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Abstract

Synchronization of complex/chaotic systems is reviewed from a dynamical control perspective. It is shown that notions like
observer and feedback control are essential in the problem of how to achieve synchronization between two systems on the
basis of partial state measurements of one of the systems. Examples are given to demonstrate the main results. © 2001 Elsevier

Science B.V. All rights reserved.
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1. Introduction

Probably one of the earliest detailed accounts on
synchronized motion was made by Christiaan Huy-
gens, who around 1650 describes in his notebook
[12] an experiment where two identical pendulum
clocks are attached to the same (flexible) bar, and
these clocks exhibit synchronized motion in a short
while in case they are initialized at arbitrary, possibly
different phases. The explanation by Huygens is re-
markably accurate since by that time the differential
calculus needed to describe the clocks’ motion was
still to be developed. Many other examples of syn-
chronized motion have been described after the 17th
century. For instance, Rayleigh describes in his fa-
mous treatise “The theory of sound” [25] in 1877 that
two organ tubes may produce a synchronized sound
provided the outlets are close to each other. Early this
century another Dutch scientist, van der Pol, studied
synchronization of certain (electrical-) mechanical
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systems, see [24]. Actually, rotating bodies, or more
general rotating mechanical structures form a very
important and special class of systems that with or
without the interaction through some coupling, ex-
hibit synchronized motion. In fact, synchronization
of oscillating physical systems is by today an impor-
tant subject in some of the major physics journals.
An illuminating survey on synchronization of a wide
variety of mostly (electrical-) mechanical systems is
given in [2]. Also [21] contains a rich class of mo-
tivating and illustrative examples of synchronizing
systems. The growing interest in synchronization —
and the above mentioned surveys are illustrative for
this — was probably caused by the paper [22], where
among others, secure communication as a potential
application has been indicated. Although, sofar it is
still questionable whether this application can be fully
realized, the Pecora and Carroll paper [22] has formed
an impulse for much research along these lines.

On the other hand, for mechanical systems syn-
chronization is of utmost importance as soon as two
machines have to cooperate. Typically, robot coordina-
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tion, cf. [4] and cooperation of manipulators, see [15]
form important illustrations of the same goal, where it
is desired that two or more mechanical systems, either
identical or different, are asked to work in synchrony.

The purpose of this paper is to address the synchro-
nization problem from a control theory perspective.
Control theory is the field in which a systematic study
of control systems, together with appropriate con-
troller design(s) is made, see, e.g. [13] as a textbook on
linear control theory and [19] for results in nonlinear
control. Control theory, and more specifically nonlin-
ear control, forms a powerful framework to formulate
and describe various synchronization questions, and
the aim of the paper is to present a review of some of
the existing tools and methods from nonlinear control
in this regard. This includes the obvious problem of
how to build a synchronization system for a given
system; a problem that is intimately linked with an
observer problem in control, see Section 2. In Section
3 various aspects regarding (parameter) uncertainty
and noise are reviewed. Especially, in practical appli-
cations like communications and coordination these
noise and robustness issues are of great importance.
Controlled synchronization is the subject of Section
4. Contrary to the setting of Section 2, where for a
given system a synchronizing system is sought, here
the problem is to achieve synchronization of two
system by means of a suitably feedback controller.

This paper does not present formal theorems and
proofs but merely develops various problem-solutions
through illustrative examples. For detailed formula-
tions and proofs the reader has to consult the appro-
priate references. Hopefully, the paper initiates further
interest in dynamical control methods in the study of
synchronization problems.

2. Synchronization and observers

Following [22], we consider the Lorenz system
x1=0(y1 —x1), Y1 =rxp — y1 — X121,
z1=—bz1 + x1y1. ey

The system (1) is known to exhibit complex or chaotic
motions for certain parameters o, r, b > 0. With the

system (1) viewed as the transmitter or master system,
we introduce the drive signal

y =xi, ()

which can be used at the receiver, or slave system, to
achieve asymptotic synchronization. This means, as in
[22], we take as receiver dynamics

Xy =0(y2 — x2), Y2 =7rx] — Y2 — X122,

720 =—bzp + x1y3. 3)

Notice that (3) consists of a copy of (1) with state
(x2, y2, z2) and where in the (y2, z2)-dynamics, the
known signal x1, see (2), is substituted for x;. Intro-
ducing the error variables e = x; — x2,€3 = y1 —
Y2, €3 = 71 — 22, we obtain the error dynamics

e1=o(ex —ey), € = —ep — xje3,

e3 = —bes + xjea, 4

which is a linear time-varying system. The stability
of (e1, e2, e3) = (0, 0, 0) is straightforwardly checked
using the Lyapunov function

1
Vel ez, e3) = ;e%+e§+e§ 5)
with time-derivative along (4)
Vier, er,e3) = —2(e1 — 2e2)? — 3¢5 —2be3,  (6)

showing that (e, ez, e3) asymptotically (and even ex-
ponentially!) converges to (0,0, 0). In other words,
the receiver dynamics (3) asymptotically synchronizes
with the chaotic transmitter (1) no matter how (1) and
(3) are initialized.

Remark 1. Almost similarly, one can show that the
(y2, z2) dynamics from (3) — which are independent
from x, anyway — will synchronize with (y1, z1) from
(1), using the Lyapunov function V(ez, e3) = e% +
e%. This also implies that in this manner the state
(x1, y1, 1) can be reconstructed from (y», z2) and the
known signal xi.

The synchronization of the transmitter (1) and re-
ceiver (3) using the drive signal (2) may at this point
seem more a coincidence rather than a structural prop-
erty. However, as will be argued, this is not the case,
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but follows in much more generality. In particular, one
may cast the foregoing into an observer problem. To
that end consider the general system

X = f(x) @)

with x € R", f a smooth vector field, and output (or
measurement)

y =h(x) ®)

for some smooth function /. Note that more generally
one may consider (7) and (8) on a manifold with func-
tion & mapping into another manifold. The observer
problem can be formulated as: given y(t),t > 0, re-
construct asymptotically x(¢), r > 0.

Remark 2. There is some redundancy in the observer
problem in that the output y = & (x) represents known
(given) information on the state x(#) which needs not
to be estimated. In particular, suppose that the out-
put coincides with one of the components of x (af-
ter a coordinate transformation), say y = xi, then it
is not necessary to reconstruct x, but only the (n —
1)-dimensional ‘state’ (x7, ..., x,). The latter variable
is sometimes denoted as x (mod y) and the reduced
observer problem thus reads as the question of recon-
structing x(¢) (mod y(z)), given y(¢),t > 0. As an
easy example, consider the linear system

X1 =y y1 = ax1 + by 9
with output
y =ax1. (10)

Setting for some k € R,

z =y + kxi, (1D
we see that
2= (b+kz+ (a—bk—k>y, (12)

and thus we may find a reduced observer as
Z=(0b+kzi+ (a—bk—k>y, (13)

provided b +k < 0, since z —7 — 0 as t — o0. The
state (x1, y1) is asymptotically reconstructed from the
one-dimensional reduced observer (13) as (y, Z — ky).

With the given formulation of the observer problem
at hand, the natural question is, how to find, given (7)
and (8), a mechanism for reconstructing x(t), ¢ > 0.
Although, in its full generality the answer to the above
question is unknown, there are some important cases
where a solution can be found. Some of them will
be reviewed next. The natural way to approach the
observer problem for (7) and (8) is to design another
dynamical system driven by the measurements (8)

X = f@) +k@E ), (14)

where the y-parameterized vector field & in (14) should
be such that k(x, y) = 0 if h(x) = h(x) = y. The
dynamics (14) is called an observer for (7) provided
that x (¢) asymptotically converges to x(¢) for any pair
of initial conditions x(0) and x(0). The structure of
the observer (14) deserves some further attention. One
may view (14) as an identical copy of (7) with an
‘innovations’ term k(X, y) which vanishes in case the
estimated output y = h(x) coincides with y = h(x).
The latter could be phrased as we cannot do better as
our measurements allow for. In the Lorenz system (1)
and (2) with receiver (3) it is easily checked that the
system (3) indeed acts as an observer and can be put
in the form (14):

Xy =0(y2 —x2) + 0,
Y2 =rxa — y2 — x222 + (r — z2)(x1 — x2),
22 = —bzo + x2y2 + y2(x1 — x2). (15)

Also, it is worth noting that (14) is simply a comput-
erized model and no hardware is required in building
this system, even if a hardware realization of (7) is
given.

Remark 3.

1. Though we restrict attention to observers of the
form (14) with dynamics of the same dimension as
(7), other possibilities for obtaining suitable esti-
mates for x (¢) exist. For instance, the estimate X (¢)
can arise as a function of a higher dimensional mea-
surement driven dynamics, or even as a solution of
an infinite dimensional (pde) system.

2. It should be clear, see also Remark 2 that a re-
duced order observer should be designed as a
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measurement driven dynamics that asymptotically
matches with x(f) (mod y(¢)). Although, some
interesting aspects arise, no further attention to
reduced observers will be given here.

To illustrate the above observer design, we discuss
first the linear observer problem [13]; that is both the
dynamics (7) and measurements (8) are assumed to be
linear:

X = Ax, (16)
y=Cx (17)

with x € R?,y € R and A and C matrices of corre-
sponding dimensions. An observer in this case should
be of the form:

¥ = A% + K(Cx — CX), (18)
which, setting ¢ = x — X, yields the error dynamics
é =(A—KCQ)e. (19)

Clearly, (18) acts as an observer for (16), or what
is the same, X and x asymptotically synchronize, if
(19) has e = 0 as asymptotically stable equilibrium.
The question under what conditions a matrix K can
be found, so that (17) is asymptotically stable can be
answered using the observability rank condition. The
linear system (16) and (17) satisfies the observability
rank condition if

C

CA
rank ) =n, (20)

CAn—l

which is equivalent to the requirement that the sys-
tem (16) and (17) is observable, i.e., the state x(¢) is
uniquely determined by y(¢), ¢ > 0. The rank condi-
tion (20) is equivalent to the pole placement property,
which means that for any symmetric set of n points
in C, there exists a real matrix K such that A — KC
has these n points as eigenvalues. In particular, it fol-
lows that (20) guarantees the existence of an observer
(18) (or suitable K) that makes (19) asymptotically
stable. In fact, a slightly weaker condition than (20),

detectability, is required for the stabilizability of (19)
with a suitable K. Detectability requires, instead of
(20) that A restricted to the largest A-invariant sub-
space in Ker C (this subspace is equal to the kernel of
the matrix defined in the left-hand side of (20)), should
be asymptotically stable. For further details, see [13].

It is clear that the above discussion on synchroniza-
tion of linear systems cannot directly be used for non-
linear/chaotic systems. On the other hand, there are
a number of extensions of the foregoing linear ob-
server design that are relevant for complex nonlinear
systems. The first class for which observer design is
as simple as in the linear case are the so-called Lur’e
systems, which are described as

% = Ax+ ¢(Cx), Q1)
y=Cr (22)

with the pair (A, C) observable, i.e. (20) holds, and ¢
is a smooth nonlinear vector field depending on y. A
synchronizing system (observer) is designed as

X = A% + ¢(Cx) + K(Cx — CX), (23)

which again produces the error dynamics (19). Notice
that the class of systems (21) and (22) only contain
nonlinearities in the dynamics that depend upon the
measured output y, and which can also be used in the
observer (23). Perhaps the best known example of the
form (21) and (22) is the Chua circuit:

X1 =a(=x; +y1 — ¢(x1)),
yi=x1—y+2z1,
1 =—AY1, (24

where ¢ (x1) = mix1 +mo(Jx1 + 1| — |x; — 1]) with
m; = —%,mz = —%, and 23 < A < 31,0 = 15.6.
Taking as measurements

y =Xxq, (25)

one immediately realizes that this system — which is
chaotic and has the so-called double scroll attractor —
is of Lur’e type and admits an observer of the form
(23), since the corresponding linear part is observable.
It is interesting to see that the only nonlinearity in (24)
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is through the piecewise linear function (nonsmooth)
¢, which only depends on the measurements y.

A larger class of systems that admit linear observer
design consists of all systems (7) with outputs (8) that
possess linearizable error dynamics. More precisely,
these are systems (7) and (8) that after a suitable state
space transformation and output transformation can
be brought in Lur’e form (21) and (22). Conditions in
terms of f and & that are necessary and sufficient for
having linearizable error dynamics are given in [16]
in the context of synchronization. As an illustration,
consider the hyperchaotic Rossler system, see [1],

X1 = —x2 + axy,
xi:xifl_xi‘l’l? i=2,...,N_1,
Xy =€ +bxy(xn—_1 —d) (26)

with a,b,d,e € RT and N an arbitrary positive
integer. The case N = 3 corresponds to the usual
Rossler system, and when N = 4 the system has the
so-called hyperchaotic flows, and has two positive
Lyapunov-exponents. With (26) we take as output
equation

Yy =Xn. 27)

It is clear that the solutions of (26) with xx(0) >
0, and which exist for all positive time (no finite es-
cape time!) have xy(¢) > O for all # > 0. There-
fore, we may introduce the coordinate transformation
71 = X1,...,IN—1 = XN—1, 2N = In(xy), and output
transformation y = In(y). Then in the new coordi-
nates the system reads as

71 = —22 +azy,

i =2Zi—1 — Zi+l

i=2,...,N—=2,

IN—-1 = ZN-2 — exp(zn),

v = bzy—1 — bd + € exp(—zn), (28)

Y =2N. (29)

The remarkable fact is that the above system (28) and
(29) is again in Lur’e form (21) and (22), and an easy
check shows that the linear part is observable, thus
allowing for a synchronizing system of the form (23).

The classes of systems for which a successful ob-
server design is possible, sofar all exploit a linear er-
ror dynamics. There are, however, other cases where
synchronization can be achieved without relying on a
‘linearizability’ assumption. To that end we return to
the system (7) with measurement (8) and we introduce
the following assumptions, see [9]:

1. The vector field f in (7) satisfies a global Lipschitz
condition on its domain, which as mentioned earlier
need not to be R”.

2. The n functions h(x), Lph(x), L3h(x), ...,
L';-_lh(x) define new coordinates (globally!). Here,
L}h(x) denotes the ith iterated Lie-derivative of
the function /4 in the direction of f.

If both (1) and (2) hold an observer exists of the
form

X = f(E) 4 Khx) —hE) (30)

with K a constant suitable (n, 1)-vector. Note that (30)
obviously is of the form (14), though some of the
entries in K may become very large (high-gain). An
illustrative example of a system that fulfills (1) and (2)
is formed by the Lorenz-system (1) and (2), when this
is restricted to a compact domain. Since it is known
that (1) has an attractive compact box, the observer
(30) is an interesting alternative for the observer (3).

Besides the above discussed cases for which a
synchronizing system can be systematically designed
we note that there exist further methods that may
be applicable for other classes of systems, like bi-
linear systems. Also, for certain mechanical systems
‘physics-based” observers can be developed, and
finally some systems admit a Kalman filter-like ob-
server. But, no general method exists that works for
all systems.

3. Uncertainty, robustness and noise

In the previous section, the synchronization problem
has been treated under the assumption that the dynam-
ics and output are exactly known. In many cases this
is obviously not true and therefore alternative meth-
ods are required. We will review here three illustrative
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examples how one may possibly proceed in such case.
The first example to be discussed contains parameter
uncertainty in the dynamics (7), i.e.

x = f(x,p) 3D

with p some unknown parameter (vector) or in a com-
munications context, an unknown message. We take
again as output

y = h(x). (32)

Now, in addition to the standard synchronization prob-
lem of reconstructing x(¢), t > 0, one may in addition
be interested in reconstruction of the parameter p. The
latter may be particularly interesting in a communi-
cations context where p may represent some (slowly
time-varying) signal. The next example illustrates that
adaptive control (cf. [26]) may form a good approach
in such setting. Consider again the Chua circuit

X1 = a(—=x1 +y1 — ¢(x1, p)),

y1=x1—y1+2z1,
21 = —Ay1, (33)

where ¢(x1, p) = ¢(x1) + p(lx1 + 1| — |x1 — 1]) =
mixy + (mz + p)(|x1 + 1| — |x1 — 1) with m; =

%,mz = —g,)» = 14.286 and @ = 9. As output, we
take
y =Xi. (34)

The parameter p is assumed to be constant or slowly
time-varying, but in practice it may also be a binary
time-varying signal. A solution to both the synchro-
nization problem and the parameter estimation prob-
lem is given by the following adaptive observer:

Xo=0a(—x2 +y2 — ¢(x1))
+p1(lx1r + 1 — [x1 — 1)) + p2(x2 — x1),

y2=x2 — y2 + 22, 20 = —Ay2, (35)
p1=—yx1 —x2)%,
Py =—v2(x1 — x2)(|x1 + 1] — [x1 — 1)), (36)

where y1, 2 > 0 are the positive adaptation gains.
It follows, see [8] that again (e, e2, €3) converges to

(0,0,0) but also p; and pp converge to their true
values, and in particular, pj converges to p, and p; can
be viewed as an observer gain. The key observation in
showing this result is actually the fact that the signal
|x1 + 1| — |x; — 1] is ‘persistently exciting’ for the
chaotic Chua circuit (33), which among others, means
this signal does not converge to some constant value.
In case p is a binary signal, the parameter convergence
will occur provided the time step in changing p is
sufficiently large, see [8] for further details.

The idea of using adaptation mechanisms like in
(36) requires that only parametric uncertainties occur.
This may be a strong assumption in specific cases and
alternatives may be sought. A simple illustration of
a robust synchronization scheme can be given for a
second order (mechanical) system

X1 =y1, y1 = f(x1,y1) 37
with
y =Xi. (38)

An observer is proposed as

Xo =y +ki(x1 — x2), v2 =ko(x1 —x2) (39)

then under the assumption that f in (37) satisfies
a global Lipschitz condition one may show that for
k1, ko > 0 sufficiently large, the error (e, e2) con-
verges to a neighborhood of (0,0) and moreover,
the larger the ki and k, are selected, the smaller the
neighborhood of (0, 0) becomes. In this case, we have
the so-called high-gain observer (39) that achieves
practical stability of the error (ep, e2), and thus the
state (x7, y2) of (39) asymptotically almost synchro-
nizes with (x1, y1), see [18] for further details on the
dual problem of robust control of chaotic systems.
The implementation of a high-gain observer is sim-
ple —no hardware realization of the observer system
is build—but it has practical limitations since large
values for k1 and k, will amplify measurement errors
in the output y = xj. There exist in the control liter-
ature a wide range of alternative methods of studying
robust observers, and thus robust synchronization;
one alternative method can be found in [23], see also
[28]. Besides parameter uncertainty or unstructured
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uncertainty in the dynamics (7) and output (8) the
equations may be noisy. Noise may appear for differ-
ent reasons in (7) and (8), for instance measurement
noise or uncertainties in the dynamics. In this case,
synchronization becomes even more problematic than
in the previous section, and certainly no exact state
reconstruction will be possible. Nevertheless, a fil-
tering approach may be very suited in this case and
we will illustrate this through an example of a noisy
Lorenz-system, see [17] for further details. Consider
the Lorenz system with noise

X1 =o0(y1 —x1) + ey,
Y1 =rx; —y1 — x121 + €2,
z21 = —=bz1 + x1y1 + €3, (40)

and noisy measurements
y=x1+v, 41)

where (€1(1), (1), €3(t)) ~ N(, Q) and v(t) ~
N (0, R) are independent white noise processes.
Clearly (40) now represents a set of stochastic differ-
ential equations, which due to the nonlinearities are
highly nontrivial to solve (numerically). This makes
it even more difficult to find a synchronizing system.
Instead of a— deterministic— observer one may at-
tempt to use an extended Kalman filter. (Here the
word extended refers to the fact that the filter ap-
plies to nonlinear equations; the Kalman filter itself
applies only to a linear stochastic system with noisy
measurements.) The extended Kalman filter reads as

X2 =0(y2 — x2) +ki(t)ey,
V2 =1 — y2 — X222 + ka(t)eq,
20 = —=bzo + x2y2 + k3(t)eq, (42)

where as before, ej = y — x» = x1 + v — x3. At this
point one may again notice that (42) fits in the struc-
ture (14). The crucial point of (42) lies in the way
how the gain vector k(t) = (k1 (@), ka2 (1), k3@)T is
determined. For the filter (42), k(¢) is determined via

1

0|RrR1, (43)
0

k(t) = P(t)

where R is the covariance of the measurement noise v
and P (t) the solution of the matrix Riccati differential
equation

P=F@P+PF®)" —PHO)TR'H®)P + O,
P(0) = Py > 0, (44)

where F(r) = (3f/9x)(x2(1), y2(1), z2(r)) and
H(t) = (0h/9x)(x2(1), y2(1), z2(r)) with f and h
denoting the right-hand side of (40) and (41). In other
words F(t) and H(t) are obtained through lineariza-
tion along the estimated solution (x3(¢), y2(t), z2(t)).
Although, at this point no complete proof exists
which guarantees that in some stochastic sense
(x2(t), y2(t), z2(t)) converges approximately to
(x1(2), y1(¢), z1(¢)), simulations indicate that with
suitable initialization, the extended Kalman filter may
form an appropriate scheme for synchronization, see
[27]. In the discrete-time context, we have recently
investigated this in detail for some specific chaotic
systems, see [6].

