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Mutual Synchronization of Robots via Estimated
State Feedback: A Cooperative Approach

Alejandro Rodriguez-Angeles and Henk Nijmeijer, Fellow, IEEE

Abstract—In this paper, a controller that solves the problem of
position synchronization of two (or more) robot systems, under a
cooperative scheme, in the case when only position measurements
are available, is presented. The synchronization controller consists
of a feedback control law and a set of nonlinear observers. Cou-
pling errors are introduced to create interconnections that render
mutual synchronization of the robots. It is shown that the con-
troller yields semiglobal exponential convergence of the synchro-
nization closed-loop errors. Experimental results show, despite ob-
vious model uncertainties, a good agreement with the predicted
convergence.

Index Terms—Cooperative systems, feedback systems, multiple
manipulators, observers, synchronization.

I. INTRODUCTION

TODAY, the developments in technology and the require-
ments on efficiency and quality in production processes

have resulted in complex and integrated systems. In production
processes such as manufacturing and automotive applications
there is a high requirement on flexibility and maneuverability
of the involved systems. In most of these processes the use of
multicomposed systems is widely spread, and their variety in
uses includes assembling, transporting, painting and welding.
All these tasks require large maneuverability and manipulability
of the executing systems, often even some of the tasks can not
be carried out by a single system. In these cases, the use of mul-
ticomposed systems have been considered as an option.

In practice, many multicomposed systems work either under
cooperative or under coordinated schemes. Synchronization, co-
ordination, and cooperation are intimately linked subjects and
very often they are used as synonyms to describe the same kind
of behavior.

In the last century, synchronization received a lot of attention
in the Russian scientific community since it was observed in bal-
anced and unbalanced rotors and vibro-exciters [1]. Nowadays,
there are several works related to synchronization of rotating
bodies and electromechanical systems [2]–[5]. For mechanical
systems synchronization is of great importance as soon as two
machines have to cooperate. The cooperative behavior gives
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flexibility and maneuverability that cannot be achieved by an
individual system, e.g., multifinger robot-hands, multirobot sys-
tems and multiactuated platforms [6], teleoperated master-slave
systems [7]–[9].

According to [2] synchronization may be defined as the
mutual time conformity of two or more processes. Further-
more, based on the type of interconnections (interactions) in
the system, different kinds of synchronization can be defined
[10]. In case of disconnected systems that present synchronous
behavior this is referred to as natural synchronization. When
synchronization is achieved by proper interconnections in the
systems, i.e., without any artificially introduced external action,
then the system is referred to as self-synchronized. When there
exist external actions (controls) and/or artificial interconnec-
tions then the system is called controlled-synchronized.

Depending on the formulation of the controlled synchro-
nization distinction should be made between internal (mutual)
synchronization, when all synchronized objects occur on equal
terms, e.g., cooperative systems, and external synchronization,
when one object is more powerful than the others and its
motion can be considered as independent of the motion of the
other objects, e.g., master–slave systems.

This paper focuses on controlled synchronization of robot
systems, which nowadays are common and important systems
in production processes. However, the general ideas developed
here can be extended to more general mechanical systems, such
as mobile robots, motors, etc. Robot manipulators are widely
used in production processes where high flexibility, manipula-
bility, and maneuverability are required. In tasks that cannot be
carried out by a single robot, either because of the complexity of
the task or limitations of the robot, the use of multirobot systems
working in external synchronization, e.g., master-slave and co-
ordinated schemes [8], [9], or mutual synchronization, e.g., co-
operative schemes [6], have proved to be a good alternative. Co-
ordinated and cooperative schemes are important illustrations of
the same goal, where it is desired that two or more robot sys-
tems, either identical or different, work in synchrony [6], [11].
This can be formulated as a control problem that implies the de-
sign of suitable controllers to achieve the required synchronous
motion.

The problem of synchronization of robotic systems seems to
be a straightforward extension of classical tracking controllers,
however it implies challenges that are not considered in the de-
sign of tracking controllers. The interconnections (interactions)
between the robots imply control problems that are not consid-
ered in classical tracking controllers. However, the interconnec-
tions cannot be neglected since they are precisely what deter-
mine the synchronized behavior. The interconnections between
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the robots generate the flow of information necessary to guar-
antee the synchronous behavior. Also, problems can arise be-
cause of the particular structure of the robots, such as type of
joints (rigid or elastic), kinematic pairs (prismatic, rotational,
etc.), transmission elements (gears, belts). Furthermore, avail-
able equipment, such as, velocity and acceleration measuring
capabilities, noise in the measurements and time delays, might
cause other problems in robot synchronization.

