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Abstract
In this paper, a new bound on the trajectories of the Lorenz system is derived.
This result is useful to show that the transverse stability of the origin in two
Lorenz systems coupled in a drive-response manner is a necessary and sufficient
condition for global asymptotic synchrony of the two systems, and to simplify
the derivation of the upper bound to the Hausdorff dimension of the Lorenz
attractor.
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1. Introduction

It is well known that all trajectories of the Lorenz system

ẋ = σ(y − x)

ẏ = rx − y − xz

ż = −bz + xy

(1)

are ultimately bounded for arbitrary positive σ, r, b, that is, there exists a trapping region
R(σ, r, b) ⊂ R

3 which ultimately bounds all trajectories. Many expressions on the
boundedness of its trajectories exist (see, e.g., [4, 8] which we will refer to throughout this
paper). In this paper, we derive a new ultimate bound for the trajectories of the Lorenz system,
which finds two straightforward applications. We first prove that, for two systems of type
(1) coupled in a drive-response manner, the threshold of global asymptotic stability of the
synchronous state equals the threshold of transverse stability of the zero fixed point, for a
certain range of parameters σ, r, b. We then apply our result to derive an upper bound for the
Hausdorff dimension of the Lorenz attractor, as the local Lyapunov dimension of the origin.
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2. Bounds for solutions of the Lorenz system

It is convenient to call a set R a trapping region for a system if each trajectory either enters
the set R and thereafter never leaves it or tends to its boundary. Clearly, the intersections
of some trapping regions is a trapping region as well. In the following, whenever we write
that, for example, the inequality f (x, y, z) � c holds in some trapping region, we mean
lim supt→∞(f (x(t), y(t), z(t)) − c) � 0. The main result of this section is the following
lemma.

Lemma 1. Suppose b < 2σ and 2 � b � 4, and let

α = −2σr + 2σ − bσ + 2 − 3b + b2. (2)

Then for arbitrary positive µ the following inequality is satisfied

z2 +
µ − α

σ
z �

(
1 − (2 − b)2

2µ

)
y2 (3)

in some trapping region.

The proof of this lemma makes use of the following known result (see, e.g., [4, 8] for a
proof).

Lemma 2. Suppose 2σ > b, then the following estimate

z � x2

2σ

holds in some trapping region.

The proof of lemma 1 follows.

Proof. Consider the following scalar function

V = (α + δ)x2

2σ
− x4

4σ
+ (2 − b)xy + σy2 + (x2 − δ)z

where δ is to be determined later. Its time derivative satisfies

V̇ = x4 + ((2 − b)r − α − δ) x2 − bσy2 + δbz − 2(σ + 1)x2z + b(b − 2)xy.

For simplicity, we substituted expression (2) for α only in the last term. It follows then from
lemma 2 that in some trapping region

(b − 2(σ + 1))x2z � (b − 2(σ + 1))

2σ
x4

and if one chooses δ such that

α + δ = −2rσ (b − 2)

2σ − b

it follows that

V̇ + bV �
(

b − 2(σ + 1)

2σ
+ 1 − b

4σ

)
x4 = b − 4

4σ
x4 � 0.

Therefore, V � 0 in the trapping region. This inequality can be rewritten as follows

δz � α + δ

2σ
x2 − x4

4σ
+ (2 − b)xy + σy2 + x2z

� α + δ

2σ
x2 − x4

4σ
+ (2 − b)xy + σy2 (4)



Trajectories of the Lorenz system 1599

where the last inequality follows from lemma 2. Recall that by assumption 2 � b < 2σ , for
which α + δ � 0 and therefore, applying the previous lemma we have

α + δ

2σ
x2 � (α + δ)z, − x4

4σ
� −σz2.

Substituting these inequalities in (4) gives

−αz � −σz2 + (2 − b)xy + σy2. (5)

Using the following inequality

(2 − b)xy � −µx2

2σ
− (2 − b)2

2µ
σy2

which is valid for arbitrary positive µ, we derive from (5) that

−αz � −σz2 − µx2

2σ
− (2 − b)2

2µ
σy2 + σy2. (6)

Finally, using the inequality

−µx2

2σ
� −µz

which follows from lemma 2, we derive (3) from (6). �

Parameter values σ = 10, r = 28, b = 8
3 , which may give rise to a chaotic evolution, are

a standard choice, in the sense that they are most often found in scientific literature, and they
satisfy the restrictions imposed on the parameters in lemma 1. Hence, the following result
holds for Lorenz system (1).