Remark 4.

1. Crucial in [6] is the observation that the chaotic
systems under investigation ‘live’ in a compact re-
gion and thus fulfill a Lipschitz condition in this
region. It is precisely this fact— which has some
similarity with the high gain observer approach in
the previous section — that enables a successful ex-
tended Kalman filter approach, see [14].

2. It is clear that convergence of the estimate
(x2(1), y2(1), 22(2)) towards (x1(2), y1 (1), z1(1)) is
at best possible in expectation. The noise in dy-
namics and measurement prohibit exact asymptotic
convergence and therefore simulations based on
the filter (42) will become sensitive with respect
to the variances Q and R. Likewise, the initializa-
tion of the Riccati differential equation (44) is an
important design parameter.

4. Controlled synchronization

Synchronization as reviewed in Sections 2 and 3 was
merely a property of finding an appropriate mechanism
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for reconstructing the state of some chaotic system on
the basis of some given measurement signal. On the
other hand, this could be contrasted with another set-
ting in which both transmitter and receiver dynamics
are given, as well as the corresponding output func-
tion, and the aim is to find a suitable mechanism to
control the slave system such that master and slave
will asymptotically synchronize. More specifically, as-
sume we have been given the transmitter

x = f(x) (45)
with output

y = h(x) (46)
together with the receiver dynamics

X =g(F, uw), (47)

where we for simplicity assume that x and X both are
n-dimensional. The dynamics (47) depends on a con-
trol (vector) i, which we assume for the moment to be-
long in R. The control u is the variable through which
we may manipulate or change the dynamics (47), and
it is here that we enter the area of nonlinear control,
see [19]. Obviously, there exist many controller types
that we may use but in the sequel we limit ourselves
to the use of a feedback of the form

u=ualx,y), (48)

where « is a smooth function depending on the state
of the receiver and the available measurements of the
transmitter. This is, at least at an intuitive level, a nat-
ural choice. The closed-loop system (47) and (48) is
now described as

¥ = gFa(x, h(x))), (49)

and the aim in synchronizing master and slave system
now is to find a suitable function « in (48) such that
asymptotically x(z) and x(¢) coincide. Stated in terms
of Section 2 this implies that (49) acts as an observer
for (45).

Remark 5. From the foregoing it becomes clear that
there are numerous other ways to enforce the syn-
chronization between (45) and (46). In [3] various

definitions are given, with perhaps the most general
controller being of the form

u=ax,zy), z=h(z,y), (50)

which is in control terminology a dynamic output feed-
back. Potentially, the introduction of the dynamics in
(50) allows for synchronization of (45), (47) and (50),
which means that in this case we need not start with
systems (45) and (46) of the same dimension.

The general problem of finding, if possible, a suit-
able output feedback (48) in order that (45) and (49)
synchronize is quite difficult. We will illustrate this by
means of a relatively simple example of van der Pol
systems. Consider as transmitter dynamics the van der
Pol system

1=y,  y1=-x— @G- Dy, (51)

y=xi, (52)

and as receiver we take the ‘controlled’ van der Pol
system

Xo=yr +oau, Y2 =-—x1— @&} —Dyr+ Bu. (53)

Note that we have exploited the knowledge of x; in
(53), and also that control in (53) is possible along the
direction (oz,B)T. If (53) represents an electrical circuit
or physical system it may happen that either « = 0 or
B = 0. Typically, the control u is a current (or voltage)
or force that acts on the system.

Remark 6. At this point, there is a notable difference
with most of the ‘control of chaos’ literature where
often a control parameter is varied as to influence the
dynamics, see for instance the OGY paper [20].

To achieve synchronization of (52) and (53) we will
use here (high-gain) output error feedback (c¢; > 0)

u=—ci(x1 —x2) 54
resulting in the error dynamics

e = —acel + ez,
éy = —fBeer — (x7 — ey, (55)

which is a linear time-varying system, in which the
time varying signal ()cl2 —1) is known, see (52). For the



H. Nijmeijer/Physica D 154 (2001) 219-228 227

synchronization of (51), (53) and (54) it is required that
the error dynamics (55) are asymptotically stable about
the equilibrium (0, 0). Already this relatively simple
error dynamics require some nontrivial analysis. The
most interesting case probably arises if « = O and 8 #
0. One can show, see [11] that there exists a constant
cx — which is determined in terms of the transmitter
dynamics (51) — such that if the gain ¢ > c,, then the
error dynamics (55) are uniformly exponentially sta-
ble. In fact, this result follows by transforming (55) to
an associated Hill equation and as a result the stability
turns out to be rather slow. At the same time, the lower
bound from Huijberts et al. [11] may be rather conser-
vative.

The example of controlled synchronization reveals
that the problem to find a suitable (output) feedback
controller that achieves synchronization of transmitter
and receiver will in general become difficult, or even
impossible to solve. On the other hand, a systematic
analysis that parallels the different cases reviewed in
Section 2 may lead to other solutions. For instance,
this is true for Lur’e systems, with a transmitter system
of the form

X =Ax+ ¢(Cx), (56)
y = Cx, (57)
and receiver dynamics

X = AX + ¢(Cx) + Bu. (58)

It follows that provided the pair (A, C) is detectable,
as well as (AT, BT) is detectable (or equivalently,
(A, B) is stabilizable) then there exists a (linear)
dynamic output feedback of the form (50) such that
the two systems asymptotically synchronize. Re-
call that detectability of the pair (A, C) requires,
instead of the observability condition (20) that the
matrix Aj; restricted to the largest A-invariant sub-
space in the kernel of C, should be asymptotically
stable. For further details and insight in the controlled
synchronization problem the reader is referred to
[11].

5. Epilogue

We have tried to give a dynamical control view
on synchronization. All in all, it is felt that nonlinear
control may provide some useful tools to address cer-
tain synchronization problems. On the other hand, in
many cases, a thorough study of certain time-varying
dynamical systems is required and it may be con-
cluded that further research along these lines requires
knowledge from both dynamical systems and non-
linear control theory. The review as presented here
gives only a partial view on synchronization. There
are numerous variants of synchronization defined in
the literature, of which one could mention, phase syn-
chronization, partial synchronization and generalized
synchronization, see [21] or [3] where a general defi-
nition of (controlled) synchronization is proposed. In
the study of synchronization several elements from
control theory turn out to be relevant. This includes
observers (see Section 2), filtering and robustness
(Section 3) and feedback control (Section 4), but also
further aspects as system inversion, cf. [7] or system
identification, cf. [10]. The observer ideas as are put
forward here, are quite common in standard control
system design. For feedback regulation of an exper-
imental or industrial plant often it is not possible to
use state feedback, since the state of the system is
partially measured. A standard approach to avoid this
problem is to replace in the state feedback controller
the state vector by an estimate, which is derived from
an observer. Even in simple PD controllers one needs
a numerical differentiator (a kind of reduced observer)
to obtain the derivative of the output. It should be clear
that synchronization problems can be treated in other
domains too. In particular, for discrete-time systems
various results more or less parallel the material from
the foregoing sections. Even for transmitter/receiver
dynamics described by partial differential equations
one may expect some results along these lines, see,
e.g. [5] for a specific example of synchronizing pde’s.
Likewise, synchronization with time-delayed feed-
back has also been studied in [5]. Synchronization
has numerous potential applications running from
coordination problems in robotics to mechanisms for
secure communications. Precisely, the latter area was
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mentioned in [22] as a potential field of application,
although sofar much work remains to be done here.
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Abstract

In this paper we study the existence and stability of linear invariant manifolds in a network of coupled identical dynamical
systems. Symmetry under permutation of different units of the network is helpful to construct explicit formulae for linear
invariant manifolds of the network, in order to classify them, and to examine their stability through Lyapunov’s direct method.
© 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

The high number of scientific contributions in the field of synchronization of coupled dynamical systems reflects
the importance of this subject. The reason for this importance appears to be threefold: synchronization is common
in nature, coupled dynamical systems display a very rich phenomenology and, finally, it can find applications.

First of all, many situations can be modelled as ensembles of coupled oscillators. Considering some examples
from the natural world, there is evidence of synchrony among pulse-coupled biological osdillatadsich relates
to the observation that thousands of male fireflies can gather in trees and flash at unison (a very nice colour picture
of this event can be found if2]). Synchronous activity has also been observed in many regions of the human
brain, relative to behaviour and cognition, where neurons can electrically discharge synchronously in some known
frequency rangel3], a behaviour that is reproduced by different mathematical mgdel$he synchronous firing
of cardiac pacemaker cel[S] in human hearts is another example where synchronized motion is repdfted
Among other evidences of synchronous behaviour in the natural world, one can additionally consider the chorusing
of crickets and the metabolic synchrony in yeast cell suspefiigjoA large number of examples of synchronization
in nature can be found i8], and references therein.

The rich phenomenology constitutes another reason for the importance of these studies. Coupled dynamical
systems have been shown to give rise to rather complex phenomena not previously observed, especially when
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chaotic motion is considered as output of a single dynamical system (for examp]8,1efor two significant
reviews). If the common output of several synchronized dynamical systems is chaotic, there is evidence that as
a result of ablowout bifurcation(see Definition 3.8 iff11]) a new type of intermittent behaviour, called—off
intermittencymay appear at the onset of the threshold of attractivity of the synchronized k#tas well as

the presence of very complex domains of attraction, caitédled basinswhen several attracting solutions exist

[13]. These two new phenomena are peculiar to those systems with invariant subsets, as suitably coupled identica
dynamical systems are. A more detailed explanation of the onset of attractivity and stability of a synchronized state
in coupled chaotic systems can be foundlih,14].

The importance of synchronized motion does not lie only in those situations in which synchronization can be
found, but also where synchronous motion can be induced to ensure the proper functioning of a particular device
[15,16] Consider, for example, active integrated antenida$ that can be built as arrays of multiple coupled
oscillators to generate circular polarizatifi8]. In robotics, the problem of synchronization is usually referred
to as coordination, or cooperati¢h9,20] The problem appears when two or more robot-manipulators have to
operate synchronously, especially in situations when some of them operate in hazardous environment, while other:
(that serve as reference) may be guided by human operation. Another interesting problem is to study (and control)
spatiotemporal patterns in an ensemble of coupled systems. This problem is of interest in connection with many
applications in communication engineerifi.].

Synchronizationis therefore important, soitis especially importantto develop criteria that guarasgeitotic
stability, if applications are sought. In this paper we consider networks of identical systems coupled through diffusion,
and we give conditions that guarantee asymptotic stability of a particular invariant manifold (a synchronous state)
of a given network. Apart from the direct Lyapunov method, if only a local result suffices, the asymptotic stability
of the synchronization manifold can be verified vaiform asymptotic stability of a linear time-varying system
which expresses the dynamics transverse to the synchronization manifold (see Corollaf2d]} In [11,28], it
was proven that if all transverse Lyapunov exponents are negative, then the attractor lying in the synchronization
manifold is transversely asymptotically stable. There is evidg&2®&Jgthough not rigorously proven yet) that in this
attractor the transverse Lyapunov exponents achieve their supremum on periodic ddvitpefiodthat gives a
hope to compute the synchronization threshold exactly via computer simulation; for an application of this periodic
orbit threshold theory, for example, sE9].

Synchronous motion is most often understood as the equality of corresponding variables of two identical systems.
In other words, the trajectories of two (or more) identical systems will follow, after some transient, the same
path in time. This situation is not, of course, the only commonly understood situation of synchronization. Other
different relationships between coupled systems can be considered synchronous. More generally (and this is the
viewpoint taken in[33] to draw a suitable definition of “synchronous behaviour” in a coordinate-independent
way), synchronization with respect to some functional happens when this functional has always zero value, for all
trajectories of the dynamical system on the synchronous state.

We study the existence and stability of linear invariant manifolds of a network of coupled systems, defined as
the equality of some outputs of some systems only, a condition that is nowadays popular in the physical literature
aspartial synchronizationConsidering that a network can be formed by an arbitrary number of units, the num-
ber of different existing linear invariant manifolds may be large. Therefore, several aspects should be taken into
consideration for careful examination.

The first aspect is thelassificationof linear invariant manifolds. As previously mentioned, coupled dynamical
systems can show a very rich phenomenology, so it is meaningful to find systematic ways to classify different
invariant sets. Zhang et 4R2] reported the result of their studies of a chain of identical Réssler systems, showing
that there are several possible synchronous states with different types of correspondences between the variables
different systems.
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The second aspect to keep in mind is the possibilitynofusion of different invariant manifolds, an aspect
studied in[23—25] Briefly, it is possible that different synchronous states between coupled oscillators will appear
by increasing some specified bifurcation parameter. This possibility defines a hierarchy, that arranges different
invariant manifolds in a particular order.

Symmetry considerations are helpful to classify several invariant sets, and a possible hierarchy to accommodate
them. The symmetry generated by the coupling only has been tegioleal, to distinguish it from the additional
symmetries brought upon by the dynamical systems modelling each unit, that has beeniteenmadl This
terminology has been introduced[26] where it is studied how these two groups of symmetries interact.

In this paper we exploit symmetry under permutation of a given network of dynamical systems coupled through
diffusion in order to classify some linear invariant manifolds and investigate their stability. More specifically, we see
that to any specific symmetry it is associated a linear invariant manifold, and we show how to construct a Lyapunov
function to determine its stability, from the same specific symmetry. Therefore, under the conditions formulated in
this work, stability in the network descends from its topology. The results we derive on the existence and stability
of invariant manifolds hold regardless of the dynamics that takes place in these manifolds.

The paper is organized as follows. The problem statement is explaisattiion 2 where the network dynamics
is outlined. InSection 3the association between symmetry and the linear invariant manifolds of the network is
discussedSection 4begins with some background material from control theory, after which we propose a proof
of asymptotic stability of a compact subset of a specified linear invariant marefdion Sshows some relevant
examples in connection to the theory.

Throughout the paper we use the following notatidpslenotes thé x k identity matrix. The Euclidean norm in
R” is denoted simply as |, |x|2 = x " x, whereT defines transposition. The notationeal . . ., x,) stands for the
column vector composed of the elements. . ., x,. This notation will also be used in case where the components
x; are vectors again. A functioW : X — R, defined on a subset of R”, 0 € X is positive definiteéf V(x) > 0
forallx € X \ {0} andV (0) = 0. It isradially unboundedif X = R") or properif V(x) — oo as|x| — oo. If
a quadratic formx T Px with a symmetric matrixc = P is positive definite then the matrig is called positive
definite. For positive definite matrices we use the notaflan 0; moreoverP > Q means that the matriR — Q is
positive definite. For matrice$ and B the notatiorA ® B (the Kronecker product) stands for the matrix composed
of submatricesi;; B, i.e.

A1nB ApB - AuB
A21B Ax»B .- Ay B
A®B=| N
whereAjj, i, j = 1, ..., n, stands for théjth entry of then x n matrix A.

2. Problem statement

The subject of our research is the existence and stability of partial synchronization regimes in diffusive networks.
To make the problem statement clearer, we start our discussion by introducing the concept of diffusive network. In
1976, Smalg¢31] proposed a model of two interacting cells based on two identical coupled oscillators, and noticed
that diffusion, rather counterintuitively, does not necessarily smooth out differences between the two systems’
outputs, giving the example of two stable systems that can display oscillations when connected via diffusive coupling.
Taking inspiration from Smale’s previous researchjfusive cellular networklescribes a network composed of



68 A. Pogromsky et al./Physica D 172 (2002) 65-87

identical dynamical systems coupled through diffusive coupling that cannot be decomposed into two or more
disconnected smaller networks.
To put these statements into a more mathematical description, let us cdngldatical systems of the form

Xj = f(xj) +Buj, yj = CX;j, 1)

where f is a smooth vector field; = 1, ..., k, x;(t) € R" is the state of thgth systemy ; () € R™ andy;(¢) €

R™ are, respectively, the input and the output of jlile system, andB, C are constant matrices of appropriate
dimension. This representation of the dynamics of the elements of the network is most common in control theory,
and it underlines that a description of a dynamical system is not complete unless inputs and outputs are specified
It also reflects the idea that a dynamical system can be viewed in a model-independent representation, through it:
input—output characteristics. For instance, interaction among cells, in the example quoted by Smale, can be viewec
as a static relationship between inputs and outputs. In this representation we can say thaytstieens(1) are
diffusively coupledf the matrix CB is similar to a positive definite matrix, and tkesystems are interconnected
through mutual linear output coupling

uj=—=yja(yj =y —vj2(yj = y2) = = vik(yj — vk, 2)

wherey; = yji > 0 are constants such th@';#i yi > O0foralli =1,..., k. With no loss of generality we assume
in the sequel thaEB isa positive definite matrix. Some results we present in this paper certainly hold for other types
of coupling as well, but this special form of coupling, apart from being very naturally linked to the interaction of
some real-life systems, allows us to obtain analytical results concerning the stability of some solutions of the whole
network.

Define the symmetri¢ x k matrix I" as

k
Y i Vi —Y12 e =YKk
k
Y21 Zi:l,i;éz 17/ B —Y2k 3)
—Vk1 —Vk2 e YN

wherey; = yji > 0 and all row sums are zero. The matfixs symmetric and therefore all its eigenvalues are real.
With the definition(3), the collection ofk systemg1) with the feedback2) can be rewritten in the more compact
form

X =F(x)+ Ik ® B)u, y = ®O)x, (4)

with the feedback given by

where we denoted = col(x1, ..., xx), F(x) = col(f(x1),..., f(xx) € R y = col(yq, ..., yx), andu =
col(uz, ..., u;) € RKM The matrix/™ in (3) displays some interesting properties: first, it is singular (all row sums

are zero), so it has a zero eigenvalue and, according to Gerschgorin’s theorem (for exanip®}),9ees positive
semidefinite, that s, all its eigenvalues are nonnegative. Additionally, if zero is a simple eigenva@lub®hetwork
of the diffusively coupled systems cannot be divided into two or more disconnected networks.

The matrixI” is a useful mathematical object in the study of solutior(@pand (5) because it contains information
on the topology of the network, with properties that hold independently of the particular dynamical sisiem
employed to model each of its elements. Consider, for instance



A. Pogromsky et al./Physica D 172 (2002) 65-87 69

its size (the number of coupled systems, hence the dimehbii’);

its interconnections (the dimension of Kéiis the number of disconnected networks);

the local density of interconnections (the number of systems connected to a specific one, that is, how many
nonzero elements in a specific row or column);

the strength of the interconnections (the constajits

last but not least, eventual symmetries the network may possess.

Dynamical systems constructed agipand (2) specifically, using identical systems (the safiie), with identical

input and output forms (the same matriggandC for all k systems), interconnected by diffusive coupling, allow
solutions with equality of all (or some) of its states. These situations can be described as fully and partially
synchronized. We prefer not to dwell too much here on the suitability of a particular definition of synchronization,
as reported in few research papl@&3-35] but we simply definéull synchronizatiorthe particular situation in which

all states of all systems are identical (we(t) = x;(¢), V¢, Vi, j =1, ..., k), and withpartial synchronizatiorall
situations in which the states of some systems are identical, but not all of them (@e= x;(z), V¢, for some

i, j). These are situations in which the overall dynamics of the network takes place on a linear invariant manifold,
specified by the equality of some outputs.