In this paper, a synchronization controller based only on posi-
tion measurements, that uses coupling errors to induce the mu-
tual synchronization behavior, is proposed. The idea of coupling
errors has been exploited by several authors, see for instance
[12] and [13]. However, the mentioned works report only set
point synchronization and, in addition, are based on full-state
measurements.

The general setup in this paper is as follows. Consider a mul-
tirobot system formed by rigid joint robots together
with a common desired trajectory for all of them, denoted by

, . Then, the mutual synchronization control problem can
be formulated as to design interconnections and controllers
for all the robots in the system, such that the angular positions
and velocities , of the th robot are synchronized with
respect to , and , , ( , ). It is as-
sumed that the dynamic model of each robot is known and free
of uncertainties and modeling errors. The major constraint to de-
sign the synchronization controller is that only the angular po-
sitions of all the robots are measured. This problem is solved
by using nonlinear model-based observers. The estimated vari-
ables (velocities and accelerations) are used in a feedback loop,
such that the feedback controller plus the observers, guarantee
mutual synchronization of the multirobot system.

To clarify the proposed mutual synchronization controller
first the case with all the state available is considered. Then the
case of partial access to the state (only positions) is addressed.

The paper is organized as follows. The dynamic model of the
robot is presented in Section II. A mutual synchronization con-
troller for frictionless robots, assuming all measurements avail-
able is presented in Section III. Section IV presents a modified
synchronization controller that considers nonlinear observers. A
gain tuning procedure for the observers and feedback controller
gains is given in Section V. Section VI presents a modified ver-
sion of the synchronization controller when friction is consid-
ered. An experimental study with two robots with four degrees
of freedom is presented in Section VII. The paper closes with
some conclusions inSection VIII.

II. DYNAMIC MODEL OF THE ROBOT MANIPULATORS

First, the dynamic model for frictionless robots is presented.
Although, in some cases friction phenomena can straightfor-
wardly be compensated, in general friction phenomena require
special treatment. Therefore, a second model considering fric-
tion effects is also introduced.

Consider frictionless rigid joint robots with joints, i.e.,
with joint coordinates , . Assume that all
the joints are rotational and fully actuated. The kinetic energy
of the th robot is given by , with

the symmetric, positive definite inertia matrix,

and the potential energy due to gravity is denoted by .
Hence, applying the Euler–Lagrange formalism [14], [15] the
dynamic model of the th robot manipulator is given by

(1)

where denotes the gravity forces,
represents the Coriolis and centrifugal forces,

and denotes the vector of torques.
Various mathematical models, both static and dynamic, have

been proposed to describe a number of friction phenomena [16],
[17]. Which model is more suitable for modeling and control
purposes depends on the physical friction phenomena observed
in the system, such as stiction, Stribeck effects, viscous friction,
and on the velocity regime in which the system is supposed to
work, i.e., slow, medium or high speed.

A major difficulty in static-friction models is the disconti-
nuity that the Coulomb friction represents. The discontinuity at
zero velocity may lead to nonuniqueness of the solution of the
equation of motion, and numerical problems if such a model is
used in simulations. A way to deal with the Coulomb disconti-
nuity is to use approximations.

When friction forces are considered the model (1)
changes to

(2)

where as in [18], friction forces can be modeled as

(3)

where is the viscous friction coefficient and the remaining
terms model the Coulomb and Stribeck friction. The coefficients

, determine the slope in the approximation of the
function in the Coulomb friction.

The dynamic models (1) and (2) possess structural properties
which are useful along the stability analysis.

• The inertia matrix is symmetric and pos-
itive definite for all .