Proposition 1. Let σ = 10, r = 28, b = 8
3 . Then the set defined by the inequality

y2

b
+ (z − 2r)2 � 4r2 (7)

contains a trapping region.

The proof of this result is based on lemma 1. One can take, for example, µ = 40 and
make use of the following well-known estimate (see, e.g., [4, 8])

y2 + (z − r)2 � b2

4(b − 1)
r2. (8)

The intersection of region (3) defined in lemma 1 and region (8) lies inside ellipsoid (7). This
situation is schematically reproduced in figure 1. It is clear that for large z the estimate (7)
is very conservative, but sufficient for the applications considered in this paper. Though we
have only proved estimate (7) for the standard parameters, one can use lemma 1 combined
with some optimization procedure for µ to find a set of parameters for which estimate (7) is
satisfied.

This new result on the ultimate boundedness of the trajectories of Lorenz system (1) can
find several applications. In the subsequent sections, we apply proposition 1 to derive two lower
bounds: the first one (section 3) on the gain for global asymptotic stability for synchronization
of two copies of system (1), and then (section 4) on the Hausdorff dimension of the Lorenz
attractor.
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Figure 1. 1: the circle y2 + (z − r)2 = b2r2/4(b − 1), equation (8), 2: the hyperbola
z2 + (µ − α)z/σ = (1 − (2 − b)2/2µ)y2, equation (3), and 3: the ellipse y2/b + (z − 2r)2 = 4r2,
equation (7). Parameter values are σ = 10, r = 28, b = 8

3 , µ = 40.

3. Synchronization of two Lorenz systems

Suppose that the signal x(t) from (1) drives an identical copy of the Lorenz system as follows:
˙̂x = σ(ŷ − x̂) − γ (x̂ − x)

˙̂y = rx̂ − ŷ − x̂ẑ

˙̂z = −bẑ + x̂ŷ.

(9)

The purpose of this section is to find the smallest synchronization threshold γ̄ for which the set

D := {(x, y, z, x̂, ŷ, ẑ) : x = x̂, y = ŷ, z = ẑ}
contains a globally asymptotically stable compact subset �.

Numerical simulations on systems (1) and (9) show that randomly initialized trajectories
converge on D when γ is greater than about γ = 10, but not all trajectories initialized on
unstable periodic points of (1) converge on D. The stability in D of any such trajectory is
a necessary condition for the global asymptotic stability in D of �. The simplest unstable
periodic point of (1) is the zero fixed point, which gains stability in D for

γ � σ(r − 1). (10)

To prove that the inequality (10) is a necessary bound for the synchronization threshold we
assume that the subset � contains the origin (this is true for the values of the parameters



Trajectories of the Lorenz system 1601

previously considered, see [9]). In this case, a necessary condition for the asymptotic stability
of the error dynamics is that all unstable manifolds of the zero equilibrium of systems (1)
and (9) belong to the ‘diagonal’ set D. By linearization around the origin one can observe that
the origin of the coupled system is transversely stable if the linear system

ξ̇1 = σ(ξ2 − ξ1) − γ ξ1

ξ̇2 = rξ1 − ξ2
(11)

is stable, which is true when condition (10) is satisfied.
We now want to prove that the condition

γ > σ(r − 1) (12)

is a sufficient condition for which the set D contains a globally asymptotically stable compact
subset �. To this end, consider the following Lyapunov function:

V = 1

2

( r

σ
(x − x̂)2 + (y − ŷ)2 + (z − ẑ)2

)
.

Its time derivative satisfies

V̇ = − r(σ + γ )

σ
e2

1 + (2r − z)e1e2 + ye1e3 − e2
2 − be2

3

where we denoted e1 = x − x̂, e2 = y − ŷ, e3 = z − ẑ. This expression is negative definite
with respect to e1, e2, e3 if the following inequality is satisfied:

r
(

1 +
γ

σ

)
>

1

4b
(y2(t) + b(2r − z(t))2). (13)

Using proposition 1 one can see that this inequality is satisfied in the trapping region for the
standard parameters of the Lorenz system as soon as (12) is satisfied, which proves sufficiency
of (12). Hence, necessary (10) and sufficient (12) conditions for global asymptotic synchrony
define the exact threshold γ̄ = σ(r − 1).