All main points have now been introduced in order to formulate a clear problem statement. Can we exploit
symmetry in the network to identify its linear invariant manifolds, and benefit from a representation of the system
as(1) and (2) and/or(4) and (5) typical for control purposes, in order to give conditions thadranteestability of
some selected partial (or the full) synchronized states?

3. Symmetries and invariant manifolds

If a given network possesses a certain symmetry, this symmetry must be present in themhtmarticular,
the network may contain some repeating patterns, when considering the arrangements of the ggnsiamte
the permutation of some elements will leave the network unchanged. The matricial representation of a permutation
o of the set{1, 2, ..., k} is a permutation matrix € R¥*¥, Briefly, if €1, ..., &x denote the columns df, the
permutation matrix7 associated witlr is the matrix obtained frond;, by permuting its columns undet, that
is, the columns ofT areeq(1y, - . ., €ok)- If Sk is the set of all permutations ¢1, 2, .. ., k} it is possible to prove
that the set of alk x k permutation matrices forms a group that is isomorphig;tf86]. Permutation matrices are
orthogonal, i.elT " IT = I, and they form a group with respect to the multiplication, so for any two permutation
matriceslT;, I1; of the same sizd}J; I1; is a permutation matrix too.

Rewrite the dynamics d#) and (5)in the closed loop form

% = F(x) + Gx, (6)

whereG = —(I; ® B)(I' ® 1,,) (I ® C) € RK™Kn that can be simplified a8 = —I" ® BC. Let us recall here that
given a dynamical system &), the linear manifoldd,; = {x € RX": Mx = 0}, with M e R*™K" isinvariant if
Mx = 0 wheneveMx = 0, that is, if at a certain timg) a trajectory is on the manifold,(zp) € Ay, then it will
remain there for all timey (¢) € Ay, for all t. The problem can be summarized in the following terms: gi¥eand
F(-) find a solutionM to

MF(x(10)) + MGX(fo) = 0, (7

for all x(r9) for which Mx(tp) = 0. There is no general solution to this, however, if these objects satisfy certain
properties, it is possible to find a class of matridésthat solve(7). A natural way to do this is to exploit the
symmetry of the network.
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3.1. Global symmetries

In the representatio(6), we can establish conditions to identify those permutations that leave a given network
invariant. It can be easily derived th&tis a symmetry for the networ(6) if

(T ®1,)G = GUI @ In),

that is, if IT andI" commute 1" = I'[1. For these symmetries, a first result follows directly from the properties
of the permutation matrices. Lél = IT ® I,, for simplicity, and assume that, at timgit is (Ixn — X)x(to) = O.
Consider(6), and suppose that there is a permutation md&igommuting withI". Hence, als&¥G = GX, and
sincelT is a permutation matrix, it also follows thatF (x) = F(Xx). If we multiply both sides of6) by Iy, — X,

we obtain, at timeg

(Iin — X)x(t0) = F(x(t0)) — F(Xx(10)) + G (Ikn — )x(10) =0,

because we assuméli, — X)x(tg) = 0. Therefore, it iglxn — X)x () = 0 for all r, and we can reformulate this
result asgiven a permutation matrixi that commutes witl", the set

ker(Iyn — 11 @ 1,,), 8)

is a linear invariant manifold for syste®).

Note that global symmetries have the property of leaving the syBtgm(4) and (5invariant. One can see that,
applying the linear transformation— x = (1T ® I,)x to the network, ifc andy are, respectively, state and output
of (4), thenx andy = (/T ® 1)y are state and output of the same system. Additionall§f &ndI” commute,
alsoiu = —(I' ® 1,,,)y, whereu = (IT ® I,,,)u. Hence, the tripléx, y, i) satisfies the saniegs. (4) and (5)as the
original triple (x, y, u).

3.1.1. Example 1: ring of four coupled oscillators

Consider the example of four coupled systgihsand (2)in a ring, as shown schematically iig. 1 In this
figure we have imposed the following symmetry in coupling constants= y34 = Ko, andy14 = y23 = K1. The
particular geometry of the coupling defines the following coupling matrix:

Ko+ K1 —Kop 0 —-K3
—K Ko+ K —K 0
= 0 0 1 1 . (9)
0 —K1 Ko+ K1 —Kp
—K1 0 —Ko Ko+ K1

Fig. 1. A network of four coupled identical systems with symmetric coupling at the opposite sides.
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The four permutation matrices for whidiaiI” = I' IT are

m=(% ° m= (9 % = (¢ £ =1 (10)
1= 0 E s 2= 12 0 , 3= E 0 s 4 = 14,

where we denoted

01
E= ,

andO is the 2x 2 zero matrix. Let us analyse what the action of these matfices The action of’7; is to switch
simultaneously with xo andxs with x4. One can easily notice froiffig. 1that this operation leaves the network
unchanged, with respect to its connections. Similar actions are brought updnemd/Ts, while I, is the identity,
that leaves everything unchanged.

From our previous statements, we derive that the linear invariant manifolds associatéh with and I3 are,
respectively

A= {x e R¥ : x1 = x2, x3 = x4}, Ao = {x € R¥ 1 x1 = x3, x2 = x4,
Az ={x € R¥ @ x1 = x4, x2 = x3}. (11)

The intersection of any two of these linear manifolds gives the linear manifold describing full synchronization (i.e.
X1 = x2 = x3 = x4). These invariant manifoldd 1) descend directly from the symmetriesiof hence they exist
regardless of the particular form ¢f(-) chosen in(1).

3.2. Internal symmetries

Additional internal symmetries in the differential equations governing the dynamics of the elements of the network
will lead to the existence of additional linear invariant manifolds. Consider one uncoupled element of the network,
xj = f(x;), with initial conditionx ; (0), generating the particular solutian(z). It is easy to see that if

Jf(Xj) = f(JXj), (12)

with J e R™" constant matrix, thedx; (¢) is a solution as well, generated by the initial conditibq(0). This
property of f (-) defines an additional symmetry to the network, that originates additional invariant manifolds. As in
the last argument, we can formulate the following, more general, statesuppose there is a permutation matrix

IT commuting with/™, and ann x n constant matrix/ satisfying(12) for f(-) in (1), with J commuting with the

n x n matrix BC Then the seter(I/x,— IT ® J) is a linear invariant manifold for syste(B). To prove this statement,

let X = IT ® J as before, for brevity, and assurtig, — X)x(r0) = 0. This argument is the same used for the
previous statement, it differs in just replacihgwith J. If we multiply both sides of6) by I, — X we obtain

(Ikn — X)x(t0) = (Ikn — L) F (x(t0)) + (Ikn — X)GX(10) = F(x(10)) — F(Xx(t0)) + G(Ikn — X)x(t0) = O,

where we made use &f F(x) = F (X x) and assumed thdatcommutes witlBC. Therefore, if(fxn — X)x(t9) = O,
it will be (Ixn— X)x(z) = O for allz. A popular case is represented by #i-phase synchronizatidhat may take
place in systems whose differential equations are odd functions of the state vector, fijatis) = — f(x;), or
J=—1,.

Therefore, for any elemer¥ from the group of global symmetries and for any elemgnthat commutes with
BC, from the group of internal symmetries, the set

ker(lin — IT ® J), (13)
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is alinear invariant manifold for system (6). The representdfi@jreflects how two groups of symmetries contribute
to the existence of invariant manifolds of a diffusive network.

If there is a positive integel such that/ = I,,, theJ matrices form a finite group, hence the number of invariant
manifolds generated bi§f’s andJ'’s is finite.

3.2.1. Example 2: four coupled Lorenz systems
Consider the network introduced in Example 1, and suppose the dynamics of each elefhgeistddscribed by
the Lorenz system, with; = (x;,1,x;2,x;3) " € R3

xj1=0(xj2—xj1) +uj, Xj2=1IXj1—Xj2—Xj1X;3, xj3=—bxj3+x;1x)2, (14)

with outputy; = x; 1. FOorEq. (14) itis easy to see thatik; 1 (1), x; 2(¢), x;,3(¢)) isasolution(—x; 1(1), —x;2(¢),
x;,3(1)) is a solution too, so the matrix

J=diag -1 -1 1), (15)

is an internal symmetry fof14). In this exampleB = (1 0 0)" andC = (1 0 0), andJ commutes with
BC. The three invariant manifolds given (1) are associated with the matrigd®) as global symmetries, and (in
absence of any informatior} as internal symmetry. In addition {@1), the linear invariant manifolds, defined as
A = ker(I12 — I1; ® J), associated witlfZ;'s in (10), andJ in (15), are

A= {x eRY 1 Ix = x2, s = x4}, Ay = {x € RY?: Ixy = x3, % = x4},
, 12,
3 ={x e R™:JIx = x4, I% = x3},

while the invariant manifold associated wiffy = I is
Ay=(xeR¥:xj1=x;,=0,j=1,...,4),

and arbitraryc; 3, j = 1,..., 4.

Let us restrict for now with global symmetries only, that is, model-independent symmetries associateamdith
represented by the matric€k For a given network we can “quantify” its symmetry simply by counting how many
permutation matricesl commute with the giver”. Once the network is given, it is possible, in principle, to find
out precisely how many invariant manifolds (associated with permutation symmetry) exist. Symmetry arguments
solve the problem of classification of invariant manifolds, and they also give insights on the inclusion problem as
well.

4. Stability analysis

In this section we present some important properties of certain classes of control systems. They are properties
widely invoked in control theory, and the advantage is in the methodology. Consider systems of the form

x = f(x,u), y = h(x), (16)

wherex € R” is the statey € R™ is the input,y € R™ is the output,f (0, 0) = 0 and f, h are smooth enough to
ensure existence and uniqueness of solutions. If the control goal is to find a feedback that stabilizes a solution of
system(16), we can find alass of possible feedbackdich comply with the specified control goal (e.g. stabilize

the systen{16)). Any feedback: from this class is a solution to the control problem.
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4.1. Passivity and semipassivity

We illustrate this approach by a simple example. Let the control goal be the stabiliza{ib®) ¢ the origin.
Suppose it is possible to find a scalar nonnegative fundiiafefined onR”, for which V(0) = 0, and whose
derivative satisfies, along the solutiong©6), the inequality

_ aV(x)
B

Vx,u) = flx,u) < yTu. a7

The systen{16)is then referred to aspassive systelfe.g., se¢37]), the functionV is called thestorage function
and the inequality17) is calleddissipation inequality This inequality immediately definesddassof stabilizing
feedbacks for the closed loop syst€6). Additionally, if we search for the stabilizing feedback in the form
u = ¢(y), to prove that a given belongs to the class of stabilizing feedbacks(fid), we only need to verify the
inequality

y oy <0, (18)

providedV is positive definite. To prove this statement one can simply consider the storage funesaLyapunov
function candidate.

Itisimportant to note that for a passive system with a positive definite storage function the dynamics corresponding
tothe constraing = 0 (thatis commonly known aero dynamicds Lyapunov stable (s€&7)). If the zero dynamics
is asymptotically stable, systems of this sort are knowmgsmum phaseand it is an important class of systems
for application design problems, since they possess some sort of internal stability.

Next, let us consider a different situation. Suppose that the dissipation inedtalitg satisfied only fox lying
outside some ball (or compact set). More rigorously, it can be represented as the following inequality

Vix,u) < yTu — H(x), (29)
where the functiord : R” — R is nonnegative outside some ball:
dp >0, Vix|=p= H(x) = o(x]), (20)

for some continuous nonnegative functigdefined for|lx| > p. In this case the syste(ii6)is calledsemipassive
This notion was introduced i§88], while in[39] an equivalent notion was calleglasipassivitylf the function H
is positive outside some ball, i.€20) holds for some continuous positive functionthen the systerfiL6)is said to
be strictly semipassivdn brief, a semipassive system behaves like a passive system for sufficientjxlarge

It is important to observe that the dissipation inequdlit9) can be rewritten in an equivalent way as follows:

A% A%
—f(x) < —-HXx), —B=x'C".
0x 0x

In direct analogy with passive systems, from the inequéli8) one can specify the class of feedbacks which make

the semipassive closed loop systélfi) ultimately bounded.e. regardless of the initial conditions, all solutions of

the closed loop system approach a compact set in a finite time and this compact set does not depend on the initial
conditions.

Indeed, suppose that the systétfi)is strictly semipassive and the storage functibsatisfying the dissipation
inequality(19)isradially unboundegthatisV (x) — oo when|x| — oo, then any feedbaak = ¢ (y) satisfying the
inequality(18) makes the closed loop system ultimately bounded. This statement can be proven just by considering
the storage functio¥ as a Lyapunov function candidate.

This is an additional benefit of the representation of diffusive network equations as input—output systems. Under
strict semipassivity, boundedness of solutions depends only on input—output relations of $¥$terdsiot on the
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particular interconnections within the network. The particular constants appearing in the feedbaciot crucial,

as long as: satisfies inequality19). For example, consider the input written in compact forre —(I" ® I,,)y

introduced inSection 31" > 0, therefore: is a feedback that ensures boundedness of solutions of the network.
More precisely|f the systemg1) are strictly semipassive with radially unbounded storage functions then all

solutions of the coupled systdft) and (2)exist for allz > 0 and are ultimately bounded he technical proof of

this statement and more general related results can be foya#]in

4.2. Convergent systems

Consider a dynamical system of the form
z=q(z, w()), (21)

with z € R/, driven by the external signa(r) taking values from some compact set. This system is said to be
convergen{40] if for any bounded signab () defined on the whole time intervél-oo, +00) there is a unique
bounded, globally asymptotically stable solutipfa) defined on the same intervél-oo, +00), from which it
follows

lim |z(r) — 2(0)] =0, (22)

for allinitial conditions. In systems of this type the limit mode of them is solely determined by the external excitation
w(t), not by the initial conditions of. From the existence of a unique moge), it obviously descend that two
identical copies of convergent systemandz (21) must synchronize, that is, (22) holds

lim |z1(t) — z2(1)| = 0,
—o0

holds as well. Convergence is then closely related to synchronization, hence it is important to find conditions
ensuring it. Recently, an importance of the concept of convergent systems was recognized in control community
with a potential application to observer design4h] a bit stronger notion was calléacremental global asymptotic
stability (SGAS); therein the necessary and sufficient condition8®AS were formulated in terms of the existence

of Lyapunov functions. We present here a slight modification of a sufficient condition obtained by Demid®ich

if there is a positive definite symmetfis / matrix P such that all eigenvalues (Q) of the symmetric matrix

_lp( 99 p 23
0(z, w)—é <8—Z(z, w))+(a—z(z, w)) , (23)

are negative and separated from zgre. there is§ > 0 such that
2i(Q) <=8 <0, (24)
withi = 1,... 1 forall z, w € R/, then systeni21) is convergentand there exist a quadratic functioi (¢) =
¢ T Pt satisfying the inequality
oW (z1 — z2)
cle

for somex > 0. This condition is a slight modification of the Demidovich theorem on convergent systems in the
caseP = I;.

(q(z1, w) — q(z2, W) < —a|z1 — 22/, (25)
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4.2.1. Example 3: input—output properties of Lorenz system
Consider the Lorenz syste(h4)

Xj1=o0(xj2—xj1) +uj, Xj2=1"IXj1—Xj2—Xj1Xj 3, xj3=—bX;3+xj1x;2,

with o, r, b > 0. Lorenz system with input; and outputy; = x; 1 is strictly semipassive. To prove this statement,
consider the following storage function candidate:

V(x)1,%j.2,%3) = 3((6;.0% + (xj.2)° + (xj3 — 0 = 1)),
Calculating the derivative of this function along the solutions of the sy$idyields
V(xj1,Xj2,%j3,u) = xj1u — H(xj1,Xj,2,%3),

where

2 2
o—+r (0 +7r)
H(xj1,xj2,%j3) =<T(Xj,1)2+(Xj,2)2+b<xj',3— > ) -b 7
It is easy to see that the conditigh = 0 determines the ellipsoid which lies inside the ball
E={xj1.%2.%3: (507 + (2% + (xja—0 —1? < L0 +1)?), (26)

in R3, with L derived inAppendix A outside whichH is strictly positive. This fact proves strict semipassivity of
the systen{14). Hence, in a diffusive network of any number of Lorenz systems (take for example two systems)

X1,1 =0(x12 — x1,1) + ug, X12 =TIX1,1 — X1,2 — X1,1X1,3, X13 = —bxy 3+ x11x12,
X21 =0(x22 — x2,1) + u, X222 =TX21 — X22 — X2,1X2,3, X23 = —bX 3+ x21%22, (27)
up=-yy1—y2, uz=-yQ2—y,

with outputsy; = x1,1 andyz = x2 1, all solutions are ultimately bounded.
Moreover, the same system, with inpytand outputy; = x; 1, is minimum phase. The dynamics corresponding
to the constrainy = 0 (zero dynamigsis simply

Xj2=—Xj2, Xj3 = —bX;3,

which is asymptotically stable. Minimum phaseness and convergence are closely related. If we think of the output
y; as a driving input for the remaining part of Lorenz system, we have

Xj2=—xj2+1Yj— yjxj3, Xj3=—bX; 3+ yjx;2,
which is convergent. Applying Demidovich’s result we see that, uging I, the matrixQ(x;, y;) in (23)is
Q(xj,y;) =diag( =1 —b).

One final remark: after examination of these input—output properties of Lorenz system, it is not surprising that
driving two identical Lorenz systems with the samyg signal leads to synchronization of the driven subsystems,
even when their dynamics are chad#é,43] The reader can easily check that using as drive works well too,

and both cases are minimum phase, while usipgas input is not! Stability of response systems as referred in
[43], with respective numerical evidence for different cases, is exactly convergent dynamics.
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4.3. On global asymptotic stability of the partial synchronization manifolds

A permutation matrix7 commuting with” defines a linear invariant manifold of systé€6), given by(8). This
expression stands for a set of linear equations of the form

Xi — Xj =0, (28)

for somei and; that can be read off from the nonzero elements offtheatrix under consideration. Therefore,
we can identify a particular manifold associated with a particular ma&lrisy the correspondent s&f; of pairs
i, j for which (28) holds.

In this section we are going to investigate asymptotic stability of partial synchronization as asymptotic stability
of sets. Due to the converse Lyapunov theorem (e.g.[Z&g the asymptotic stability of a sed is equivalent
to the existence of a scalar smooth nonnegative fundtiavhich is zero only on4 and decays along the system
trajectories, when not ad. In order to find a Lyapunov function which proves stability of the partial synchronization
manifold, one can seek a Lyapunov function candidate as a sum of two functions, the first one dependent on the
input—output relations of the systeifig and the second one dependent on the way the systems interact via coupling.
The best way to carry this out is to findgédobally defined coordinate change that allows us to exploit minimum
phaseness.

Let us first differentiate ;

jlj = Cf(xj) + CBUJ‘.
Then, choosing some— m coordinates ; complementary tg; it is possible to rewrite the systeh) in the form
2j =4y,  ¥j=alzj,yj)+CBuy;, (29)

wherez; € R"™™, andg anda are some vector functions. It is important to emphasize that the coordinate change
xj +— col(z;, y;) can be linear, ifCB is nonsingular, and that, owing to the linear input—output relations, this
transformation is globally defined. This transformation is explicitly computé#dh As the reader may expect, for
more complicated input—output relations, this coordinate transformation may not be globally defined. Conditions
on the existence of thisormal formcan be found i{37,45]. In the equation fot; in (29), y; acts as a forcing
input, hence we can apply properties of convergent systems, if the niltrixw) defined forg in (29) has negative
eigenvalues, separated from zero.

The purpose of this section is to prove the following theorem.

Theorem 1. Let)’ be the minimal eigenvalue &f under restriction that the eigenvectors Bfare taken from the
setrangél; — IT). Suppose that

1. Each free systerfi) is strictly semipassive with respect to the inpptand outputy; with a radially unbounded
storage function

2. There exists a positive definite matidsuch that inequality24) holds with somé > 0 for the matrixQ defined
as in(23)for g as in(29).