• If the matrix is defined using
the Christoffel symbols [15], then the matrix

is skew symmetric, i.e., for all

(4)

• In addition, for the previous choice of , it follows
that

... (5)

where are symmetric ma-
trices [19]. It follows that for any scalar and for all ,

, ,

(6)
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• , and are bounded with respect to
, [20], so for all

(7)

(8)

• The diagonal positive–definite viscous-friction coefficient
matrix is bounded, i.e.,

III. SYNCHRONIZATION CONTROLLER BASED ON STATE

FEEDBACK

If the full state of all the robots in the multicomposed system
is available, then one can propose a mutual synchronization con-
troller for the th robot, , as

(9)

where , are positive definite gain matrices,
, are the synchronization errors defined by

(10)

To generate interactions between the robots and to guarantee
the synchronous behavior, define the reference signals as

(11)

where , , , , , are
positive semi-definite diagonal matrices that define the interac-
tions between the robots in the system.

Note that (10) and (11) define a tradeoff in the reference sig-
nals: each robot will be enforced to follow the desired common
trajectory , while the robots should mutually synchronize.
The second term in the right-hand side of , , and repre-
sents the “feedback” of the synchronization errors between the
th robot and the other robots in the system. The gains ,

, allow to weight the synchronization errors be-
tween the robots and the desired common trajectory. There-
fore, these errors can be penalized; as a result priority to syn-
chronicity between the robots or with respect to the common
desired trajectory can be assigned. This is particularly important
during transients when large errors can cause instability and/or
compromise the synchronous behavior of the complete multi-
robot system.

Assumption 1: For simplicity it is assumed that for all ,
the coupling gains , , sat-

isfy

Define the partial synchronization errors between the th and
the th robots in the multirobot system by

(12)

for all , , , and for as

(13)

Then , defined by (10) can be written as

(14)

A. Stability Analysis

Substitution of (9) and (11) in the robot dynamics (1), and
considering , , given by (10), yields the synchronization
closed-loop systems (for )

(15)

Note that all the couplings between the robots are modeled by
, , , such that in these variables the synchronization-error

dynamics for each robot in the system is decoupled (15).
The stability properties of the synchronization-error dy-

namics (15) are summarized in the following theorem.
Theorem 2: Consider the closed-loop system formed by the

controller (9), the reference signals (11) and the robot dynamics
(1). Then the synchronization errors , are globally asymp-
totically stable if the control gains , , are
positive definite.

Proof: Define the vector and take as Lya-
punov function

(16)

The matrix is positive definite for all , , ,
and if and only if , .

The time derivative of along (15) is given by

(17)

Therefore, is negative semi-definite for all ;
thus the synchronization errors , are stable, but asymptotical
stability cannot be concluded yet. By following very standard
stability tools, e.g., Barbalat’s lemma, it can be proved that the
only invariant set that satisfies is the origin, see [19]
and [20]. Therefore, it can be concluded that , are globally
asymptotically stable.

Note that , are linear combinations of the partial synchro-
nization errors. Therefore, it is still necessary to prove that ,
being asymptotically stable implies global-asymptotic synchro-
nization between the robots.

Lemma 3: Consider the diagonally dominant matrix
, shown in (18) at the bottom of the

next page) with , , the coupling matrices
in (11), thus can be considered as the coupling
matrix between the robots in the multicomposed system.
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The matrix is nonsingular for all positive–semidef-
inite diagonal matrices , , . Moreover

...
...

...
...

(19)

holds for all positive semidefinite diagonal matrices .
Proof: The proof follows from Gerschgorin’s theorem

about location of eigenvalues [21], see [4] and [5] for details.
To prove global-asymptotic synchronization of the multirobot

system consider (14) and take the limit . By consid-
ering the definition of the synchronization errors (12), (13) the
right-hand side of the implication (19) is obtained. Therefore,
from Lemma 3 it follows that for all , , ,
so that . In a similar way it can be proved that
as , so that as .

Remark 4: The matrix , (18), is nonsingular for all
positive semidefinite diagonal coupling matrices , ,

, i.e., including , see Lemma 3. Therefore,
partial and even master–slave synchronization of the robots in
the system can be considered, i.e., some .