Therefore, for the Lorenz system (1) coupled as in (9), the transverse stability of the origin
gives the exact threshold for global asymptotic synchrony. Computer simulations shows that
the synchronization phenomenon between two coupled Lorenz systems can be observed for
gains significantly smaller than σ(r − 1) = 270. However, in this case the diagonal set can
contain an invariant set which is an attractor only in some weaker sense, e.g. in the Milnor
sense.

In practical implementation of the synchronization between two Lorenz systems the
difference between asymptotic stability and attractivity in the sense of Milnor is crucial even
though a set of zero measure can be thought of as negligible in a physical experiment. To
illustrate a phenomenon peculiar to this situation, let us include an additive noise η(t) which
affects both master and slave system. Assume also that transverse Lyapunov exponents for the
Sinai–Ruelle–Bowen (SRB) measure are negative (the existence of the SRB measure for the
Lorenz attractor is proven in [9]), but γ < σ(r − 1). Since the origin of (1) belongs to
the chaotic attractor, there are trajectories for which this point is an ω-limit point. Since for
γ < σ(r − 1) the origin is unstable, an arbitrarily small noise η(t) can drive the trajectory
of the system (1) and (9) along the unstable manifolds of the zero equilibrium, i.e. far from
the set D.

However, negativity of transverse Lyapunov exponents for the SRB measure ensures that
D contains a Milnor (essential) locally riddled attractor (see [1], proposition 2.21). So, a
typical ‘bursting’ phenomenon occurs, that is, for an arbitrarily small level of the noise signal
η, the time evolution of the error signal demonstrates some peaks between which the level of
the error signal is very small (see figure 2). Contrarily, in the case where (12) holds, the level
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Figure 2. A typical bursting phenomenon.

of the error signal depends continuously on the level of noise, as it follows from the existence
of a smooth Lyapunov function, which proves stability of the set �, and hence in this case the
bursting is not observed.

The situation in which the set D contains a Milnor attractor can have some advantages
too. Suppose that the response system is described by the following equations

˙̂x = σ(ŷ − x̂) − γ [x̂ − (x + η(t))]

˙̂y = rx̂ − ŷ − x̂ẑ

˙̂z = −bẑ + x̂ŷ

(14)

where η(t) is bounded noise. This situation is possible when the master and slave systems are
coupled through some channel that adds some distortions to the signal from the master system.
Then due to noise amplification by high gain, performance of the synchronization scheme for
relatively small γ can be better than the performance of the synchronization for γ > σ(r −1).

We carried out computer simulation for two different observer gains: γ1 = 80, for which
the diagonal set is unstable and γ2 = 276, for which the diagonal set is asymptotically
stable. We assumed that the output signal in both cases is measured with additive noise
η(t) = 0.1 sin 160t . The results of computer simulation are presented in figure 3. From the
simulation it follows that after some transient the error for small gain is smaller than that for
the high gain.

4. Hausdorff dimension of the Lorenz attractor

The Hausdorff dimension of the invariant set lying in (7) is bounded above by the Lyapunov
dimension of the origin. This statement is known as the Eden conjecture [2] which has been
proved by Ljashko [5]. The method proposed by Ljashko does not depend on the estimates
of the ultimate bounds for the system trajectories but leads to very cumbersome calculations.
Recently, Leonov extended Ljashko’s method and found certain restrictions on the parameters
of the Lorenz system for which the Lyapunov dimension of the Lorenz attractor equals the
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Figure 3. The error x1(t) − x̂1(t) versus time for different observer gains.

local Lyapunov dimension of the origin [6]. In this section, we obtain the same result as in
[5, 6], but with a much simpler derivation.

According to [6, 7] we have to find solutions λ1 � λ2 � λ3, functions of (x, y, z), to the
following generalized eigenvalue problem

det[PJ + J TP − λP ] = 0

for some positive definite matrix P , where J stands for Jacobian of the Lorenz system. Let us
recall theorem 7 from [7], where a proof is found. We consider the local version of the result
proved in [7] and the case in which P is independent of the state vector.