Then for all positive semidefinite matric€sas in(3) all solutions of the diffusive cellular netwo(&) and (5)are
ultimately bounded and there exists a positiveuch that ifa’ > X the setker(Ixn — IT ® I,,) contains a globally
asymptotically stable compact subset.

Let us clarify the conditions imposed in the theorem. The first assumption on strict semipassivity ensures the
ultimate boundedness of the solutions of the diffusive network. The second assumption requires some sort of stability
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of some internal dynamics of the systéa®). It guarantees that thedynamics of syster(29) is convergent with

y; as an external signal. This assumption is quite restrictive and is not valid, for example, for Hamiltonian systems,
which are conservative. According to the Demidovich result previously mentioned, this assumption implies the
existence of a quadratic functid¥i(¢) satisfying the inequality25). From this inequality one can immediately see

that, if g (0, 0) = 0, the zero dynamics

1=4q(z,0), (30)

is globally asymptotically stable at the origin. Moreover, the inequdlty) implies that the syster80) has a
globally asymptotically stable equilibrium, so the assumptjed, 0) = O can be always satisfied by means of
appropriate coordinate change. Thus the second assumption necessarily implies that th€28ysseminimum
phase Recalling Example 3 about the Lorenz system, it means that the sigraaiting as an input op; can
make the dynamics; convergent. It is worth mentioning, however, that stability of the zero dynamics does not
necessarily imply the stability of the free systém= 0). As one can see from the Example 3, the zero dynamics
can be asymptotically stable (i.e. the system is minimum phase), while the free system is oscillatory.

In the rest of this section we sketch the prooT@Eorem 1To make the presentation more transparent we omitted
some standard technical details which can be found in similar proofs, of related results, presgggtbinOur
approach is inspired by the results on feedback-passive systems presef#éf In the proof we are mostly
focused on the way to find the Lyapunov function guaranteeing stability of the partial synchronization mode. As
we previously introduced the notation= col(y1, ..., y¢), let us denote with € RK™the vector calz1, ..., zx).

Since the derivative of-variables in(29) does not depend on the coupling, while the derivative-griables does,
we can search for a Lyapunov function in the form

Viz,y) = Vi(z) + Va(y).

There is not a unique way of determine which Lyapunov function is best to investigate stability, although control
theory can give guidelines to determine whether a Lyapunov function with a particular form exists. The existence
of a Lyapunov function in the form above, structured as a sum of two independent parts is ensured by an important
algebraic result known agequency theorepror Kalman—Yakubovich—Popov lemnihis theorem is one of the
cornerstones of control theory, since it offers the necessary and sufficient conditions of the solvability of the
Lyapunov and Riccati equations. However, further analysis of this theorem is beyond the scope of this paper,
therefore we forward the interested readef4®)] for a review. The functiori; expresses some internal stability
properties of each subsystem, which will come from the input—output propert{gé} afd (2) while the function
V2 shows how the coupling contributes to the stability of the partial invariant manifolds, where we will explicitly
make use of the symmetries of the network, in the representation we examined.

Let us start with the functiorVy. Suppose that there is a positive definite radially unbounded fun@tian
defined onR"~" which satisfies the partial differential inequal{@s) for all z;, z; € R"™", w € R™. Then we
construct the functiofy as

i = ) W(i—z)).
(. ))eIn
Along the solutions of the closed loop system, the derivativé,0f) satisfies
. oW(zi —zj)
i)=Y, — Gy —q(), )
- ¢
)L

oW (z; — 2
<—a Y lu-zlP+ Y IWE 220 ey i) = 0z ).

4 4 a¢
(,))eln (i,/))eln
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The next stepistofind the second part of the Lyapunov function, the furigtidris clear thatifc € ker(lx,—IT®1,)
then necessarily € ker(lxm — IT ® 1,,). So, on this invariant manifold, the quantiyy) = (lkm— 1 ® 1)y is
identically zero. We can therefore construct the functeras

1 1 1
Vo) = SEME = 5y B =T @ I) =T @ L)y =5 Y yi = I,
(i, )L

that is positive definite with respect & and zero on the set kdkm — IT ® 1,,). Differentiating the functiori/z
gives

k

. aVa(y;

Va(z, ) =) ;;71)a<zj,yj>—v<y),
=t

where using commutativity off andI”
U) =y " Ukm—1® L)' (I ® CB)(lkm— 1T @ In)y.

Sincel” > 0 andCB > 0 it follows thatU (y) > 0. Moreover, since kel C ker(I, — IT) (the kernel ofl" is a set
of vectors with equal coordinates, as we have assumed that the deféd ohe) it follows that there is a positive
constantc such that the following inequality holds

Uy) = «y (Ukm— 1 ® L) (Ikm— 1T @ L,)y.

The numbek can be easily estimated as> A’8, whereg is the minimal eigenvalue of the mat&B and’ is
the minimal eigenvalue of under restriction that the eigenvectorsiofire taken from the set range — I7).
We proceed now to evaluate the derivative/ofFrom the previous intermediate results it follows that

k
Vi <—a ) |z,-—zj|2—2wﬂv2<y)+2Ly’)a(zj,y,->
j=1

(. eZn 9y

Z oW (zi—z;)

o q(zj,yi) —q(zj, y;)).

(.))€In

Note that for any compact s&t there exist some positive numbé&rs, C», C3 such that the following estimates are
valid on £2:

k

aVa(y;
> azy(y’)a@,-,y,») =| Y Gi—ypTaGiy)—a y)| <] D Gi—y) (@i, y)—ai, y)))

j=1 / (i.)eIn (i.))eZn

+| Y Gi—yp @G, y) —az, y)| < C1Va) +C2 Y Lz —zjllyi — vl
(,))€ln (,))€ln

and

oW (zi —z;j)
2. T @G —aG | =Ca 30l =zl -l
G,/)eIn G, )€eLn
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Now we are going to use strict semipassivity of the systems forming the diffusive network. Recall that strict
semipassivity implies ultimate boundedness of all the solutions, that is, all the solutions in a finite time approach
some compact s&2 which can be chosen independentlylonOn this compact set the derivativeWfis a quadratic
form with respect tdz; — z;| and|y; — y;|. Itis clear that, if the value of’ is large enough (that i,’ is greater
than a positive computable threshaly due to inequality(25), the derivative of (z, y) is nonpositive on this set.
After some algebra, an explicit formula faris derived as

- 1/C1 (C2+C3)?

A==+ —]). 31

(3 o

This argument proves that the setigr — IT ® I,,) contains a globally asymptotically stable compact subset for
Ao

4.4. Remarks

Let us explain the result aftheorem 1

1. Suppose we parameterize the mafrias
I' = puly,

considering the positive parameferas a bifurcation parameter. Lef, j = 1, ..., k be the eigenvalues df
arranged in increasing order:

O=A1 <A <--- <A

I" has only one zero eigenvalue, since we have assumed that the network cannot be divided into two or more
disconnected networks. Previous res{ds], based on similar assumptions to those givemtisorem 1 show
that for sufficiently large. the full synchronization occurs in the sense that the manifold {x; ¢ R" : x; =
x2 = -+ - = xx} contains a bounded closed globally asymptotically stable invariant subset. This situation occurs
when the smallest nonzero eigenvalgeexceeds some computable threshold value.

The result formulated above allows to predict some additional bifurcations on the way to the full synchroniza-
tion. Suppose that there is a permutatiGrcommuting withI” that defines a partial synchronization manifold.
For the given/T we can compute the numbgf. This number coincides with one of the nonzero eigenvalues
of the matrixI”, since keil” C ker(Iy — IT) (the kernel ofl" is a set of vectors with equal coordinates, as we
have assumed that the defectiofis one). Thus.” takes value from the s¢io, ..., At}. It can happen that’
exceeds a synchronization threshold, whijedoes not. In this case a partial synchronization corresponding to
the symmetryiT occurs.

Writing down all the admissible permutation matridési = 1, ..., N (that define the setd;) for the matrix
I", and computing the corresponding values’efi = 1, ..., N, one can predict the possible bifurcations occur-
ring wheny is increasing from zero to infinity. Although the numiéf permutation matrices can be large, the
route towards full synchrony will show only a limited number of bifurcations, in the following sense. Consider the
parametrizatiod” = ulp. As i increases, suppose that a first invariant4gtontains a globally asymptotically
stable compact subset. Further increase ofay result in an eigenvalué corresponding to a different sp to
meet the requirements set in the Theorem. Hence, thedsedad.4, will both contain globally asymptotically
stable compact subsets, that is possible only if intersectipn A2 contains a globally asymptotically stable
compact subset. From further increase.af may follow stability of subsequent intersections, so on until the set
A1NAzxN---NA; represents in fact full synchrony. If one considers a highly symmetric network, the number of
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permutation matrices that leave the network unchanged can be large. HoWex@rem Ipredicts a hierarchy
with no more thart — 1 possible bifurcations towards full synchrony, sin¢eis restricted to be equal to one of
k — 1 positive eigenvalues of the matrix.
2. The proof as constructed before yields the estirf@t¢of the threshold beyond which asymptotic stability of
the compact subset, is guaranteed. Employing a different Lyapunov function may possibly result in an estimate
that is less conservative th§Bl). A more general Lyapunov function can be chosen, for example, considering
V2 in the proof as

Va(y) = () T PE(Y), (32

for some positive definite symmetric matix In this case, the sufficient condition for stability is given in terms
of the eigenvalues of the matri{" P + PI")/2 with all the other restrictions in the Theorem left intact. We
illustrate this approach in a forthcoming example that also tests the conservativeness of the estimation.

3. Convergence (assumption 2) is a strict but crucial assumption, since global asymptotic stability is sought but,
in case of nonconvergent dynamics, no rigorous results expressed in terms of the eigenvalues of a coupling
matrix are available, and asymptotic stability can only be conjectured. Consider, for example, a conjecture on
synchronization criteria recently proposed48], that can be stated as follows: consider two diffusively coupled
networks with coupling matriceS’ andI™”, with equal smallest nonzero eigenvalags= 175. Then, conditions
on global full synchronization for both networks are equivalent. This conjecture, called Wu—Chua conjecture,
is wrong (as also pointed out [B0]), and a specific numerical counterexample can be foufdeh However,
under assumption 2 imposedTimeorem 1 the so called Wu—Chua conjecture is true, and sufficient conditions
for synchronization can be formulated in terms of the eigenvajue

5. Discussion and examples
5.1. Two coupled Lorenz systems

Consider the Example 3 where two Lorenz systépary
X11 =0(x12 —x1,1) + uz, X1,2 =IX1,1 — X1,2 — X1,1X1.3, X13 = —bxy 3+ x11x12,
X21 =0(x22 — x2,1) + u, X22 =1IX21 — X2,2 — X2,1X2,3, X23 = —bX 3+ x21%22,

with outputsy: = x1,1 andy, = x2, 1 are diffusively coupled with input terms

up=—y(y1—y2), uz=—-yQ2—y),

respectively. Example 3 shows that Lorenz system has input—output properties that makes it suitable for synchroniza
tion via diffusion. How conservative is the estiméié)for the threshold,, beyond which a particular linear invariant
manifold contains a globally asymptotically stable subset? Let us consider the stability ofthe-slat ; = x2,;}.

In this specific example the transformation to normal f¢2®) is simply given byy; = x; 1 andz; = (x; 2, x; 3).

In the explanatory remarks for the theorem, we suggested that the Lyapunov function

V=3(p(r11— x21)% + (x12 — x22)% + (x1,3 — x2,3)?),

wherep is a positive number, may lead to a less conservative threshold than that obtained via the Lyapunov function
used in the proof of the theorem. The time derivative reads
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V=—p(o +2y)ef + (r + po — x1,3)e1e2 + x1,2¢13 — €5 — bej
=-plo+ 2V)€f + (r + po — x23)e1e2 + x2,2e1€3 — e% - b%
= —p(0 +2y)el + (r + po — 2)erez + yeres — ¢3 — b, (33)

wherez = max; (x;,3) andy = x; » for thati, for which the previous maximum is achieved.
This expression is negative definite with respeetitae,, ez if the following inequality is satisfied:

1
plo+2y) > E(yzm +b(r + po — z(1))?). (34)

According toLemma 2(seeAppendix A it follows that if 20 > b thenz(¢) > 0. Under assumption that> 1 we
can derive fromLemma 2that

, 1
lim supE(yz(t) +b(r + po — z(t))?) < L%? + p?c? + 2rpo.

t—>0o0

Therefore the stability condition is

L?r? + p%c? + 2rpo
4p '
Minimizing the right hand side of this inequality with respectigields the following stability condition

2y +o0 >

y > %O’(Mr -1, M = L——2|_1
Using this inequality and the values = 10, r = 28, b = 8/3 we obtain that.? = 16/15 (seeAppendix A),
M = 1.0164 and the synchronization is globally stable as sogn as137.296. This estimate serves as an upper
bound for the threshold of global asymptotic stability of full synchrony between the two Lorenz systems.

We can obtain a lower estimate of the synchronization threshold by considering that siZstahso present the
additional invariant manifoldl’ = {x11 = —x2,1, x1.2 = —x2.2, x1,3 = x2 3} resulting from the internal symmetry
(15) of the Lorenz system discussed in Example 3. This situation is schematically represdtite@.iit he picture
shows manifolds4 and.A’, and the invariant se® is the Lorenz attractor itd. Dynamics on the manifolcd’
evolves according to

X11=o0(x12 —x1,1) — 2yx11, X1,2 = IX11 — X1,2 — X1,1X13, X1,3 = —bxg3 + x11x1 2. (35)

Fig. 2. Schematic representation of the intersection of invariant4atsd.A’.
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The intersectiond’ N A is the stable manifold of the origin, since any trajectory initialized in this intersection
evolves according to

X13 = —bxy 3, X23 = —bx 3,

and converges to zero (sinke- 0).

Consider the well known Lorenz chaotic attractor corresponding to parametersaatué®, r = 28, b = 8/3.
This attractor contains the origin (e.g., §8&]). From this it follows that, if$2 is an attractor irR®, all unstable
manifolds of the origin must lie ikd. From(35) one can see that, if

y < %o(r -1,

the origin of(35)is unstable so, i < 135,.4" contains an unstable manifold of the origin. Sirzés a hyperbolic
point, fory < 1352 cannot be an attractor iR%. The valuey = 135 can thus be considered as a lower estimate
of the synchronization threshold. Therefore, the threshold for the coupling-gaiich ensures global asymptotic
stability of the synchronized state lies in the interval

r=-12 o(Mr —1)
2

135= 2 <7 < 5 ~ 13729 (36)

Comparing these two bounds, we can conclude by emphasizing that a threshold that can be derived from the
Lyapunov direct method is not so conservative (as often expected when employing Lyapunov functions). Computer
simulations show that fop greater than (about) 5.0, randomly chosen initial conditions converge towarbst
from our estimate it follows that the synchronous mode in this case can be attedctiostin the Milnor sens@l1].

A recent result by Leonov (see Theorem 4%2]) quotes that the Lyapunov dimension of the Lorenz chaotic
attractor is equal to the Lyapunov dimension of the origin. This is a strong indication that the stability of the origin
of (35) is a sufficient condition folocal asymptotic stability of a compact subsetfwhich includes the Lorenz
attractor. The interval we report {86) makes plausible the conjecture that stability of the origi(88f is actually
a sufficient condition foglobal asymptotic stability of the same set.

5.2. Four coupled oscillators

Recall Example 1 of a ring of four coupled oscillators, whose arrangement is schematically shiéignin
The eigenvalues of the matr{®) arer1 = 0, A2 = min{2Ko, 2K1}, A3 = max{2Kp, 2K1}, A4 = 2(Ko + K1).
Hence, for the permutation described By in (10) we have)’ = 2Kg. Similarly, A’ = min{2Ko, 2K1} for IT»
and)’ = 2K for I13. According toTheorem 1for large Ko and smallK; one can expect asymptotic stability of
a subset of the sed; in (11). For the permutationis, for small Kg and largeK, leads to asymptotic stability of
a subset of the sed3. Asymptotic stability of the full synchronization occurs f&p and K1 both large enough.
The subset of the set; is stable only as a stable intersectionf and.A3, which describes full synchronization.
Parameterizind” by one scalar parametgy, it follows that the route to full synchrony can be either

no synchrony— A; — A1 N Az (full synchrony,
or
no synchrony— A, — A>N A;  (full synchrony,

depending on the rati&ig/ K 1. The diagram of asymptotic stability of the s€t4)in the (Kg, K1) parameter space

is schematically shown iRig. 3. Itis worth mentioning that this stability diagram is model-independent, that is, any
dynamical systeny (-) in (1) which satisfies the assumptionsTdfeorem will yield this diagram, when coupled

as in Example 1.
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K,
partial full
synchronization synchronization
X =X4=X=X5 XEXp=X=Xy
partial
synchronization

X=X,=X=Xy

K,

Fig. 3. Stability diagram of different invariant manifolds in the ring of four dynamical systems coupledras

5.3. Ring of identically coupled systems

Computer simulations show that, in a ringio$ystemg1) and (2) with identical coupling constants (i.e. when
all yj’s in (2) and (3)are identical), there is no evidence of asymptotically stable partially synchronized modes of
oscillation. This evidence may be intuitively correct, considering that this highly symmetric case would not allow
for a specific pattern of synchronized motion to arise. However, it is indeed remarkable, since a high number of
permutations of the elements of the network are allowed symmetries (i.e. they commuigwiihhis case, if the
common coupling constant is denoted Kythe I matrix is acirculant matrix

I' = Kcirc(2,-1,0,...,0, -1),

and its eigenvalues can be calculated analytically:

o
Aj=2K<1— cos(%)), j=1 ... k.

Properties of circulant matrices can be found54], or in the classical Ref55]. Among many, it is quoted the
property that any circulant matrix can be expressed in powers atiftanatrix 0

010 .---0
001..-0
0 =circ(0, 1,0,...,0) =
1
0

In this case (note that*—1 = 9T andé* = I;) the coupling matrix™ can be represented in the following form
F'=KQ@L—6-0").

It is not difficult to see that the eigenvaluestoére the roots of the unity.

In conformity with numerical evidenc&heorem Idoes not predict the asymptotic stability of a partial synchro-
nized mode, but it does not prove its instability either. Since we are lookinglétal asymptotic stability, the
invariant manifold under consideration should be invariant under the transformatienx; 1. Therefore among
all possiblelT’'s commuting withI” one has to consider only powerstof
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According toTheorem 1the global partial synchronization will happen if, for some integethere is a zero
eigenvalue of(1 — 6%) with the eigenvector being the eigenvector for the smallest nonzero eigenvallie of
In other words, there should besasuch that the matri¥* has eigenvalue one with the eigenvector being the
eigenvector corresponding to the eigenvalue(2xp/ k) of 6. Since the matrice8 and6® have the same eigen-
vectors, it can happen only in case= 0 modulok. However, in this casél = I; and kefl, — IT) is just the
origin.

5.4. Application to systems with different input—output properties

Consider a diffusive network consistingotoupled Chua’s systems:
Xj1=oa(=xj1+xj2—@x;1) +uj, Xj2=2Xj1—Xj2+X;3, Xj3=—PBxj2, (37)
wherep(§) = m1& + 0.5(m1 — mo) (1€ + 1] — |€ — 1]), coupled to each other via diffusive coupling
uj =y1;(y1—yj) +-+ Ok — y;)»

with outputsy; = x; 1. This system is often investigated for parameter values {say,9.0, 8 = 14.28, mg =
—5/7,m1 = —6/7) which produce a known double-scroll chaotic attractor. Syqt&m with its input—output
relationships, satisfies the convergence condition whes 0, but is not semipassive. This statement can be
demonstrated by computer simulation: together with a possible chaotic attractor the free @ysten0) can
have unbounded trajectories. Hence we cannot apipiprem 1to Chua’s system. Particularly, one cannot draw a
conclusion that the partial synchronization manifold contains an asymptotically stable subsetdhgiastvhose
stability isglobal. However, since syste(37)is convergent, predictions dheorem lholdlocally.