IV. SYNCHRONIZATION CONTROLLER BASED ON ESTIMATED

VARIABLES

If only angular joint positions , , are measured,
then the synchronization controller (9), the reference signals ,

, (11), and thus the synchronization error , (10), cannot be
implemented. As an option the controller for the th robot,
(9), can be modified to

(20)

where , , are defined as in (1), and ,
are positive–definite gain matrices. denotes the

estimate of the velocity synchronization error , (10). ,
and are estimates of the angular velocity and the reference
signals , (11). They are given by

(21)

(22)

Where corresponds to the derivative of the velocity estimate
of the th robot, i.e.,

Then it follows that:

or in terms of estimates for the partial synchronization errors

(23)

with , given by

(24)

A. An Observer for the Joint Variables

An observer for estimating the joint variables , in the
dynamic model of the th robot given by (1), is given by

(25)

where , , are estimates for , , , ,
are positive definite gain matrices, and the estimation er-

rors and are defined by

(26)

Remark 5: Notice that , (20), depends on and thus on
, (25), which depends on . Therefore, when is sub-

stituted in (25), it results in an algebraic loop between the set of
observers. Nevertheless, this loop (25) can be solved by pure

algebraic manipulation.
After substitution of (20) in (25), it follows that the second

equation of (25) can be written as (for )

(27)

...
. . .

(18)
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such that an implicit system of differential equations is
obtained.

Define the vectors , as

then (27) can be written as

with the matrix given by (18).
Since the matrix is nonsingular, see Lemma 3, (27)

admits a unique solution, given by

Thus, the observers (25) can be written as

(28)

for , with a known nonlinear function.

B. Synchronization Closed-Loop Error Dynamics

Throughout the formulation of the error dynamics it is taken
that Assumption 1 is satisfied. For simplicity in the stability
analysis, the following assumption is introduced.

Assumption 6: The gains in the controller (20) and the ob-
servers (25) are a positive multiple of the unit matrix, i.e of the
form with a positive scalar and the identity ma-
trix of appropriate dimensions. It is also assumed that the gain
matrices at velocity and position level are equal for all the ob-
servers, i.e., , for all .

After substitution of the synchronization controller (20) and
the observers (25), and by considering the properties (5) and (6)
and the definitions of the partial synchronization errors (13),
it follows that closed-loop synchronization-error dynamics is
given by:

(29)

(30)

Note that the second equation of the synchronization-error
dynamics (30) corresponds to the synchronization error (15)
with a disturbance that vanishes when , . There-
fore, it can be expected that if the estimation errors , asymp-
totically tend to zero, then the origin of the synchronization er-
rors , is still an equilibrium point for (30).

C. Stability Analysis

The following assumption is required to prove stability of the
synchronization closed-loop system.

Assumption 7: The common desired trajectory at velocity
level is bounded by a positive scalar such that

(31)

Based on the Assumptions 1, 6, and 7, the main result of the
paper is formulated as follows.

Theorem 8: Consider a multirobot system formed by rigid
joint robots with dynamic models given by (1). Each robot in
closed-loop with the controller (20), the reference signals (21),
(22), and the observers (25). Introduce a positive scalar param-
eter , which is defined and used throughout the proof. Then
the robots in the multicomposed system are semiglobally ex-
ponentially synchronized, i.e., for , , ,

exponentially in a region that can be made arbitrarily
large, if the scalar in the gains , , are chosen such
that for

(32)

(33)

(34)

where , are scalars given in the gain tuning procedure
in Section V, and , stand for the minimum and maximum
eigenvalue of the matrix .

Proof: First a Lyapunov function and conditions for pos-
itive definitiveness are presented, then its derivative along the
closed-loop error dynamics (29), (30) is bounded and sufficient
conditions for negative definiteness are formulated.
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Lyapunov function: Consider the synchronization-error
dynamics given by (29) and (30). Define the vectors , as

(35)

and take as a Lyapunov function

(36)

where for

(37)

(38)

(39)

with and defined as

(40)

(41)

where Assumptions 6 and 7 have been used. The scalars ,
are the bounds of the Coriolis term and the inertia matrix,

is a positive scalar.
Note that is bounded by

Moreover, it follows that:

Notice that in (37) corresponds to the Lyapunov
function (16), which has been used for the case of synchro-
nization based on full state measurements. is a sum
of quadratic positive terms, therefore, it is positive definite. On
the other hand a sufficient condition for positive definiteness of

is given by

(42)
with the minimum eigenvalue of the matrix .

