x4)]BC.

small K; one can expect asymptotic stability of a subset ofHence, for any trajectory itd; the first and second compo-
the setA; in Eq. (18). For the permutatiothl 5, for smallK,  nents of Eqs(21) and(22) are identical. The third and fourth
and largeK;, leads to asymptotic stability of a subset of the components are identical too, though different from the first
set.A;. Asymptotic stability of the full synchronization oc- and second. Therefore, the observability condiiignis not
curs forKy andK both large enough. The subset of the setfulfilled whenever a trajectory of Eq19) lies on the invari-
A, is stable only as a stable intersection .4f and A;, ant manifold .4;, and the same result holds for all other
which describes full synchronization. This situation is sche-4nvariant manifolds in Eq(18).
matically shown in Fig. 1. The result of this section indicates that in the network of
The observability rank conditiorLet us test the observ- coupled identical systems loss of the observability condition
ability rank condition on this ring structure of coupled sys-can play a role of necessary condition for the existence of
tems. Assume, for simplicity, that the units forming the cellsinvariant manifolds. However, note that invariance is a prop-
are one dimensional, i.exje R. The extension to higher erty of the dynamics alone, which exists regardless of what
dimension can be treated similarly, but in different notation.output is considered, although the output chosen in(EQ.
The ring of four systems is represented by is better suited for their observation.

Downloaded 21 Feb 2003 to 131.155.209.192. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/chaos/chocr.jsp



Chaos, Vol. 13, No. 1, 2003 Synchronized systems 361

V. PARTIAL OBSERVERS { are some coordinates complementaryétdvoreover, the
i i _ pair (f1,h) satisfies in this case the observability rank con-

We previously mentioned that there is a class of systemgtion (locally in Q). In this case, conditiori25) can be re-
for which the observability conditioni3) is not satisfied.  fgrreq 1o as the partial observability condition, while the con-

Therefore, one can pose the following question: how muchent of partial (local) observability can be introduced
information can we derive from on-line measurements of thesimilarly to the concept oflocal) observability‘.‘

output if the observability condition fails? An alternative — cjearly, partial observability is a necessary condition for
way of posing this question is: how wide is the range ofiq (1oca)) design of a partial observer for the first subsystem
functions of the state variables we can observe, for a givep; Eq. (24), given the outpuly. Once such an observer has

output? been designed, if the first subsystem has bounded trajectories

Consider the dynamical system given by E#) with 54 4qditionallyg depends only of, it is possible to esti-
output(2) available for on-line measurements. The problem.,,ie the functiorz.

we want to address is to make an on-line estimation of the
signal

z(t)=g(x(t)), zeRP, geC~. (23

This problem is referred to as the partial observer design
problem. It is worth mentioning that the problem differs from
the classical reduced observer design problem. Indeed, in the X,=wX;+ax,,
reduced observer design problem, the estimation(9f and
measurements of(t) allows the reconstruction of the whole
statex(t). Contrary to this, the partial observer design prob-  Xa= — @2X,— w,X5— €6,

A. Example

Consider the following six-dimensional system,
X1= —X1— w1 Xo— €34+ X,,

X3: _C+X1+ be_x3,
(26)

lem requires 'onl)'/ the estimation of the sigret). In the X5= — X1+ WoX4+ aXs,
sequel we will discuss the problem for the scalar case _ B
=p=1. Xg=—C+X4+be s,

Although a complete solution of the problem posed inwherea,b,c,w;, and w, are real constants. The local ob-
this paper is unavailable, we will discuss a partial answekervability condition described in Sec. V can tell us whether
based on the concept of partial observesse Ref. 2D To  there are parts of the dynamics described by(E6). that are
our knowledge, this problem is new in case systéywith  ynobservable using a specific output. Let it firstybeh(x)
output(2) is not observablédetectablg One possible solu- =x.. The Lie derivatives of the outpyt=h(x)=x4 along

tion of the problem is by proving that systef) is diffeo-  the trajectories of systelf26) are
morphic via a differentiable and invertible coordinate change

¢d:x—(&,{) to a cascade system of the form h(x)=Xg,

£=11(8) Lih(x)=—c+x4+be™s,

{=12(&0) (24 LZN(X) = — woXp— woXs— €%6+bee %6
where £ e R", ¢ e R"2,n;+n,=n and, additionally, the pair —bx,e” X6—b%e™ 2%,

(fq1,ho¢) is observablgdetectable and in the new coordi-
natesz depends only o z(t) = ().

In this case it is possible to design an observer for the +[bc?—bex,+bwy(X,+ X5)]e %6
first (drive) subsystem giving an estimagét) of £(t). Then
the signaly(£(t)) is an estimate foz(t), provided&(t) is
bounded. An observer for the firgtrive) subsystem will Lih(x)="--
then be referred to aspartial observer since it can observe
only part of system24). It is important therefore to state
some conditions which ensure the existence of a coordinateh(x)=(0,0,0,0,0,1,
transformation such that in the new coordinates systBrs DLh(x)=(0,0,0,1,0-be ),
of the form(24). 5 L .