Next we consider a diffusive network of Rossler systems:

)'Cj=—yj—€z~i, yj =xj+ay; +uj, z'jzcefzf+xj—b,

with outputy;, inputu;, a, b, c > 0 and the same type of coupling as in the previous example. This system is
neither semipassive nor satisfies the convergence condition and, although it is possible to observe both full and
partial synchronization in the diffusive network via computer simulation, the synchronization conditions in this
case do not depend on only one eigenvalue of the coupling matrix48peFor a study of partial synchronization

in a ring of four Rossler systems, si&3].

6. Conclusion

In this paper we have demonstrated an approach, based on second Lyapunov method, to study partial synchrc
nization in diffusively coupled (not necessarily locally) identical dynamical systems. In our approach we considered
the diffusive coupling as feedbackhat allowed us to borrow some useful control techniques. We have considered
global symmetries in the network that can be represented by permutation matrices, in order to classify linear invariant
manifolds different from the full synchronized state, with respect to each of the permutation matrices that commute
with the givenI” matrix that represents the topology of the network. The additional advantage in using symmetry
under permutation is that these permutation matrices can be used to construct Lyapunov function candidates for the
stability test of the correspondent linear invariant manifolds.

Using this methodology we presented sufficient conditions guaranteeing global asymptotic stability of the partial
synchronization regimes. The main limitation of our approach is that we regiuiimum phasenes$ each system
from the network. As a benefit, the synchronization test is relatively easy to check, at the same time, we believe
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that a study of the partial synchronization in an diffusive array of nonminimum phase systems may constitute a
challenge for the future work.

Acknowledgements

G.S. acknowledges the Netherlands Organization for Scientific Research (NWO) for financial support.

Appendix A. Boundsfor trajectories of the L orenz equations

Consider the Lorenz system
X =0y —x), y=IX—y—XzZ z = —bz+xy, (A1)

with o, r, b > 0. Denote

1, b<2
L= b
—, b>2
2Vb -1

We are going now to present a well known result (e.g.[S6f Lemmas 5.6.1 and 5.6.2; or Example 45i]).

Lemma 1. For an arbitrary solution of the syste(@.1) x(z), y(¢), z(2), it follows that
lim sup(y?(t) + (z(r) — r)?) < L%, (A.2)

1—>0o0

and if, additionally, 20 > b then
¥2
liminf (z(t) - —) > 0. (A.3)
1—>00 20
The proof of this Lemma is based on the following Lyapunov function

V(y,2) =30%+ (@ -r?),

for (A.2) and
Wx, 2) -
X,2) =07 — —,
Z Z 2
for the estimatéA.3). For details, sefs6].
From this lemma it follows that for any the following inequality
y2 4+ (z — po — r)2 <L%2 4+ pzoz + 2rpo, (A.4)

holds in the trapping region.
By analogy we can prove the following result.

Lemma?2. Consider the diffusive network bLorenz systemd 4) with outputsy; = x; 1 coupled via the coupling
(2). If 20 > b then for any solution; 1(1), x; 2(t), x;3(t), j =1, ..., k it follows that

k

liminf xi3>0,

t—00 X;_ j3=
j:
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lim sup(x?, + (x5 — r)?) < L2,

—>0o0

The proof of this Lemma follows the same lines as in the previous Lemma with the following Lyapunov functions

Vi =305+ @iz =),

making use of the fact that the matiixis positive semidefinite.
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System Identification in Communication with Chaotic
Systems

Henri Huijberts Member, IEEEHenk Nijmeijer Fellow, IEEE and Rob Willems

Abstract—Communication using chaotic systems is considered e.g., [5], [8], [13], and [31]). In communication using chaotic

from a control point of view. It is shown that parameter identifi-  systems, one considers a transmitter systgnof the form
cation methods may be effective in building reconstruction mech-

anisms, even when a synchronizing system is not available. Three i=f(x,)), zelR"
worked examples show the potentials of the proposed method. St { = h(a:)’ ’ e R Q)

Index Terms—Chaotic systems, communication, system identifi-
cation. where )\ is a time-varying message satisfying,, < A(t) <
Amax (Vt) andy € IR is the transmitted signal (i.e., the coded
I. INTRODUCTION message_)._ It is assumed that the sys@fnis_chgotic (or at
least sufficiently complex) for all constaatsatisfying Ay, <
N recent years there has been a tremendous interest)\ig Amax. The task is now to build a receiver systéig that
studying the behavior of complex systems. Two particularieconstructs the messadét) from the coded messagét).
interesting ideas which have emerged during this time areThe communication setting as described in (1) obviously is an
(chaos) synchronization and chaos control. Recent reviewsigBalization, since no effects like measurement noise, bandwidth
these subjects can be found in, for instance, two special issligsitations, modeling uncertainties, and the like are considered.
devoted to the subject, see [12] and [18] [where, in fact, [12] Bbviously, in a practical setup one has to cope with all such ele-
a follow up of an earlier special issue on the same subjectmgnts. However, this is not the aim of this paper. We will study
the same journal ([3])]. an ideal communication system (1), and propose a means of re-
Synchronization and controlled synchronization of congonstructing (slowly time-varying) signals from the chaotic
plex/chaotic systems is a topic that has become popular becatngesmitted signaj. A short discussion about the more prac-
of its possible use in communication, see [23] and [22fical issues mentioned will be given in the last section.
Recently, in [19] (motivated by Ding and Ott [7], see also [17], |f one considers the problem of reconstruction)gfas de-
and [25]) a control perspective on synchronization was givégribed above from a control theoretic point of view, two pos-
which enables us to resolve various synchronization problegible ways to approach the problem come to mind. The first ap-
as an observer problem. Thus, [19] illustrates, among otH&pach is that of system inversion. Interpretikgn (1) as an
things, the benefits of incorporating control theoretic ideas iAPUt andy as a measurement, one sees that (1) gives a map-
the study of communication using chaotic systems. ping from X to . In the problem of system inversion, the task is
Itis the purpose of the present paper to further illustrate thel§efind an (asymptotic) inverse of this mapping. This approach
benefits. More specifically, we will look at some problems ifyvill be pursued in future re_search (note, however, that this idea_l
communication using chaotic systems for which (standard) syfS also been addressed in [8]). The second approach, that will
chronization-based schemes may not yield the reconstructiorP§fT0llowed in this paper and which in a sense was initiated for
encoded messages, but that can be resolved using control fhB&ticular case by Corron and Hahs in [9], is that of system
oretic ideas. The present paper is an expanded version of @@Uﬁcaﬂon: In system |Qent|f|cat_|on, the task is to estimate un-
paper [10]. known (possibly slowly time-varying) parameters of a system,

Communication using chaotic systems has received un@SEd on meg;ure_rpen?s ta_lken f”rom tr;)?_ sg/s;erfn. For Ilnear Sys-
some attention in the literature over the last few years (sé&MS: Systém identification is well-established (for an overview
see, e.g., [28]). In this paper, it will be shown on three examples
that these identification methods may be helpful in communi-
cation using chaotic systems. Although all three examples con-
Manuscript received January 25, 1999; revised October 27, 1999. This paﬁglm chaotic a_nd' th.us' n.o.n“n.ear systgms, it is possible to use
was recommended by Associate Editor C. W. Wu. The work of H. Huijberts wie standard linear identification algorithms once the systems
SUDportet; in part byhthﬁ Australian Ressarch Council. § are decomposed and/or transformed properly.
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field College, London, U.K. (e-mail: H.J.C.Huijberts@gmw.ac.uk). The O,rgamzatlon of this paper IS as. follows. In Section I,
H. Nijmeijer is with the Faculty of Mechanical Engineering, EindhovetWe first introduce three examples that illustrate that parameter
University of Technology, Eindhoven, The Netherlands (e-mail: H.Niidentification methods may be effective in communication with
jmeijer@math.tue.nl). haotic systems. In Section I1I, the essential identification back-
R. Willems is with Statistics Netherlands, Heerlen, The Netherlands (e-ma(|:|: 0 y ems. . S 0 ! e € N .
rwis@cbs.nl). ground will be reviewed. In Sections IV-VI, a reconstruction
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the first example, it will be shown among others that the réVe then see that (5) may be interpreted as a linear time-invariant
construction scheme that was proposed by Corron and Hahsystem with outpugy and inputs.; , 2. Our task is now to obtain

[5] fits well in the identification-based approach to communica mechanism that estimat&$or the linear system (5), based on
tion. In the last two examples, we will see that the existence oftee measurements w1, u2. This problem may be interpreted as
synchronizing subsystem is not necessary for the existence af linear parameter identification problem and will be treated as
reconstruction mechanism. Rather, one will typically have thatich in the sequel.

(partial) synchronization occurafter reconstruction. In Sec-  Note that in the above example the distance between the mes-
tion VI, classes of systems to which identification-based reageX and the transmitted signalis small in the sense that al-
construction schemes may be applied will be indicated. In Seeady the first time derivative af explicitly depends ork (in

tion VII, conclusions and a discussion of the proposed schenwstrol theoretic terms, this is expressed by saying that the rela-

will be given. tive degree (cf. [11]) of; with respect to\ equals 1). As will be
argued in the last section, this might be a drawback if one would
Il. PARAMETER IDENTIFICATION METHODS like to use the above scheme for private communication. There-

ofrg>re, from the point of view of private communication, it might

In this section, we briefly introduce the so-called equati be worthwhile to consider schemes where the relative degree of
error identifier that may be used to estimate unknown parame- 9

ters for linear time-invariant systems y with respect to\ is greater than 1. The following two exam-
At first sight, it may seem somewﬁat strange that parame{ﬂ?S have this property. Furthermore, these examples illustrate
identification r,nethods for linear systems may be used forat when one considers systems with a relative degree that is

building reconstruction mechanisms in communication wit%r;itegalznggen; :/C:Ial ?ﬁsuen;?r';nr?éttgz 2?'5;?;:? orfnirseynchro-
chaotic (and thus nonlinear) systems. Therefore, we will firQzng y mhing ' : y' -
Example 2:In this example, we consider Chua'’s circuit,

look at three examples illustrating that indeed linear paramey\?rr1iCh i1 dimensionless form is described by the equations
identification methods may be useful in the design of a recon- y q

struction mechanism. After having introduced these examples, i1 = o~z + 12 — P(21))
we will review the essential identification background. o = X1 — Ta + T3 (7
Example 1: Consider the following set up for communica- i3 = — Ao

tion using chaotic waveforms that was proposed by Corron and
Hahs in [5]. The transmitter is a three-dimensional (3-D) systeff'ere

Y7 of the form $(x1) = mizy + mo — My

(ler + 1] = [ = 1))

i1 = fiwr, @2,23) + (@1, T2, 23)A 2

i2 = fow1, T2, 73) and A is a mainly slowly time-varying message satisfying
&3 = fa(x1, x9,x3) @) 23 < A(t) < 31 (¥t). For constant\ in this range and
Yy =1 a =15.6,mg = —(8/7),my = —(5/7), this system is known

. . ] . ~_ to have a so-called double scroll chaotic attractor (see, e.g.,
where is a message that is mainly slowly time varying (i-{1]). we assume that = - is the transmitted signal. Note that,
A is slowly time varying for most of the time, but may exhibityjthough it has been shown experimentally that for constant

occasional jumps) and satisfiésiin < A1) < Amax (V). the(x;, 23)- subsystem synchronizes with the system
Furthermorey € IR is the transmitted signal (i.e., the coded

message). Also, a second system is considered that has the form i1 = a(—&; + x2 — ¢(21)) )
. o .f?g = —)\372
T2 = fQ(yv ‘T27'T3) (3) . .. .
i = fa(y, da, 3). (see, e.g., [4]), we cannot use this synchronizing subsystem in

_ . ~ourreconstruction mechanism, since it explicitly depends on the
It is assumed that thez,,z3) subsystem in (2) synchronizesunknown parametek. In order to come up with a reconstruc-
with (3) in the sense that fdty, together with the system (3), tion scheme fon, we first assume that, besides, we can also
we have for all initial conditions that measures;. The equations fog, andzs in (7) then have the
following form:
lim (z:(f) — :(6) =0, (i =23). g

t——4oo

i‘g = —ZXo+x3+Uu
We now show that the problem of estimatihgnay be viewed T3 = —Az2 (9)
as alinear parameter identification problem. If one assumes that Y =T

the systems (2) and (3) have synchronized, the dynamig#of

(2) are given by where we interpret: := z; as a known input. Thus, (9) has

the form of a linear control system depending on an unknown

9(t) = w1 () + Mua(t) (5) Parameten, so that again linear parameter estimation methods
may be used to obtain a reconstruction mechanism for
where In the above example the relative degree (the distance be-
tween A andy) equals two. We can go one step further with
ui(t) == fi(y(t),22(t), 23(t)) a 3-D chaotic transmitter, as is shown in the following example
wa(t) := g(y(t), Z2(t), Z3(t)). (6) where the relative degree equals three.



802 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: FUNDAMENTAL THEORY AND APPLICATIONS, VOL. 47, NO. 6, JUNE 2000

Example 3: We consider the following Rossler system:  If a,, # 0, we definedeg(a) := n. The polynomiak is called
) monic if a,, = 1. Furthermoreq is called Hurwitz if all zeros
T1=—%2— 43 of a are in the open left-half plane of the complex plane. For
Ty =1 + ATz a functionf(¢) that isk times continuously differentiable, we
: (10)
&3 =2+ (1 — 4)z3 define
Yy=1a3

F9) = L.

Note that this gives that(®)(t) := f(t). Leta € IR[s] of the
form (12) be given, and lef(t) ben times continuously differ-
entiable. We then define

‘/Iél :_-%2_-/53 d n /'
{.’i’g:.’i’l—f-)\.’i'g a<$>f: Zajf(J)
7=0

Thus, in this case no synchronizing subsystem that can be ui?d

in a reconstruction mechanism inspired by the scheme in [5] € € now consider a linear time-invariant syst& depending
on an unknown paramet@rwith two inputs and one outputand

ﬁransfer matrix

where we assume thatis a mainly slowly time-varying mes-
sage satisfyin@.3 < A(¢) < 0.5 (Vt) andz3(0) > 0. Itis
known (see, e.g., [23]) that for (10) te;, z2) subsystem does
not synchronize with the system

ists. However, it is possible to reconstrucbased on the mea-
suremeny. A first step in this reconstruction is the observatio
that (10) may be transformed into so-called linearizable error o _(pals)  Tals) 13
dynamics (see, e.g., [20] and [19]). More specifically, note that, A(s) = a(s)  o(s) (13)

sincexs(0) > 0, we have thatz3(t) > 0 (V¢ > 0). Thus, for i

(10) the coordinate chande = 1. & = @2, § = &3 = log o3 Asis well !moyvn (see, eg., [26_]), the fact' that.the transfgr ma-

is well -defined. In these new coordinates, (10) takes the forX Of 2 is given by (13) implies that, given input functions
u1(t), ua(t), the outputy(¢) of X, satisfies the following linear

& 0 -1 0 & differential equation:
— . 14
&3 1 0 0 &3 W‘(dt)‘y P/\<dt>u1+7,\<dt>u2 (14)
A(A
1 (0) We make the following assumptions.
+10 0 < —c? ) * The polynomial®(s), gx(s), 7A(s) depend linearly on.
0 1 2e7Y -4 * For all A, we have thatleg(g,) = n andg, is monic.
207) * For all A, we have thadleg(p,), deg(ry) < n.
. B As a consequence of these assumptions, the polynomials
y=5&- (11) Px, gx, 7x have the following form:

Hence, (11) consists of a linear systéra A(\)¢ + Bu, where
the matrix A(A\) depends linearly on, interconnected with a

(5) = po(s) +pi(s)

Da A

static nonlinearityw. = ®(y) that only depends on (a function () = ao(s) + a(s)
of) the transmitted signals. This means that also in this case ra(s) = ro(s) +ri(s)A (15)
Irlgsc?;;%itrir;?er;gncizr:;zfna;grn methods may be used to bu"%erepo,pl, ro,71, g0, q1 € IR[s] have the form

Having illustrated the fact that linear parameter identification ,
methods may be effective in communication with chaotic sys- pi(s) = pr,jsj (t=0,1)
tems, we now describe how a so-called equation error identifier ]
may be obtained. We will restrict ourselves to linear time-in- )
variant systems with one output and two inputs that depend on ri(s) =Y rijs’ (i=0,1)
one unknown parameter. The restriction to systems with only j
one input and the extension to systems with more than two in- .
puts are straightforward. The exposition is based on [28]. For qo(s) = Z ;8" + 5"
further details, the reader is referred to this reference. /

In the rest of the paper, we use the following notation and el p
terminology. ByIR[s]|, we denote the set of all polynomials in n(s) = Z 08’ (16)
the indeterminate with real coefficients. Let: € IR[s]. Then =0
there exists am € IV anday, ... ,a, € IR such that has the |n system identification, the task is now to build an estimator
form for A, based on the measurements:;, u2. Note that in our

n description of, with the transfer matrix7,(s) we have a de-
5) = Z a; s (12) scriptionthat depends onin a nonlinear way, in spite of the fact

that the polynomialg,, gx, A depend om\ in a linear way. In
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the equation error method, a first step in building a reconstrughere the convergence is exponential. From this fact and the
tion mechanism foA is to obtain a (asymptotic) description offact that H»(s) depends orh in a linear way, we see that we
32, that depends on in a linear way. This is achieved as fol-now have indeed obtained an asymptotic descriptionofhat
lows. Letu, () andus(t) be input signals fok2,, and lety(¢) depends ork in a linear way.

be a corresponding output signal®f. Thus,y(t) satisfiesthe A next step in the procedure to obtain an equation error esti-
differential equation (14). Let € IR[s] be a monic and Hur- mator for is to consider a copy of the system (20), wharie

witz polynomial withdeg(k) = n. Further, lety(¢) be a signal replaced by its estimatioh. Thus, we obtain a system

satisfying the differential equation { o = Kuwo + Ly

k<i>~— <i)u+7‘ <i>u w; = Kw; + Lu;  (i=1,2) .
ar) ! =P ae ) T e ) 9= (K" i = i o 0+ piN w4 5 rid
d d
+ {k <%> —qx <%>} Y- (17) Making use of (20), (22), (23), itis then straightforwardly shown
that
From the above, it follows thag may be interpreted as the . .
output of a linear time-invariant systems with inpyts:y, u» §(t) — y(t) = pw(®))(A() — A) + €(t) (24)

and transfer matrix wherec(t) tends to zero exponentially far— +oc and¢(w)

_(k(s)—ax(s) pa(s)  7als) is defined by
mo = (U RS )

Wit P(w) = —qiwo + pJwy + riws. (25)
riting .
) To (23), an update mechanism farof the following form is
— , dded:
k(s) = Z kjs’ + s adde .
3=0 A=—wvp(t,w)(§—y), v>0. (26)

and defining the row vectors Using (24), it is then easily shown that we have

p;k = (Pz‘o pm—l) ('52071) d

~

1 2 2
o i pi A 7OV = 2t w)iw)( =)
@ =(go - Gno1) (i=0,1) = 2we(t)(t,w)(A — A). 27)
q" =qp + g A Exploiting the fact that(t) tends to zero exponentially, it may
rii=(ri0 -+ Tin—1) (#=0,1) then be shown (see [27] for details) thett) — A — 0 (t —
P =l A +0o0) exponentiallyjf the following conditions are satisfied:
L * (t,w(t)) is bounded on0, co);
Cm e ) B L it w(t)stu() > 0 on[o,0);
a realization ([25]) ofH »(s) is then given by o P(t,w(t))p(w(t)) is persistently exciting (P.E.) on
. R [0,00), i.e., there existy, 9,8 > 0 such that for all
Wo = Kwo+ Ly t € [0,00) we have
w,;, = Kw; + Lu; ('L =1, 2) (20) s
9= = o + 97y + 1M < [ dreolun)dr <o (@9
where t
0 1 0 - ... 0 In the literature, a wide range of possible choices of the func-
0 0 I 0 tion ¢ (¢, w) is available. It goes without saying that each dif-
) ) ferent choice of) will lead to a different estimator with different
K= " : o : properties. An estimator that possesses good properties in many
: : R 0 cases is the least squares estimator with exponential forgetting
0 o -+ -~ 0 1 factor that is obtained by choosing
N e
Pt w) = —vp(w)p(t), v>0 (29)

andL := col(0,0,...,0,1). ) L . . .
Now note that from (14), (17) it follows thatin fact satisfies Where the function(¢) satisfies the differential equation

the following differential equation: .
9 q p=—v(p(w)*p* —9p), >0, p(0)>0. (30)

dy . . . :
k <%) (y—y)=0. (21) In the sequel, we will tacitly assume that the signals
(¢, w(t))p(w(t)) appearing in our reconstruction mechanisms
Sincek is Hurwitz, this implies that we have are P.E. To a degree, this tacit assumption is justified by the

) ~ fact that it has been shown in [2] that for quite a wide choice of
tl}goo(y(t) —y(t)=0 (22)  functions+ (¢, w) we will have thaty (¢, w(t))$(w(t)) is P.E.
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when the signalg(t), w1 (t), u2(¢) have a power spectrum thatquire the function (¢, w(¢))¢(w(¢)) to be persistently exciting.
is not concentrated at too few a number of peaks. Since in tHewever, if one carefully checks the derivation in [5], it turns

applications we will be looking at the signajét), u1 (t), ua(%)

out that also in [5] this requirement is needed.

will be produced by a chaotic system, it follows from the fact
that chaotic systems produce signals with a broad continuousIV. CHuas CIRCUIT WITH PARTIAL SYNCHRONIZATION

power spectrum (cf. [21]), that indeedt, w(t))¢(w(t)) may
be expected to be P.E.