Define the coupled synchronization error as

(43)

then the Lyapunov function (36) satisfies

(44)

for some positive scalar , .
Time derivative of the Lyapunov function: Consider the

vector defined by (35). Then along the error dynamics (29),

(30) the time derivative of the Lyapunov function (36) has an
upper bound given by, (see Appendix I)

(45)

with an upper bound of , which is given by

(46)

and the matrix given by

(47)

(48)

(49)

(50)

(51)

From Sylvester’s criterion about positive definiteness of a
matrix based on the principal minors, see [22], it follows that
the matrix , given by (47) is positive–definite if:

(52)

(53)

(54)

Remark 9: In (53), (54) , , are equal to , , the
notation is used to emphasize that for each matrix ,

, a different , is obtained.
Consider the vector defined by (43), then

given by (45) results in

(55)

where is the minimum eigenvalue of the matrix ,
, so that is positive if the conditions (52),

(53), and (54) are satisfied.
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The coefficient is determined by and is given by

(56)

The minimum eigenvalue of , i.e., , is proportional
to the gain , while is independent of . Therefore, by in-
creasing it can be ensured that for

Thus, the matrix , given by (45), is negative definite.
Moreover, it follows that there exist a positive scalar , such that

has an upper bound given by

From the above equation and (44), it is concluded that there exist
some constants , , such that

and thus by the definition of given by (43), it follows that the
synchronization closed-loop errors are semiglobally exponen-
tially stable with convergence region given by

(57)

Since the synchronization error is exponentially stable, it fol-
lows that , and , for , are exponentially stable
too. The proof that the partial synchronization errors , ,

are exponentially stable, and thus the robots in
the multicomposed system are semiglobally exponentially syn-
chronized, follows along the same lines as in the case of avail-
able full state measurements, Section III.

V. GAIN TUNING PROCEDURE

The gain tuning procedure to ensure the stability results stated
in Theorem 8 can be summarized as follows.

1) Determine the bounds of the physical parameters ,
, .

2) Determine the bound of the common desired trajectory at
velocity level , i.e., .

3) Choose positive–semidefinite coupling gains for ,
, .

4) Choose the scalars on the gains , and , for
, and the auxiliary scalar , to be positive.

5) For determine the value , that is given by
(53), and take as the maximum of all .

6) For determine the value , that is given by
(54), and take as the maximum of all and

VI. FRICTION COMPENSATION

Considering the dynamic model of the robot manipulators
with friction effects given by (2), it follows that the feedback
controller (20) can be modified as:

(58)

with the friction compensation term given by

(59)

and the estimated for the velocity of the th robot, that is
obtained by the observer (28).

The stability analysis of the closed-loop system formed by
the synchronization controller (20), the observers (28), and the
robots in the multicomposed system, follows in the same way
as for frictionless rigid joint robots. To support this note that the
friction model (3) implies that

(60)

with the velocity estimation error, and , ,
the maximum eigenvalue of the coefficient matrices

, , .
Because the friction effects appear as an additive term in the

robot dynamics (2) and the feedback controller (58), it follows
that the difference appears in the synchronization
closed-loop error. Then by considering the Lyapunov function
(36) it follows that the bound (60) appears in the bound of the
derivative of the Lyapunov function (63). Then following the
same steps as in the frictionless robot case, semiglobal expo-
nential stability of the closed-loop synchronization error can be
concluded.

VII. EXPERIMENTAL CASE STUDY

The proposed mutual synchronization controller , given by
(58), has been implemented on a four degree of freedom mul-
tirobot system formed by two identical robots manufactured by
the Center for Manufacturing Technology (CFT) Philips Labo-
ratory. Comparison between simulated and experimental results
has been reported in [4] and [5], although for the sake of brevity
only experimental results are reported here.

A. The CFT Robot

The CFT robot is a Cartesian basic elbow configuration robot.
It consists of a two links arm on a rotating and translational
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Fig. 1. The CFT-transposer robot.

base, see Fig. 1. It has four degrees of freedom in the Carte-
sian space, denoted by , and seven degrees of
freedom in the joint space, denoted by , and
is actuated by 4-dc brushless servomotors. Although the robot
has seven degrees of freedom in the joint space, three of them
are kinematically constrained . Therefore, the robot
can be represented in the joint space by four degrees of freedom

actuated by four servomotors.
The four Cartesian degrees of freedom are rotation, up and

down, forward and backward of the arm, forward and backward
of the whole robot, see Fig. 1. The robot is equipped with en-
coders with a resolution of 2000 PPR, which results in an accu-
racy of 0.5 [mm]. A more detailed description of the structure
of the robot can be found in [4], [5], and [23].