Theorem 1. Suppose that for some positive definite matrix P there exists a number s ∈ [0, 1)

such that

λ1(x, y, z) + λ2(x, y, z) + sλ3(x, y, z) < 0 (15)

for all x, y, z in some trapping region, then the Hausdorff dimension dimHK of the Lorenz
attractor is bounded by above by 2 + s.

The Jacobian of the Lorenz system is

J =

 −σ σ 0

r − z −1 −x

y x −b




and let P be

P =




r

σ
0 0

0 1 0
0 0 1




so that

PJ + J TP =

 −2r 2r − z y

2r − z −2 0
y 0 −2b


 .
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We know that λ1 + λ2 + λ3 = −2(σ + 1 + b), and from −2(σ + 1 + b) < 0 it follows that
λ3 < 0 for all x, y, z. Hence, by the theorem mentioned above, to find an upper estimate of s

it is sufficient to find a lower estimate of λ̄3. Given this estimate, we then evaluate the upper
bound on the Hausdorff dimension as

dimHK � 3 − 2(σ + b + 1)

|λ̄3|
.

The smallest negative eigenvalue of some symmetric matrix Q is such a number λ̄ that the
matrix Q−λI is positive definite as long as λ < λ̄. For all nonpositive λ the following matrix
inequality

PJ + J TP − λP � PJ + J TP − λP1

is satisfied, where P1 = diag{r/σ, 1, 0}. Therefore, to find a lower estimate for λ3 it is sufficient
to find a lower estimate of the smallest nonpositive solution of the following equation

det(PJ + J TP − λP1) = 0

or,

r

(
2 +

λ

σ

)
(2 + λ) = y2

b
+ (2r − z)2 + λ

y2

2b
.

Using proposition 1 and neglecting the term λy2/2b (since we are looking for a negative lower
estimate of the smallest solution for λ) it is then straightforward to derive the following result.

Proposition 2. Let σ = 10, r = 28, b = 8
3 . Then the Hausdorff dimension of the invariant

compact set of the Lorenz system dimHK satisfies

dimHK � 3 − 2(σ + b + 1)

σ + 1 +
√

(σ − 1)2 + 4rσ
≈ 2.4013 (16)

which is the same bound as derived in [5].

5. Conclusion

In this paper, we have derived a new ultimate bound on the trajectories of the Lorenz system (1).
This new expression has proved to be advantageous in the two applications we have considered.
In the first one, we have derived, not just a new upper bound on the threshold for global
asymptotic stability of two linearly unidirectionally coupled Lorenz systems, but that the
transverse stability of the zero fixed point triggers the global asymptotic stability of the invariant
set. Then, we used this result to obtain an upper bound on the Hausdorff dimension of
system (1).

The first result validates a conjecture proposed by Hunt and Ott [3], who deal with the
following problem: in the realm of chaotic systems, specifically, which unstable periodic orbits
on the attractor yields the largest (optimal) value of the long-time average of some function
of the state vector? Hunt and Ott [3] presented numerical evidence and analysis in support of
the conjecture that the optimal value is achieved by the periodic orbits with the lowest period.
Apart from the case of some coupled discrete, low-dimensional maps, there are no results on
coupled continuous systems which show that the ‘optimal’ value of the threshold of asymptotic
stability of synchronous motion is achieved at the onset of transverse stability of the lowest
possible unstable periodic orbit: a fixed point.

For the second application we discussed, it is remarkable that the same bound is obtained
by Ljashko in [5] and Leonov in [6] with a different and more cumbersome analytic derivation.
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However, our proof is presented for the standard parameters of the Lorenz system while in
[5, 6] the set of the system parameters for which the estimate (16) is true is found. The largest
set of such parameters is found in [6].

To conclude, proofs of stability using Lyapunov functions are rigorous, but also known
to be difficult to produce, which may discourage researchers from embarking on them. Even
when a suitable Lyapunov function is found, then the estimate of the threshold is often too
conservative an approximation of the real one, which is then much lower than the derived one.
We present here a case in which an estimate through the Lyapunov function of the upper bound
of a threshold is precisely the threshold itself.
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