Il. THE CORRONHAHS SCHEME WITH SYNCHRONIZATION

We continue with Example 1. The transfer matfix(s) of
the system (5) is given by

Thus, we have in the notation of the previous section

pals) =1
@ (s) =s
ra(s) = A

Letting = > 0 we have that the polynomidl(s) := s + « is
Hurwitz. Thus, in this case the system (20) has the form

Wy = —Kwo + Y
wy = —kwy + w1 = —kwy + f1(y, £2, 23) (31)
Wy = —hwy + uy = —kws +g(y, &2, 83)
U = Kwo + w1 + Awy
Furthermore, we have in this case that
P(w) = wo. (32)
Choosing
sign(ws)
tw) = ————= 33
vtw) = T (33)
we then obtain the following adaptation law fbr
2 sign(ws) , .
A=—v—"(Gg—1y), v>0. 34
Tt [l Y) (34)

In this section, we continue our investigation of the possibility
to build a reconstruction scheme farfor the Chua circuit (7)
from Example 2. As we have seen in Example\Znay be re-
constructed by using linear parameter identification techniques
if, besides the transmitted signal= x», also the signat; is
available for measurement.

It is easily checked that the transfer functi@i(s) of (9) is
given by

S

s24+ s+ A\
Thus, in the notation of Section Il we have in this case

Gi(s) =

pA(s) =
aa(s) =82 +s+ A

For (9), the least squares estimator with exponential forgetting
factor then takes the following form:

(wo1 = wo2
woz = —kowor — k1woz +y
= —kowo1r — k1woz + %2
Wil = w12
w12 = —kowi1 — kiwiz +u (36)
= —kowi1 — k1wi2 + 21
§ = (ko — Mwor + (k1 — Dywoz + w2
A=rvwoplf—y), (¥>0)
(p = —v(wip* —p), (7> 0)
whereko, k1 € IR are such that the polynomials) := s? +

k1s + kg is Hurwitz.

From the above, it follows that i&; could be measured,
the reconstruction of could be achieved by employing the
scheme (36). To achieve reconstruction whecannot be mea-
sured, we add the following estimator f to our reconstruc-

Remark 1: The reconstruction mechanism (31), (34) is ndion scheme:

exactly the same as the reconstruction mechanism proposed in
[5]. However, if one looks at (31), (33) more closely, one sees

that for the reconstruction one does not need to kngwandw;
separately, but that knowledge of the linear combinatiag +
w; suffices. Thus, defining

Wo 1= KWwo + Wy
ﬁ)l = wo
one arrives at the following reconstruction mechanism:

wo = —rwo + kY + f1(y, 22, 23)

wy = —1‘6‘11?1(‘1-9)(97 &, &3) (35)
2 sign(wy ) , .
A=—v—="TL(G5—1y), v>0

T+ ol (1 —v)

which is exactly the reconstruction mechanism proposed in [5].

&1 = a—#1 + 22 — P(d1)) (37)

and let the reconstruction scheme (36) depend:pitinstead
of z1, i.e., we replace the reconstruction scheme (36) by the
following reconstruction scheme:

r _
wo1 = Wo2

woa = —koWor — k1Wo2 + ¥

= —kowo1 — k1wo2 + x2

w11 = W12

W1y = —koWi1 — k1012 +u (38)

= —kown1 — k1w + 21

y= (ko — Nwor + (k1 — 1)wo2 + w12
A =rvwop(y—wu), (¥>0)

L p = —v(wip? —vp), (v>0)

Note, however, that in [5] this reconstruction mechanism waghere now) denotes the estimate af We then have the fol-
obtained in a different way. Further, in [5] the authors do not réewing result that is proved in [32].



HUIJBERTSet al. SYSTEM IDENTIFICATION IN COMMUNICATION WITH CHAOTIC SYSTEMS 805

Theorem 1: Assume that for (36) we have that ¢ ' ' '
Jim (A(5) =) =0 CONE -
and that 2t ]
, hﬂ“ (Z1(t) —z1()) = 0. (40) 1t .
Then for (38) we have that o of
tl}gloo()\(t) —A)=0. (41) 4l )
. -
From Theorem 1, it follows that if only the transmitted signal
u = %2 can be measured, thercan be reconstructed, provided | ]
Z1(t) approaches (¢). In [4], it was shown experimentally that
this will indeed be the case for constantHowever, one needs _, \ , . .

\
)

'
-
=3
o
@

to be somewhat careful here for the following reasons. Defin - X,
the error signak(t) := 1(¢) — x1(¢). Then, for the parameter _
values given above; satisfies the following differential equa-Fig- 1. The sef in the(zy, ¢) plane.

tion: 32
. 2 3 by
é=15.6 <—?e + ?(Sat(e +x1) — sat(a:ﬂ)) (42) 30 |

where sat(-) is the saturation function given byat(z) = 28
(1/2)(Jz + 1| — |= — 1]). Afirst observation is that the equilib- /
rium e = 0 of (42) is unstable whemn; (¢) = 0. This implies in 26 ! !
particular that when (7) is initialized in the origin, we will not '
have that tends to zero. It may be argued that from a practical 24 : |
point of view this is not a serious objection since, in practice,
one will have (7) running when communicating. However, 2, 50 100 150 200 250
the system (7) for the given parameter values is chaotic in the (a)
sense of Shil'nikov, as was shown in, e.g., [3]. This implies in
particular that the origin is a homoclinic point for (7), which
gives by the above that will also not tend to zero when (7) 8
is initialized on the homoclinic orbit. Further, this implies that 6
when (7) is initialized near the homoclinic orbit, we will at 4
least not have that will tend to zero quickly. This leads to the
conclusion that the best one could hope for is thaitill tend 2
to zero quickly for a generic choice of . 0

Theoretical evidence for the asymptotic stabilityeof 0 for 2
(42) with a generic choice af; is obtained in the following way.
Consider in théz 1, ¢)-plane the compact sétenclosed by the 4

straight linese = —(3/2)(z; + 1),e = —3(z; £ 1),¢ = +3 0 5 100 b 150 200 250
(see Fig. 1). Further, consider the functibife) := (1/2)c*. ®
It may then be shown thdt = e¢ > 0 on.S U {z1 — axis}, Fig.2. Simulation results for the Chua system. Xa(dashed) and: (solid).
andV = 0ondS U {z; — axis}, while V' < 0 outsideS U (b) Estimation error.
{z1 — axis}. A first conclusion that may be drawn from this is
that{e € IR | |e|] < 3} is a globally attracting invariant set In this section, we employed a partially synchronizing sub-
of (42) for all ;. Also, the location ofS in the (x1, ¢) plane system (37) rather than a completely synchronizing subsystem
suggests that we will have asymptotic stability:c£ 0 for (42) as is often the case in communication using chaotic systems.
if the residence time of;(¢) in the region|z;| > 1 is large However, there is also another (partial) synchronization aspect
in comparison with the residence time ©f(¢) in the region presentinthe scheme. Namely, it follows that once we have that
|z1] < 1. Simulations for constant values sfbetween 23 and A = X we will have thaty — v, or, in other words, we will
31 indicate that (asymptotically) we will have that; (¢)] < have that'ko — A)wor + (k1 — 1)woz + wi2 andz, will syn-
1 for about 20% of the time, while+(¢) < —1 respectively chronize. Taking time derivatives, this gives in its turn that also
1 (t) > 1 for about 40% of the time. (k'o —k )\)wm + (k'o — )\)U}OQ — kowq1 andzz will synchronize.

In Fig. 2 the proposed reconstruction scheme is illustrat&thus, we see that, although our scheme is only based on partial
by means of a simulation. Here, the parameters were chosesyaschronization beforehand, it will also exhibit partial synchro-
ko = 256,k = 32, = 800,~ = 0.001. nization once\ has been estimated correctly.



806 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: FUNDAMENTAL THEORY AND APPLICATIONS, VOL. 47, NO. 6, JUNE 2000

V. ROSSLERSYSTEM WITHOUT SYNCHRONIZATION 0.55

In this section, we continue our investigation of the possi- 0~5[—\ \
bility to build a reconstruction scheme for the Rossler system

(10) from Example 3. As we have seen in Exampla &ay be
reconstructed by applying linear parameter identification tech- 0.4;
niques to the transformed system (11).

0.45

) . . 0.35}
It is easily checked that the transfer matfix (s) of (11) is | |
given by 0.3f
5= A s?—As+1 035 s 100 150 200 250
$3—As2+s5 s3—As?+s (a)
Thus, in the notation of Section Il we have 0.25
pals) i=s—A 0.2
aa(s) =5 = A’ + s 0.15
ra(s) i= 5% — As+ 1. 01
0.05
The least squares estimator with exponential forgetting factor 0
for (11) then takes the following form: -0.05
w; = Kw; + Lu;, (1=0,1,2) -0.1
§ = do(w) + A1 (w
Y do(w) d)i( ) (43) 0 50 100 150 200 250
A= —vpi(wp(§ —y), (> 0) (©)
p=—v(¢p1(w)’p* —p), (y>0) )
Fig. 3. Simulation results for the Rossler system X#&lashed) and (solid).
whereug = log(z3), u1 := —3,u2 := (2/z3) — 4 (b) Estimation error.
0o 1 0 0 ) : . ,
K= 0 0 1 CL=1|o (A1) Thea: subsystgm synchronizes with a copy of itself,
—ko —k1 —ko 1 i.e., the dynamics
32 N
ko, k1, ko € IR are such that the polynomis+%s 2+ ky s+ kg 2= Ay, 2% (45)
is Hurwitz andd)o(w) = kowo1 + (/%1 — 1)w02 + kowoz +wiz+ .
satisfy
woy + wa3, ¢1(w) = woz — w1 — Wwa2.
In Fig. 3, the proposed reconstruction scheme is illustrated lim ||z%(t) — z%(t)[| =0 (46)
by means of a simulation. Here, the parameters were chosen as oo
ko =512,k =192, ks = 24, v = 800,~ = 0.002. whatever the initial conditions of (44) and (45) are.
Itmay further be shown that, as in Section Ill, the scheme (4832) The signalsy(y(t), z%(t)) are persistently exciting.
will exhibit partial synchronization oncg has been estimated|f (A1) and(A2) are satisfied, a reconstruction mechanism for
correctly. A may be obtained by applying standard linear identification
techniques to the system
VI. CLASSES OF TRANSMITTERS AMENABLE TO S Al B
IDENTIFICATION BASED RECONSTRUCTIONSCHEMES { ; ~ C(()\))i + B u (47)

In this section, we briefly indicate two classes of transmitters I
to which identification based reconstruction schemes may Woereu := x(y, ). _ _ _ _ _
applied. Further, it is shown that the transmitters treated in theNOte that the transmitter (2) is a partially linear transmitter

. . e i o 2 .
previous sections fit in one of these classes. with z* := z1, 2% := col(zz,z3) and

A. Partially Linear(izable) Transmitters AN =0, BY=(1 ), € :=(1)

A partially linear transmitter is a transmitter of the form and

2 2
i = AN + B, 2%) )= (D) ety = (B0
Y 72 — fQ(y,.Z'Q) (44) g(y,x ) 3(y,x )
y = C(\)az! Furthermore, note that also the transmitter (7) is a partially

linear transmitter withe! := col(xo, x3), 2% := x;
wherezt € RY,z? ¢ R™ 9,y : Rx R* ¢ — IR, f* .
R x R"? — IR"%, and A(\), B(\),C(\) are matrices of AN = <—1 1) BO\) = <1>
appropriate dimensions that linearly dependoifror X1, we -A 0/’ 0/’
assume the following. CA):=(1 0)
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and VII. CONCLUSIONS ANDDISCUSSION
X(y,2?) =2, fiy,2%) = a(=a® +y = ¢(2%)). We have studied communication with chaotic systems using
Next, consider a transmittét, of the form ideas from systems and control theory. Since, in general, the
. unknown message which is to be reconstructed is not available
5 {§: [ n) (48) beforehand, insistence on standard synchronization schemes
g = h(&) restricts the class of systems that may be employed in de-

where¢ € IR, ;uis a mainly slowly time-varying message, an$igning a viable communication scheme. We therefore propose
7 € IR. This transmitter is called partly linearizable if there exist" adaptive identification scheme that would enable the mes-
new coordinates(¢) = col(z*(¢),22(€)) with z* € IR?,z% € ~Sage reconstruction without explicitly assuming (partial) syn-
JR™~? and invertible mappings,+ : JR — IR such that in chronlzatlon. This method fo_rms a generallzauon of a method
the new coordinates and withy = ¢(3),A = ¢ (u), the d'eveloped. in [5] and is applicable in a far more general set-
transmitterr takes the form (44). It then follows from theting than in [5]. It should be noted that the message to be
discussion above that also for a partly linearizable transmitf@constructed has to be mainly slowly time varying, so that
identification based reconstruction schemes may be designé@.e identification scheme is fast enough for the reconstruction.
To the best of our knowledge, there are no results in the lityPically, in communication this will be the case, in particular
erature that give conditions under which a given transmitter {§'en dealing with piecewise constant (binary) messages. Two
partly linearizable. The derivation of such conditions remaingifstrative simulations of the proposed identification schemes
topic for further research. Itis to be expected that in this deriv@te included, together with a discussion of the validity of the

tion results developed in [16] and [9] will be useful. imposed conditions. Furthermore, classes of transmitters that
are amenable to identification based reconstruction schemes
B. Linearizable Error Dynamics have been identified.
Linearizable error dynamics are dynamics of the form ([20], 2 POssible advantage of using chaotic systems for com-
[11]) rr_1un|cat|or_1 |s_that_ the trar_lsmltted signalwill be a cha_otlc_
) signal, which implies that it has a broad spectrum. This gives
{5 = AN)¢+ B(M)2(9) (49) the opportunity to use the chaotic system under consideration
7=C(N\E for wideband communication (cf. [13]). Furthermore, the fact

that the transmitted signal is a chaotic (and thus seemingly

wher_eg € Ry € B’(I) :_R —>_R"’,A()\)_,B()\),C()\) are random) signal gives the hope that chaotic systems may also
matrices of appropriate dimensions that linearly depend,ony,o \,seqd for private communication. In this respect, the fol-

and (C(A), A(A)) is observable (cf. [26]) for alk. Note that |,ing comparison between the three examples in this paper
(11) are linearizable error dynamics. If the sign@lgj(t)) are s iy order. As already indicated in Section II, in Example 1

persistently exciting, a reconstruction mechanism¥onay be o gistance between the messagend the transmitted signal
obtained by applying standard linear identification technlqu%siS small in the sense that the relative degree (cf. [L1]y of

to the system with respect to equals 1. This might be a drawback if one

2= ANz + B(\)u vvpul(_j Iike_ to use tr_]e scheme in Examplg 1 for private commu-
{ i = C(A)z (50) nication since it might mean thatis not hidden well enough.
Indeed, a simple numerical differentiation scheme could be
wherew := &(3). enough to allow eavesdroppers to decode the coded message.
Next, consider a transmittét; of the form Therefore, from the point of view of private communication,
&= o, ) it might be wo_rthwhile to cons.ider schemes where the relative
{u _h (xj (51) degree ofy with respect toA is greater. The schemes con-

sidered in Examples 2 and 3 indeed satisfy this property. In
wherez € IR™, i is a mainly slowly time-varying message, andExample 2 the relative degree equals two, while in Example
y € IR. This transmitter is said to admit linearizable error dy3 the relative degree equals three. Of course, further research
namics if there exist new coordinatés:) and invertible map- as to whether indeed a higher relative degree will enhance
pings¢, : IR — IR such that in the new coordinatésand the privacy of communication schemes based on chaotic sys-
with § := ¢(y), A := (), the transmitteb> takes the form tems is needed. Here, one could investigate to what extent
(49). It then follow from the discussion above that also for the proposed schemes withstand code breaking mechanisms
transmitter that admits linearizable error dynamics, identificas described, in e.g., [24], [29], and [30].
tion based reconstruction schemes may be designed. As in [5], we have studied communication with chaotic sys-
For transmitters of the form (51) without parameter depetems in an ideal setting in the sense that our examples are sim-
dence [14] (see also [15]) gives conditions under which thgation examples where we did not include practical limitations
transmitter admits linearizable error dynamics. To the best iofcommunications like amplitude attenuation, bandwidth limi-
our knowledge, no conditions are known under which a pgations, phase distortion, and channel noise (cf. [27]). All these
rameter-dependent transmitter (51) admits linearizable error adyay effect, to some extent, the idealized outcomes shown in
namics. The derivation of such conditions remains a topic ftre given simulations. These are topics that are being studied at
further research. the moment. Preliminary investigations indicate that for piece-
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wise constant messages, sufficiently small channel noise can Iws)
coped with, possibly after having added a filter as described in27
e.g., [6], [7], and [31] to the reconstruction mechanism. (7]
[28]
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Abstract

The synchronization problem for complex discrete-time systems
is revisited from a control perspective and it is argued that the
problem may be viewed as an observer problem. It is shown that
a solution for the synchronization (observer) problem exists for
several classes of systems. Also, by allowing past measurements,
a dynamic mechanism for state reconstruction is provided.
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20.1 Introduction

Since the work of Pecora and Carroll (18], a huge interest in (chaos) syn-
chronization has arisen. Among others, this is illustrated by the appear-
ance of a number of special issues of Journals devoted to the subject, cf.
[29, 28, 30]. One clear motivation for this widespread interest lies in the
fact that Pecora and Carroll indicated that chaos synchronization might
be useful in communications. Although this claim is not yet fully justified,
several interesting applications of (chaos) synchronization are envisioned.

Synchronization as it was introduced by Pecora and Carroll has been
studied from various viewpoints. F ollowing [18], often a receiver-transmitter
(or master-slave) formalism is taken, where typically the receiver system
is an exact copy of the transmitter system and the aim is to synchronize
the receiver response with that of the transmitter, provided the receiver
dynamics are driven by a scalar signal from the transmitter; see (18, 4, 26].

More recently, the above method was recast in an active-passive decom-
position, see [17], where the decomposition idea has to be understood in
the way that part of the transmitter state needs to be transmitted, while
the “passive” part then will be derived asymptotically.

Another idea to achieve synchronization between (identical) transmitter
and receiver dynamics is to include (linear) feedback of the drive signal in
the receiver system; see [16] and [11] where a number of sucessfull experi-
mental settings of this type are discussed.

A third way to achieve synchronization between transmitter and receiver
was recently put forward in [6] and essentially advertises the idea of system
inversion for (state) synchronization.

Notwithstanding the widespread interest in the synchronization problem,
the problem leaves some ambiguity in how to make an active-passive de-
composition or how to successfully build an (stable) inverse system. Indeed,
this ambiguity disappears when the synchronization problem is viewed as
the question of how to reconstruct the full state trajectory of the trans-
mitter system, given some (scalar) drive signal from the transmitter. This
is essentially the observer problem from control theory, and has, following
the earlier attempts (5, 19, 13], by now obtained a prominent place within
recent synchronization literature; see, for instance, [14] and various other
observer-based synchronization papers.