For implementation of the controllers and communication to
the robots, the experimental setup is equipped with a DS1005
dSPACE system, with a processor PPC750, a clock of 480 MHz
and a bus clock of 80 MHz. Throughout the experiments the
sampling frequency was set to 2 kHz.

B. Joint Space Dynamics

The multirobot system is formed by two structurally identical
transposer robots, so that they have the same kinematic and dy-
namic model. However, the physical parameters of the robots,
such as masses, inertias, friction coefficients are different for
both robots.

Hereafter, the notation , for , 2 refers to the th
robot in the multicomposed system, rather than to the th joint,

, 2, 4, 5, in the th robot. From the Euler–Lagrange
approach and the Denavit–Hartenberg parameters procedure,
the dynamics of the transposer robots are given by (2), with

the vector of generalized co-
ordinates of robot , the symmetric, positive
definite inertia matrix, denotes the gravity forces,

represents the Coriolis and centrifugal
forces, are the forces due to friction effects, and

is the vector of external torques.
The parameters in the matrices , and the gravity
vector can be found in [4], [5], and [23].

C. Experimental Results

The robots in the multirobot system are identified as robot 1
(R1) and robot 2 (R2). The synchronization controllers ,

TABLE I
COEFFICIENTS OF THE DESIRED TRAJECTORY x (t), j = 1; . . . ; 4

TABLE II
CONTROL AND COUPLING GAINS IN THE MUTUAL SYNCHRONIZATION

CONTROLLER

TABLE III
INITIAL CONDITIONS FOR ROBOTS 1 AND 2 AND OBSERVER (28)

are implemented according to (58), with , as in (20). The
friction compensation term is a function of the estimated
velocity , that is obtained by the observer (28).

The desired common trajectory for the robots is ob-
tained by transformation of a desired trajectory given in Carte-
sian coordinates , , that is given by

(61)

with the coefficients , , given in
Table I.

The fundamental frequency of the desired common trajectory
given by (61) is set as . The joint space

desired trajectory is obtained by transformation of the de-
sired Cartesian trajectories , by consid-
ering the inverse kinematics model of the CFT robot.

The controller and observer gains for the robots R1 and R2
are set equal for the corresponding joints. For the coupling gains
symmetric synchronization is chosen, i.e., the coupling gains
between the robot are equal, . After a series of
experiments in order to decrease the synchronization position
errors and , , , 2, the gains on the synchronization
controller (58) and the coupling gains were set as listed in
Table II.

The initial position of the links and the initial conditions in
the observers (28) were chosen as in Table III. The robots start
from a steady state, therefore, the joint velocity and the
estimated joint velocity are all equal to zero.

Figs. 2–5 show for the robots R1, R2, , 2, and the joints
, 2, 4, 5, the desired common trajectory (solid),

the position trajectories , and the synchronization errors
(dashed), (dotted), and

(solid), after the transient period has finished.
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Fig. 2. Position trajectories and synchronization errors for joint q . (a)
Positions: desired q , solid; q , dashed; and q , dotted. (b) Errors: e ,
dashed; e , dotted; and e , solid.

From Figs. 2–5 it is concluded that synchronization between
the robots is achieved, and that bounded synchronization errors
are obtained. Particularly Fig. 5 shows that the synchronization
errors , are penalized in order to minimize the coupled
synchronization error . Thus mutual synchronization
between the robots is favored over synchronization between
the robots and .

1) Comparison Between Synchronization and Tracking Con-
trollers: In this section the proposed controller (58), (20), is
compared with a tracking controller, that is, each system aims
at tracking the common desired trajectory without any mutual
coupling. The system considered for the comparison study is the
joint of the robots R1 and R2 . When the cou-
pling gains are set equal to zero, i.e., the synchroniza-
tion controller (20) becomes the tracking controller proposed by
Paden and Panja [24] but based on estimated velocities. To com-
pare the mutual synchronization controller, the gains are taken
as , whereas in the uncoupled case these
are set equal to zero.