Recall the observability conditiof8) introduced in Sec. DPLh(X)=(0,~;,0,—be ", —w,,*),

Il. A proof is based on the coordinate transformatmi" DL}h(X)=(0,—aw,+bw,e %6,0*, —aw,+bw,e %6 *),

—R", wheres(x)=(h(x), th(x),...,L?_lh(x)). The ob- 4

servability rank condition ensures that this coordinate transPLrh(X)=""-.

formation is well definedat least locally. Now suppose that We do not need to calculate Lie derivatives of the output
dimdO(x)=n,<n, ny#0 (25) higher.tha.n the thir.d one to realize that the observability

codistribution is of dimension at most three. Therefore, there

in some neighborhoof € R". In this case, systerfl) is not  must be a subsystem of E@6) (that evidently includes the

locally observable. However, the mappisigt"— R™, where  output x¢) that acts as a driving for the remaining part, so

s(x) = (h(x), th(x),...,L?lflh(x)) allows one to rewrite that the whole systerf26) can be rewritten locally in a cas-

system(1) locally in € in the form(24) whereé=s(x) and cade form.

Lfsh(X) = aa)2X2_ w§X4— aw2X5+ (C_X4)eX6_ b

—(b+3b%c+2b%x,)e” 6+ 2b%e™ s,

and the respective Jacobians are
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FIG. 2. Left-hand panel. Three-dimensional plot of a trajectory of sys@8) in coordinates £,,z5,25), for parameter valuea=0.2, b=0.2, c=9.0,
w;,=1*Aw, with Aw=0.05, generated with initial conditiorg(0)= —2.156,z5(0)=3.546,z4(0)= — 3.989. Right-hand panel: Its reconstruction in the
coordinates &, ,s,,s3), from Eq.(27).

A coordinate change that puts syst€2®) in a cascade change. Figure 2 shows the driving part of the original sys-
form can be explicitly constructed from the Lie derivativestem (28) (left), and its reconstructiof27) in the s coordi-

of the output. Lets;=h(X)=Xg and s,=Lh(X)=—c+X4
+be s, At this stage we already have that coordinates,of
andx, of the first system can be representedkgs s;, X4
=s,+c—be °.. We can choose the third coordinate s
=L?h(x), ie., S3=—wy(Xp+xs)—e L. The term
— wy(X,+Xs5) contains only derivatives of, andxg, there-

fore the evolution of §;,s,,S3) is a system in closed loop

form. We can actually choosg=x,+ X5, still resulting in a

nates via the observability conditidnight). Details of the
simulation are given in the caption of Fig. 2. This example is
inspired by a coupled systems model reported in Ref. 6 that
can produce chaotic phase synchronization.

B. Linear error dynamics

Note that the driving parf27) is in Lur’e form, hence it

closed loop system, but in a simpler analytical form. Theadmits an observer with linear error dynamics. All results we

driving part of systen{26) is then reconstructed as
.S]_:Sz,
(27)

5,=w,S3—e’1—bs,e %1,

S3=w,(S,+c—he’l)+as;,

and, considering auxiliary coordinates for the remaining parI

in the simple forms,=x4, Ss=X,, andsg=Xz, the driven
part is expressed as

S4: - S4_ (1)155_ esﬁ— c+ beisl,
-55: w184+ a.S5,

§=—C+s,+be %,

presented are coordinate-free, but this does not oversimplify
the methods for observer design. The best condition is to
achieve output linearization, since linear error dynamics al-
ways provide asymptotic stability. To illustrate this idea, sup-
pose for a moment that the drive system is represented by the
ollowing:

o1 0 ay(€1)

e
anl(gl)-

1 y = gl ’ (29)

wherea;(§,) are some functions of the outpyt=£;,. Then
the system

This example is better understood when we explain that sys-

tem(26) had been derived from two coupled $&ter systems
as in the form(6),

2)=—w12,—€8—(2,-2,),
Z,= w21+ az,
z3=—ctz3+be %,

Z4=— w,Z5— €%, (28)
Zs= wy24+azs;,

Zg=—C+z,+be %,

after the linear change of coordinates that pus z5— 2z,

o1 -0 ay(£1)
S D B R )
0 - - 0 anl(gl)
J=& (30)

is a partial observer for Eq1) with K such that it ensures
fulfillment of the following observation goal:

&)~ &(1)||—0 as t—oo.

It is important to observe that in this case the error dynamics

and leaves all other coordinates unchanged. The two systenslinear. Thus it is important to find conditions under which

(27) and the left-hand part of syste(®8) are indeed equiva-

lent, related by a smootklinear in this casg coordinate

system(1) has a partial observer with a linear error dynam-
ics. To find a solution to this problem, following Ref. 4, we
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