The purpose of the present chapter is to revisit the synchronization prob-
lem for discrete-time systems using (discrete-time) observers. Synchroniza-
tion of complex/chaotic discrete-time systems has been the subject of var-
lous publications; see, e.g., [2, 1, 7, 21, 27], but only little attention for an
observer-based viewpoint exists (see, however, [24, 25] where this viewpoint
is taken, and [26], which may be interpreted as a particular application of
the observer-based viewpoint (although this is not mentioned explicitly in
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[26]). One could argue, however, that the synchronization problem for
discrete-time systems is as important as the continuous-time counterpart.
First, for communications of binary signals one can very well base oneself
on discrete-time transmitter systems instead of continuous-time transmit-
ters. A second motivation to look at discrete-time synchronization is that
many continuous-time models are in the end — for instance, for simulation
and implementation — discretized or sampled. A third motivation is that
discrete-time dynamics are obtained when one considers the Poincaré map
at a suitably defined Poincaré section of a chaotic transmitter system.

As stated, we pursue an observer-based view on (discrete-time) synchro-
nization. Although some clear analogies exist between discrete-time and
continuous-time observers, there are various results available in either con-
text which do not admit a proper analogon in the other domain.

This chapter is organized as follows. In Section 20.2, we treat some
preliminaries and give our problem statement. Section 20.3 is devoted to
nonlinear discrete-time transmitters of a special form, the so-called Lur’e
form. It is shown that for this kind of system, the construction of an ob-
server is relatively easy. In Section 20.4, we study the question when a given
nonlinear discrete-time transmitter is equivalent to a system in Lur’e form
by means of a coordinate transformation. In Section 20.5, we introduce a
so-called extended Lur’e form, indicate how observers for transmitters in
this extended Lur’e form may be constructed, and give conditions under
which a nonlinear discrete-time transmitter may be transformed into an
extended Lur’e form. Section 20.6 treats the observer design for perturbed
linear transmitters. Section 20.7, finally, contains some conclusions.

20.2 Preliminaries and Problem Statement

Throughout this chapter, we consider discrete-time nonlinear (transmitter)
dynamics of the form

z(k + 1) = f(z(k)), z(0)=1z9 € R" (20.2.1)

where the state transition map f is a smooth mapping from R™ into itself.
Note that direct extensions of (20.2.1) are possible by allowing the state
to belong to an open subset of R™ or to a differentiable manifold. The
solution z(k,zo) of (20.2.1) is not directly available, but only an output is

measured, say
y(k) = h{z(k)) (20.2.2)

where y € R? and 2 : R™ — R? is the smooth output map. Though in
the sequel there is no restriction in assuming the transmitted signal y(k)
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to be p-dimensional, we will for simplicity — and following most work on
synchronization — take p = 1.

The observer problem for (20.2.1,20.2.2) now deals with the question how
to reconstruct the state trajectory z(k, zo) on the basis of the measurements
y(k). A full observer (or briefly observer) for the system (20.2.1, 20.2.2) is
a dynamical system of the form

£k +1) = f(&(k),y(k)), #0)=2,€R" (20.2.3)

where 2 € R”, and f is a smooth mapping on R™ parametrized by y,
such that the error e(k) := z(k) - Z(k) asymptotically converges to zero
as k — oo for all initial conditions z, and Z9. Moreover, we require that if
e(ko) = 0 for some ko, then e(k) = 0 for all k > kg.

L s

20.3 Systems in Lur’e Form

The problem of observer design in its full generality is a problem that is
difficult to solve. Basically, only the observer design problem for linear
systems has been solved in its full generality; see [20]. Therefore, we start
our survey of possible approaches to observer-based synchronization by
considering a class of nonlinear systems that is slightly more general than
linear systems, namely, systems in so-called Lur’e form.

Assume that the master dynamics are governec by the following system
of difference equations

z(k + 1) = Az(k) + o(y(k)), y(k) = Cx(k), (20.3.4)

where z(k) € R" is the state, y(k) € R' is the scalar output, ¢ : R! —
R™ is a smooth function, and A,C are constant matrices of appropriate
dimensions. Dynamics of the form (20.3.4) are referred to as dynamics
in Lur’e form. The question we now pose is, under what conditions is it
possible to design an observer for (20.3.4)? As a possible observer candidate
one can build a copy of (20.3.4) augmented with so-called output injection:

Bk +1) = AZ(k) + o(y(k)) + L(y(k) - §(k)), F(k) = CZ(k), (20.3.5)

where Z(k) € R™ is the estimate of z(k) and Lis a n x 1 matrix; see [10].

The solutions of systems (20.3.4) and (20.3.5) will synchronize if for all
initial conditions the error e(k) := z(k) — Z(k) tends to zero when k tends
to infinity. Substracting (20.3.5) from (20.3.4), one can easily see that the
error vector e(k) obeys the following linear difference equation:

e(k+1) = (A - LC)e(k). (20.3.6)
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Therefore, if all eigenvalues of A — LC lie in the open unit disc (i.e., the
set {z € C | |z] < 1}), then (20.3.5) is an observer for (20.3.4). In other
words, for the system (20.3.4) the synchronization problem can be reduced
to the following question: given A, C, under what conditions does there
exist a matrix L such that A — LC has all eigenvalues in the open unit
disc? This linear algebraic problem has a simple solution. Namely, a
sufficient condition for existence of L is the invertibility of the following
linear mapping
C
CA
O(z) := cA? z. (20.3.7)

CAn—l

In linear control theory, a pair of matrices (C, A) such that O(z) in (20.3.7)
is invertible, is said to be an observable pair. Using this terminology we
can formulate the following result.

THEOREM 20.1
Assume that the pair (C, A) is observable. Then the system (20.3.4) admits
an observer (20.3.5) with the ezponentially stable linear error dynamics

(20.3.6).

The proof of this result can be found in any textbook on linear control
theory (see, e.g., [20]). It is worth mentioning that the proof is constructive.
Namely, the linear mapping O defines a similarity transformation such that
the matrix A — LC is similar to the following matrix in Frobenius form:

0 --- 0 a1—11
1 -~ 0 ag — i
0 --- 1 ap—1I,

where col(ly,ls,...,1,) = O(L), and the a; are the coefficients of the char-
acteristic polynomial of A. Since a; — [; are the coefficients of the charac-
teristic polynomial of A~ LC, it is always possible to locate the eigenvalues
of A — LC in the open unit disc by means of an appropriate choice of the
matrix L.
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It is worth mentioning that the condition of observability is, in fact,
a sufficient but not necessary condition to allow design of an observer.
Namely, the system may have O(z) of rank lower than n, but at the same
time, it may admit an observer. This situation occurs when the so-called
unobservable dynamics are exponentially stable. In the control literature,
linear systems with exponentially stable unobservable dynamics are referred
to as detectable (see [20]). In practice it often means that such systems can
be transformed to an observable system via model reduction.

Example 20.1
Consider the following discrete-time dynamics in Lur’e form:

] = [ ]2 ] e |

A o(y(k))
y(k) = [0 1]z(k)
N ——

e ‘
(20.3.8)

where a, 8 > 0. In this case, we obtain

c 0 1
[CAJ:[I 1+aJ (20.3.9)

which clearly is an invertible matrix. Thus, one may construct an observer
for (20.3.8) of the following form:

G0 ] = [0 ][ 28 ]+ st |+
A e(y(k))
+L(y(k) - §(k))

yk)y = [0 1] 2(k)
N —

c
(20.3.10)
where L = col(l1,!3), and I; and I, are chosen such that all eigenvalues of

the matrix

(20.3.11)

— 0 —a—11
A_LC“[1 1+a—ng

lie in the open unit disc.
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20.4 Transformation into Lur’e Form

In the previous section we learned that if the transmitter dynamics are
in Lur’e form (20.3.4) and the pair (C, A) is observable, then it is always
possible to design a receiver system which synchronizes with (20.3.4).

The result presented in the previous section is very simple. However,
the following question remains open: what can we do if the transmitter
dynamics are not in the form (20.3.4)? In this section we will present a
partial answer to this question.

First of all, notice that the representation (20.3.4) is coordinate depen-
dent. This means that if one rewrites system (20.3.4) in a new coordinate
system via a (nonlinear) coordinate change z = T(z), then a new rep-
resentation of the same dynamical system is not necessarily in the form
(20.3.4).

By the same token, however, this may also mean that it is possible to
transform a system into Lur’e form by means of a nonlinear coordinate
change z = T'(x). Hence, we arrive at the following problem.

Let a discrete-time system (20.2.1, 20.2.2) with scalar output be given,
and assume that f(0) = 0, ~(0) = 0. The problem is to find conditions
ensuring existence of an invertible coordinate change z = T(z) such that
the system (20.2.1) is locally (or globally) equivalent to the following Lur’e
system

z2(k + 1) = Az(k) + o(y(k)), y(k) =Cz(k) (20.4.12)

where the pair (C, 4) is observable.

As one can see from the problem statement, the coordinate change z =
T(z) can be either locally or globally defined (i.e., the inverse mapping
T~ can exist on a neighborhood of the origin or everywhere). In the first
case the systems (20.2.1, 20.2.2) and (20.4.12) are equivalent if for all k one
has that [|z(k)|| is sufficiently small. In the second case there are no such
restrictions.

The following resul: from [12] gives a (local) solution to the problem.

THEOREM 20.2

A discrete-time system (20.2.1, 20.2.2) with single output is locally equiv-
alent to a system in Lur’e form (20.4.12) with observable pair (C, A) via a
coordinate change z = T(z) if and only if

(i) the pair (Oh(0)/8z,0f(0)/0z) is observable,
(ii) the Hessian matriz of the function ho f™ o O~1(s) is diagonal, where
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z = O71(s) is the inverse map of
h(z)

ho
O(z) = f(x) (20.4.13)

ho f*=i(z)
with ho f(z) := h(f(&)), f* = f, f = f o fi-1,

It is important to notice that condition (i) means that the Jacobian
90(0)/9z is invertible. In an equivalent form it can be rewritten in the

form
. oh Bho f Bho fr1 _
dim (span{a(O),W(O),...,——a—x—(O) =n.
The condition (ii) may be interpreted in the following way. As indicated
above, if condition (i) holds, the transformation s = O(z) is a local diffeo-
morphism. Thus, s forms a new set of local coordinates for the dynamics
(20.2.1) around the origin. It is straightforwardly checked that, in these
new coordinates, the system (20.2.1, 20.2.2) takes the form

sl(k + 1) = Sg(k)
sn—1(k+1) = s,(k) (20.4.14)
sn(k+1) = fi(s(k))
y(k) = s1(k)

where f,(s) 1= ho f*oO~1(s). In the literature (see [15]), the form (20.4.14)
is referred to as the observable form of the system (20.2.1, 20.2.2). Condi-

tion (i) then is equivalent to the local existence of functions D1y, Pn
R — R such that
fs(8) = w1(s1) + @a(s2) + -+ + @nlsn). (20.4.15)
With the functions 1, -+, @, at hand, the transformation
n
2 1= Spypeg— Z Or(sk—i) (E=1,---,n) (20.4.16)
k=i+1

then transforms the observanle form (20.4.14) into the following Lur’e form:

zifk+1) = @i (y(k))
z2(k+1) = z1(k) + p2(y(k))

: (20.4.17)
za(k + 1) zn—1(k) + on(y(k))

y(k) zn (k)
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The mapping O in (20.4.13) and the observable form play an important
role in the observer design for nonlinear discrete-time systems. As one
can easily see that, in the linear case, the mapping O is exactly the linear
operator (20.3.7) introduced in the previous section. Since the Jacobian of
O is invertible around z = 0 the mapping O is a local diffeomorphism. If
one is interested in finding a coordinate change z = T'(z) which is globally
defined, it is sufficient to check that O is a global diffeomorphism from R™
to R™ and the functions ¢4, - - -, @, satisfying (20.4.15) exist globally.

Example 20.2
[(Bouncing ball)]
Consider the following discrete-time model which describes the bouncing

ball system [23, 3]:

zy(k +1) = 21(k) + z2(k)
{z;(k +1) = alxz(k) - :)ﬁcos(xl(k) + z2(k)) (20.4.18)

where z1(k) is the phase of the table at the k-th impact, z2(k) is propor-
tional to the velocity of the ball at the k-th impact, the parameter « is the
coefficient of restitution, and 3 = 2w?*(1 + @)A/g. Here w is the angular
frequency of the table oscillation, A is the corresponding amplitude, and
g is the gravitational acceleration. For some values of the parameters the
system can exhibit very complex behavior. However, we will show that this
is not an obstacle for the design of an observer.

Suppose only the first variable z; (the phase) is available for measure-
ment. The question is: can we reconstruct the second variable? Clearly
the system (20.4.18) is not in Lur’e form. However, using the theory pre-
sented in this section, we will show that there exists a coordinate change
that transform (20.4.18) into Lur’e form.

So, we assumed that

y(k) = h(z(k)) = z:(k).
Let us check the conditions of Theorem 20.2. A simple calculation gives

Oh(0) _ af0) [1 1
o =L 0] 5 ‘[0 a]

and this pair is clearly observable. Hence, condition (i) is satisfied.
To check condition (ii), let us find the mapping O. Obviously,

Oz) = [ i (1) } z (20.4.19)

with z = col(zy, z2). This mapping is linear, it is invertible, and, therefore,
it is a global diffeomorphism. Introducing s = col(sy, s2) := O(z) we see
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that
fs(s) :=ho f2oO7!(s) = —as; + (1 + a)sy — Bcos so

and it is clear that the Hessian of this function is diagonal. Thus, condition"
(ii) is satisfied as well. Note that, in view of (20.4.15), we obtain f(s) =
@1(s1) + wa(s2), with p1(s1) = —as), wa(s2) = (1 + a)sy — Beosss.
Therefore there exists a coordinate change which locally transforms the
system (20.4.18) into Lur’e form. Moreover, the mapping O is a global
diffeomorphism and the functions ¢, 2 are globally defined, which implies
that this coordinate change is, in fact, global.

From (20.4.19) and (20.4.16) we obtain the following coordinate change:

z1 = —ax; + 72 + Bcoszg (20.4.20)
29 = I o

with the output y¥ = 23 = z;. In the new coordinate system the original
system (20.4.18) has the following form

z21(k+ 1) = —az(k) ‘
{22(k +1) = z1(k) + (1 + @)z2(k) — Bcos 25(k). (20.4.21)

Note that the dynamics (20.4.21) are identical to the dynamics (20.3.8).
Therefore, an observer for (20.4.21) is given by (20.3.10).

The estimates Z;, Z; for 21, 2, are given by the following relations, which
immediately follow from (20.4.20)

{fl e (20.4.22)

with 2;,2; the observer state for (20.4.21). Moreover, by means of an
appropriate choice of {;,l; one can achieve arbitrarily fast convergence of

(k) to z(k).

20.5 Transformation into Extended Lur’e Form

In the previous section we found that if the observability mapping © is a
diffeomorphism and condition (ii) of Theorem 20.2 holds, then there exists
a coordinate change transforming the system (20.2.1, 20.2.2) into Lur’e
form, which makes the observer design a simple linear algebraic problem.
Condition (ii) of Theorem 20.2 is especially restrictive. Therefore, the
question arises whether, and in what way, this condition may be relaxed.
To answer this question, we will assume, in this section, that at time k
not only y(k) but also the past output measurements y(k—1),---,y(k—N)
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for some N > 0 are available. We first consider nonlinear dynamics of the

following form:

z(k+1) = Az(k) +o(yk),yk-1),---, (k- N))
{ y(k) = Cuz(k) Py Y (20.5.23)

where z(k) € R™, y(k) € R}, ¢ : R¥*' — R" is a smooth mapping,
and A, C are matrices of appropriate dimensions. Note that the dynamics
(20.5.23) for N = 0 are just the dynamics (20.3.4). Therefore, we refer to
dynamics of the form (20.5.23) as dynamics in eztended Lur’e form with
buffer N. Assume that the pair (C, A) is observable. As we have seen in
Section 20.3 there then exists a matrix L such that all eigenvalues of A—LC
lie in the open unit disc. Along the same lines as in Section 20.3, it may
then be shown that the following dynamics are an observer for (20.5.23):

{ 2k +1) = Az(k)+e(y(k),---,y(k = N)) + L(y(k) - y(k))

y(k) = Cz(k)
(20.5.24)

As in Section 20.4, we now ask ourselves the question under what condi-
tions the discrete-time system (20.2.1, 20.2.2) may be transformed into an
extended Lur’e form for some IV > 0. The transformations we are going to
use here are more general than the transformation in Section 20.4, in the
sense that we also allow them to depend on the past output measurements
y(k—1),---,y(k—N). More specifically, we will be looking at parametrized
transformations z = T'(z,§;,- -+, &~ ), where z € R", with the property that
(locally or globally) there exists a mapping T~ !(-,&;,--+,£y) : R™ — R™
parametrized by (&1,---,&y), such that for all (£, --,£y) we have

T(T_l(zagly"'7§N)7£1>'”aEN) =z

A mapping having this property will be referred to as an eztended coor-
dinate change. We will then say that the system (20.2.1, 20.2.2) may be
transformed into an extended Lur’e form with buffer IV if there exists an
extended coordinate change T'(-,§;,---,€x) : R® — R" parametrized by
(&1, --,€n) such that the variable

z(k) :=T(x(k),y(k - 1), -, y(k = N)) (20.5.25)

satisfies (20.5.23), where the pair (C, A) is observable. As pointed out
above, one may then build an observer (20.5.24) for z(k) in (20.5.25). From
this observer, one then obtains estimates Z(k) for z(k) by inverting the
extended coordinate change T':

Z(k) =T YZ(k),y(k — 1), --,y(k = N)) (20.5.26)

The following result from [9] (see also [8]) gives conditions under which
a system (20.2.1, 20.2.2) may be transformed into an extended Lur’e form

with buffer V.
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THEOREM 20.3
Consider a discrete-time system (20.2.1, 20.2.2), and assume that the map-

ping O in (20.4.13) s a local diffeomorphism. Let N € {0,---,n — 1}
be given. Then (20.2.1, 20.2.2) may be locally transformed into an ez-
tended Lur’e form with buffer N if and only if there locally exist functions
,@n : RYTY 5 R such that the function f, in the observable form

<PN+1, -
(20.4.14) satisfies
n
fs(sl,n-,sn) = Z cpi(si,---,si_N) (20.5.27)
i=N+1

The proof of the above theorem is constructive. Namely, assume that
functions @n41,- -, @n satisfying (20.5.27) exist, and define an extended
coordinate change by

n
Sp—it1 — Y, ©i(8j-irr ey 85-i-n)  (i=1,---,N=1)
j=N+1 .

n
Sn—i+1 — 2 Pi(Sj—ir s 8j—i-n) (E=N,---,n)
j=it1
(20.5.28)

It is then straightforwardly checked that in these new extended coordinates
the observable form (20.4.14) takes the following extended Lur’e form:

( z2(k+1) = 0
z(k+1) = z(k)
zn(k+1) : zn—1(k)
vtk +1) = zN(];) +one k), -, y(k = N)) (20.5.29)
zn(k+1) = Zn—1(k) + @n(y(k), -, y(k — N))
\ y(k) = zn (k) .

Theorem 20.3 gives necessary and sufficient conditions for the local ex-
istence of an extended Lur’e form with buffer N for (20.2.1, 20.2.2). For
global existence of an extended Lur’e form with buffer V, the mapping O in
(20.4.13) needs to be a global diffeorphism, and the mappings oy 41, -, ¥n
satisfying (20.5.27) need to exist globally.