Fig. 6 shows the position trajectories , and for the
coupled and uncoupled cases, while the synchronization errors

Fig. 3. Position trajectories and synchronization errors for joint q . (a)
Positions: desired q , solid; q , dashed; and q , dotted. (b) Errors: e ,
dashed; e , dotted; and e solid.

are shown in Fig. 7. In the coupled case the coupling error
converges faster than the errors with respect to ,

i.e., , , this proves the mutual
synchronization behavior. Meanwhile for the uncoupled case,
the errors , converge faster than , since there is not
any interaction between them.

Fig. 8 presents the estimation error for the joint positions [ob-
server (28)]. Notice that the mutual synchronization controller
yields smaller estimation errors than the uncoupled case. The
reference signals (11) constrain the variety in which the syn-
chronization errors evolve and at the same time give more in-
formation to the observer (28), such that better convergence in
the estimation is achieved.

VIII. CONCLUDING REMARKS AND DISCUSSION

The proposed synchronizing controller yields semiglobal ex-
ponential mutual synchronization of a multirobot system. The
ideas behind the synchronization controller (20), the observer
(25), and the reference signals (11) are quite general; thus they
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Fig. 4. Position trajectories and synchronization errors for joint q . (a)
Positions: desired q , solid; and q , dashed; q , dotted. (b) Errors: e ,
dashed; e , dotted; and e (solid).

can be extended to other systems different from robot manipu-
lators, such as communication systems, mobile robots, coupled
generators, multisatellite systems.

The proposed mutual synchronization controller provides
a systematic way of proving stability of the synchronization
closed-loop system. On the one hand, the predicted region of
stability and the outcome of the proposed gain tuning proce-
dures are quite conservative. Thus, there exist more freedom
on the initial errors and the controller gains than the predicted
ones. On the other hand, even without knowledge of the bounds
implied in (33), (34), the synchronization closed-loop system
can be made exponentially stable, by selecting the control gains
large enough. However, high gains are not desirable in practical
applications since they may amplified the noise in the position
measurements.

The controller and observers (20), (25) are model based, nev-
ertheless the stability analysis allows a straightforward robust-
ness analysis for parametric uncertainties. At the same time
on-line adaptation of the robot parameters can be considered,
[12].

Fig. 5. Position trajectories and synchronization errors for joint q . (a)
Positions: desired q , solid; q , dashed; and q , dotted. (b) Errors: e ,
dashed; e , dotted; and e , solid.

The advantage of the proposed mutual synchronization
scheme over traditional tracking controllers lies in the ability
to control the relationships between the position and velocities
of all the robots in the system. In other words, the proposed
controller regulates not only the convergence of the position
and velocity of the robots to the common desired trajectory, but
also how these errors converge between them, which greatly
improves the performance during transients. The reference
signals (11) give a clear insight in the tradeoff between the
synchronization errors between the robots and with respect to
the common desired trajectory. The mutual synchronization
behavior induced by the reference signals (11) is particularly
useful during transients or sudden disturbances on the robots
such as unknown payloads.

APPENDIX I
PROOF OF THEOREM 8

In this appendix, some details behind the proof of the The-
orem 8 are presented.
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Fig. 6. Position trajectories: desired q , solid; q , dashed; and q , dotted.
(a) Coupled case (mutual synchronization). (b) Uncoupled case (tracking).

A. Time Derivative of the Lyapunov Function

The time derivative of the Lyapunov function (36) along the
error dynamics (29), (30) is given by

(62)

with , the time derivative of (38) and (39).
From the synchronization closed-loop error dynamics (29), (30),
and by the properties of the Coriolis term, it follows that:

Fig. 7. Partial synchronization errors: e , dashed; e , dotted; and e ,
solid. (a) Coupled case (mutual synchronization). (b) Uncoupled case (tracking).
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Fig. 8. Estimation joint position errors: q , solid; q , dashed. (a) Coupled
case (mutual synchronization). (b) Uncoupled case (tracking).

After a long but straightforward computation and by considering
Assumptions 1, 6, and 7, the properties of the robot dynamics,
and the bound of given by

it follows that in (62) is bounded as:

(63)

with given by

(64)

From the definition of in (41), the coefficient of the bilinear
term in (63) is equal to zero. Therefore, from in (35)
the bound (63) results in (45).
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