It is easily checked that for N = n — 1, condition (20.5.27) is always
satisfied globally. Thus, we have a system (20.2.1, 20.2.2) for which the
mapping O in (20.4.13) is a local (global) diffeomorphism that may always
be locally (globally) transformed into an extended Lur’e form with buffer
n—1.
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20.6 Observers for Perturbed Linear Systems

So far the design procedure for observers has been based on the assumption
that for the discrete-time system under consideration the mapping O in
(20.4.13) is a (local or global) diffeomorphism. In the sequel, we consider
a particular class of systems for which this might not be the case. Namely,
we consider systems of the form

I(k‘-’}-l) = A:L'(k)'f‘Bf(:L‘(k))
{ y(k) = Cuz(k) (20.6.30)

where z(k) € R" is the state, y(k) € R! is the scalar output, the function
f ¢ R® > R! is smooth, 4, B, C are matrices of appropriate dimensions,
and the pair (C, A) is observable. Clearly, depending on the specific struc-
ture of f and B, the system (20.6.30) may have a mapping O that is not a
diffeomorphism. Nevertheless, we may derive conditions on (20.6.30) that
guarantee the existence of an observer. -

Define the rational function G(s) by

G(s):=C(sI - A)'B. (20.6.31)

Then G(s) has the form G(s) = ;’é(%, where ¢ and p are polynomials in s,
with deg(p) > deg(g). We now assume that deg(p) — deg(q) = 1. It may
be shown that this is equivalent to the fact that C'B # 0. To obtain an
observer for (20.6.30), we first define new coordinates in the following way.
Since CB # 0, there exists an (n — 1) X n matrix N such that NB = 0
and the matrix S := [ cT NT ]T is invertible. Thus, (£, z) := (Cz, Nz)
forms a new set of coordinates for (20.6.30). It is straightforwardly checked
that in these new coordinates the system (20.6.30) takes the form

{£(k+1) = f(&(k), 2(k))
z2(k+1) = Ai€(k)+ 4yz(k) (20.6.32)
y(k) = ¢&(k)
where
R HE I H))
and

[ A1 A | =N4s—t

We now assume the following:

A1 The mapping f in (20.6.32) is globally Lipschitz with respect to z,
L.e., there exists an L > 0 such that

(V¢ € R)(Yz,z€ R™)(|F(€,2) - F(¢,2)] < Lljz - 2||)
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A2 All zeros of the polynomial ¢(s) are located in the open unit disc.

As an observer candidate we take the following system:

E(k+1) Fly(k), 2(k))
{ Fk+1) = Ag(k) + As3(k) (20.6.33)

We then have the following result.

THEOREM 20.4
Assume that for (20.6.30) we have that the pair (C, A) is observable, that

CB # 0, and that assumptions Al and A2 hold. Then (20.6.33) is an
observer for (20.6.32).

PROOF Defining the error signals
eg(k) = £(k) — E(k),  ex(k) := (k) — (k)
we obtain the following error equations:
ec(k+1) = f(E(k) e (k) + 2(k)) — F(&(K), 2(k))
{ ej(k 1) = Ase(h) (20.6.34)

It is easily checked that assumption A2 implies that all eigenvalues of
Az are in the open unit disc. This implies, on its turn, that there exist
v > 0,0 < A <1 such that e,(k) satisfies

» llex(B)II < vA*|le.(0)]] (20.6.35)
Using assumption A1 and (20.6.35), we then obtain
lec(k)] = 1f(&(k = 1), e2(k — 1) + 2(k — 1)) — f(&(k - 1), 5(k - 1))]

< Llez(k = )|l < LyA*~1le.(0)]]
(20.6.36)

Since 0 < A < 1, it follows from (20.6.35) and (20.6.36) that e¢(k), e, (k) —
0 for k — +o00, and thus (20.6.33) is an observer for (20.6.32).

Remark A.
The result in this section may be generalized to systems (20.6.30) for

which we have deg(p) — deg(q) > 1. This generalization will be given in a
forthcoming paper.
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20.7 Conclusions

Following a similar line of research as in [14] we develop an observer per-
spective on the synchronization problem for nonlinear (complex) discrete-
time systems. For several classes of discrete-time systems it is shown that a
suitable observer can be found. In case such an observer does not exist, or
cannot be found analytically, we propose to use an extended observer. The
latter method follows (8] (see also {9]), and presents an observer that also
uses past measurements and can be applied under fairly general conditions.
Like the continuous-time paper [14], it seems that control theory might be
a very valuable tool in the study of synchronization.
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Coordination of two robot manipulators based on position measurements only

A. RODRIGUEZ-ANGELEST* and H. NIJMEIJER}

In this note we propose a controller that solves the problem of coordination of two (or more) robots, under a master—
slave scheme, in the case when only position measurements are available. The controller consists of a feedback control
law, and two non-linear observers. It is shown that the controller yields ultimate uniformly boundedness of the closed
loop errors, a relation between this bound and the gains on the controller is established. Simulation results on two two-
link robot systems show the predicted convergence performance.

1. Introduction

Synchronization, coordination, and cooperation are
intimately linked subjects, and sometimes they are used
as synonymous to describe the same kind of behaviour,
mainly in mechanical systems. Nowadays, there are
several papers related to synchronization of rotating
bodies and electrical-mechanical systems (see for
instance Blekhman et al. 1995, Huijberts et al. 2000),
and communication systems (Pecora and Carroll 1990).
Rotating mechanical structures form a very important
and special class of systems that, with or without the
interaction through some coupling, exhibit synchronized
motion. On the other hand, for mechanical systems syn-
chronization is of great importance as soon as two
machines have to cooperate. This cooperative behaviour
gives flexibility and dexterity that cannot be achieved by
an individual system, e.g. multi-finger robot hands,
multi-robot systems, multi-actuated platforms.

Typically robot coordination, and cooperation of
manipulators (see Liu et al. 1997, 1999, Brunt 1998),
form important illustrations of the same goal, where it
is desired that two or more mechanical systems, either
identical or different, are asked to work in synchrony. In
robot coordination the basic problem is to ascertain
synchronous motion of two (or more) robotic systems.
This is obviously a control problem where, at least for
one of the robots, a suitable feedback controller has to
be designed such that this robot (slave) follows the other
robot (master). This problem is further complicated by
the fact that frequently only position measurements of
both master and slave robots are available. This partial
access to the state of the system has been the reason for
developing model-based observers which are integrated
in the feedback control loop.

In practice, robot manipulators are equipped with
high precision position sensors, such as encoders.

Received 1 August 2000. Revised 1 April 2001.
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Meanwhile new technologies have been design for meas-
uring velocities, e.g. brushless AC motors with digital
servo-drivers. Nevertheless such technologies are not
yet common in applications. Therefore, velocity meas-
urements are often obtained by means of tachometers
which are contaminated by noise. Moreover, velocity
sensoring equipment is frequently omitted due to the
savings in cost, volume and weight that can be obtained.
For these reasons, a number of model-based robot con-
trol methods have been proposed (Nicosia and Tomei
1990, Canudas et al. 1992). In these methods a velocity
observer is integrated in the control loop, although exact
knowledge of the non-linear robot dynamics is assumed,
which in practice is generally not available. To overcome
this drawback, robust tracking controllers only based on
position measurements have been proposed (Canudas
and Fixot 1991, Berghuis and Nijmeijer 1994, Wong
Lee and Khalil 1997). However, all the aforementioned
papers deal with the tracking control problem and not
with the robot coordination problem.

The problem of coordinating (synchronizing) physi-
cal systems, can be seen as tracking between two physi-
cal systems. Although it seems to be a straightforward
extension of classical tracking controllers, this problem
implies challenges that are not considered in the design
of tracking controllers. Most of the tracking controllers
are based on full knowledge of the desired reference to
be tracked, and no one predicts what would happen in
the case of partial knowledge of the reference signal, or
how to deal with it.

In this paper we present a novel approach for the
coordination of two robot manipulators, assuming only
position measurements of both robots. Partial knowl-
edge of the reference signals (master trajectories) and
the working signals (slave variables) demand the recon-
struction of the missing required signals. We solve this
problem by using (non-linear) model-based observers.
The estimated variables are used in a feedback loop
such that the overall coordinating controller, i.e. feed-
back control plus the observers, guarantees synchroni-
zation of the slave and master robots. Of course, other
ways of estimating velocity signals, like numerical
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differentiation or low pass filters, are available, and in
principle such alternatives could be used in the devel-
oped control scheme. However, our aim is to provide a
systematic way of proving the ultimate uniform semi-
global boundedness of the master—slave system. It
seems plausible that in a similar manner the same result
can be shown with an alternative velocity-estimated con-
trol scheme. We leave this to the interested reader.

The general set-up to be considered is as follows.
Consider two fully actuated robot manipulators with n
joints each. One of these robots (master) is driven by an
input torque 7,,(-) that, in the ideal case, ensures con-
vergence of the joint variables ¢,,, ¢,, € R" to a desired
trajectory ¢4, ¢, € R". However, the input torque 7,, is
unknown, at least for the controller design of the second
robot (slave), as well as the joint velocity and accelera-
tion variables g¢,,, §,,. Under these assumptions, the goal
is to design a control law 7,(-) for the slave robot such
that its joint variables ¢, ¢, € R" synchronize with the
variables g¢,,,q,, of the master robot. Also, we assume
that the joint velocities and accelerations ¢, §, are not
available. Therefore, the control law 7, that is to be
designed can only depend on position measurements
of both robots, i.e. ¢,,,¢,, and estimated values of the
joint velocities and accelerations ¢,,, §,,, 4, §,- Notice
that the goal is to follow the trajectories of the master
robot ¢,,,q,,, and not the desired trajectories ¢,,q;;
therefore knowledge of ¢4, ¢, is not necessary to design
the control law 7, for the slave robot.

This paper is organized as follows. In § 2 the dynamic
model of the robot and some of its properties are pre-
sented. The feedback control law and the observers for
slave and master velocities are proposed in § 3. In §4 the
convergence properties of the closed loop system are
examined. In § 5 a simulation study shows the predicted
convergence performance. Sections 6 and 7 present some
remarks and general conclusions. Throughout this paper
standard notation is used, in particular, vector norms
are Euclidean, and for matrices the induced norm
|4l = v/ Amax (AT A) is employed, with A\, () the maxi-
mum eigenvalue. Moreover, for any positive definite
matrix 4 we denote by A4,, and A4,, its minimum and
maximum eigenvalue respectively.

2. Dynamic model of the robot manipulators

Consider a pair of rigid robots, each one with the
same number of joints, i.e. ¢; € R", where i =m,s
identifies the master (m) and slave (s) robot; all the
joints are rotational, actuated and, without loss of
generality, frictionless. This does not mean, however,
that they are identical in their parameters (masses,
inertias, etc.).

For each of the robots, the kinetic energy is given by
Ti(41,4:) =447 Mi(q;)di» i = m, s, with M;(g;) € R™" the

symmetric, positive-definite inertia matrix, and the
potential energy is denoted by U,(g;). Hence, applying
the Euler-Lagrange formalism (Spong and Vidyasagar
1989) the dynamic model of the robot is given by

M(q:)d; + Ci(4;4:)4; + 8:(4;) = 7 i=ms (1)
where g;(¢;) = (0/9q;)U;(q;) € R" denotes the gravity
forces, C;(q;,¢;)q; € R" represents the Coriolis and
centrifugal forces, and 7; denotes the [n x 1] vector of
input torques.

In the subsequent sections we use the following
properties.

o If the matrix C;(g;,4;) € R™" is defined using the
Christoffel symbols (Spong and Vidyasagar 1989),
then the matrix M;(q;) — 2Ci(q;, ;) is skew sym-
metric, i.e.

XT(Mi(qi) —2Ci(q;,4:))x =0 forall xeR" (2)

e In addition, for the previous choice of C;(g;, ¢;), it
can be written as

g Ca(4)
Cia:,4:) = (3)
4i Ciulqy)
where Cy(q;) € R, j=1,...,n are symmetric

matrices (Craig 1988). It follows that for any
scalar « and for all ¢;,x,y,z € R”

Ci(q;,x)y = Cilq;, y)x } (@)
Ci(g;,z + ax)y = Ci(q;,2)y + aCi(q;, x)y

o M;(q;), Ci(q;,4;) are bounded with respect to ¢;
(Lewis et al. 1993), so

0 <M, <[Mg)|l <My forall ¢; € R" (5)

im =

1Cilgi, )| < Callxl| - for all g, x € R™. (6)

3. Feedback controller

As stated in § 1, it is assumed that there is no access
to (¢, 4,n) and (¢, 4,), but only joint positions ¢,, and
¢, can be measured. Therefore, the controller 7, can only
depend on positions measurements (g,,,q,) and esti-
mated values for the velocities (¢,,, ¢,) and accelerations

(QI’H’ q.&')'

3.1. Feedback control law

With the control law proposed by Paden and Panja
(1988) in mind, and under the assumptions that the esti-
mated values are available and the non-linearities and
parameters of the slave robot are known, we propose the
controller 7, for the slave robot as
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Ty = Ms(qs)qm + Cs(qs; qs)ql11 + gg(qa) - Kdés - ers
(7)

were q’s,e’“q’m,gm € R" represent the estimates of
q,,€.,4,, and ¢, respectively, the tracking errors
e,, e, € R" are defined by

€ =4y — 4, és = qs - qm (8)
M(q,), Cs(qs,qi,) and g,(q,) are defined as in equation
(1), and K, K, € R™" are positive definite gain
matrices.

3.2. An observer for the tracking errors (e, és)

Estimated values for the tracking errors e, é, (8) are
denoted by é,, é¢,; these estimated values are obtained by
the non-linear Luenberger observer

d, = _
—e, =¢é,+ Ae

dt
d~ _ ~ o~ ~
&és = _Ms(qa) ! [Cs(qsa qg)es + Kdés + Kpés] (9)

+ Asé

where the estimation position and velocity tracking
errors &, é are defined by

e = es_és; Aé: és—/é\s (10)

and A, 4, € R™" are positive definite gain matrices.

3.3. An observer for the slave joint variables (g, q)

Let ¢, qi, denote estimated values for ¢, ¢,. To com-
pute these estimated values, we propose the non-linear
observer

d. = _
aqs =4g,+ Lpleq

d- - 3 i~ 11
aqs = _Ms(qa) I[Cs(qsa qs)es + Kdes + ers] ( )

where the estimation position and velocity errors ¢, and
¢, are defined by

éq =y — QS éq = qs - qs (12)

and L,, L, € R"" are positive definite gain matrices.

3.4. Estimated values for §,,, 4,

As stated, the master robot variables ¢,,, §,, are not
available, therefore estimated values for ¢, §,, are used
in 7, (7). From (8) and the definition of the estimated
variables és,ei,,qs,as, we can consider that estimated
values for ¢,,,4,,, §,, are given by

Qm = QS - és

Gn = 4 — & (13)
= d

qm - ds (qA es)

Remark 1: Note that, in (9) and (10) the estimate for
é, is given by ei, not by é. This definition introduces
an extra correcting term in é“q, as it follows from (9)
and (10) that
E=¢6,—b,=é— A

The term A,é gives faster estimation performance, espe-
cially during transients, but it has some negative effects
on noise sensitivity, since it amplifies noise measure-
ments on é.

The same can be said for observer (11) and the esti-
mation position and velocity errors (12).

4. Ultimate boundedness of the closed loop system

To simplify the stability analysis, we make the
following assumptions on the positive definite gain
matrices K,, K;, L,1, Lyp, 4y, 4,.

Assumption 1: The gain matrices Ay, Ay and Ly, Ly,

satisfy

Ay = Ly, Ay =Ly (14)

Assumption 2:
metric matrices.

The gains K, K;,L,,L,, are sym-

In addition, the following assumption is required.

Assumption 3: The signals ¢,,(t) and §,(t) are
bounded by Vs and Ay, ie.

Vir = sup g (D)1l (15)

Ay = sup G, (D)l (16)

In practice, it is often not difficult to obtain on the
basis of the desired motion ¢,(?),q,(¢) and G,(¢) the
master robot bounds on ¢, () and ¢, (¢). Although
due to friction effects, tracking errors, etc., the actual
motion of the master robot may differ from its desired
motion.

Our main result can be formulated as follows.

Theorem 1: Consider the master and slave robots de-
scribe by (1), and the slave robot in closed loop with the
control law (7), and both observers (9) and (11). Given
scalar parameters e,, A, tho, Yo, SUCh that

Ay > 0, ty >0, v, > 0, g, >0, (17)

and if the gain matrices K;,K,, L, L,, are chosen such

that their minimum eigenvalues satisfy
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2 2
Lp2,m > max {ﬂaa Yo> Lp2q4a Lp2q5a Lp2q6}
Lpl,m > max {2/140; Lplq3a Lpqu,aa Lpqu,b}

Kp,m > max {quz, quG}

Kd,m > qul

(18)

then, the errors é,, e,, E, é, Eq, é, in the closed loop system
are  semi-globally  uniformly  ultimately  bounded.
Moreover, this bound can be made small, by a proper
choose of K,, and L, . The scalars Ly, L

m 'p2g5>
Lp2q6a Lplq3a Lpqu,aa Lpqu,ba qu2; qu6; Ka’ql are deﬁned n
Appendix A.

Proof: The proof of the theorem is divided into two
steps. First the formulation of the closed loop error
dynamics is given in §4.1 and then the stability
analysis is presented in §4.2.

4.1. Closed loop error dynamics

To simplify the closed loop error dynamics two coor-
dinate transformations are introduced.

Lemma 1:  Consider the tracking errors (ey,é;), the es-
timation tracking errors (&,¢é) and the estimation posi-
tion and velocity errors (é,,¢é,), which are defined by
(8), (10) and (12).

Introduce the coordinate transformation defined by

g:=e—e,
Gi=é—¢é,—Lyg (19)
¢, = ¢,— Lye,
and
q::es_q
. ~.} (20)
q::es_q
Define the vectors x,y € R® as
S T FT ] ()
. =T T
=13t " g b ¢, &l (22)
then x and y are related by
x=Ty (23)
where
(7 0 I 0 0 07
071 0 I 0 O
00T Ly 1oL, o
000 I 0 I
000 0 I Ly
L0 OO 0 0 [T |

Proof: The proof follows from the definition of the
coordinate transformations. [

In the new set of error coordinates, the closed loop
error dynamics can be formulated as follows.

Lemma 2: Consider the closed loop system formed by
the slave robot (1), the control law (7), and both obser-
vers (9)—-(11). Then, in the variables defined by (12),
(19), and (20), the closed loop error dynamics are given

by

M(q,)q + Cy(4s, 4,4 + Kag + K,q
= C,(gy, éq + Lpléq)(é —L,19) + Ms(qs)Lplé
+ Cy(qs, 45 Lt G + Ka(8, + Ly (€, + )

d? Sy s s _
Eq = _Ms(qa) Kp(q + eq) - Lplq - Lqu —qm (26)
& Ak as 5 )
@eq = Ms(qs) [_Kp(q + eq) + (Cs(qsa €, + Lpleq)
- 2Cs(qs; qs))(éq + Lpléq)]
- Lpléq - Lp2(q - éq) (27)
Proof: See Appendix B. O

4.2. Stability of the closed loop error dynamics

First we introduce a result that supports the stability
analysis in the following sections. This result is a modi-
fied version of a theorem by Chen and Leitmann (1987)
(see also Berghuis and Nijmeijer 1994). It states that a
system is uniformly ultimately bounded if it has a
Lyapunov function whose time-derivative is negative
definite in an annulus of a certain width around the
origin.

Lemma 3 (Berghuis and Nijmeijer 1994):  Consider the

Sunction g(-): R— R

g)=ap—ay+ay’, yeR' (28)

where o; >0, i =0,1,2. Then g(y) <0 if y; <y < »,
where

Ca— (a3 — dasay)
V1= 20, )
oy + 1/ (of — danay)
V2 =

20[2

Proposition 1 (Chen and Leitmann 1987): Let
x(t) € R" be the solution of the differential equation

x(r) =f(x(1),1)

with f(x(t),t) Lipschitz and initial condition x(t,) = xy,
and assume there exists a function V(x(t),t) that satisfies
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Pyllx(n)? < V(x(1), 1) < Pyllx(1)||* (30)

V(x(0), 1) < Ix(0)| - g(llx(2)]]) < 0
forall y; < |x()|| <y, (31)

with P,, and P, positive constants, g(-) as in (28), and y,,
V5 as in (29). Define §:= /P, Py If o > 6y, then x(1)
is locally uniformly ultimately bounded, that is, given
d,, = 8y, there exists d € (d,,,y,) such that

Xl <r = |x(0)] <d forall t>ty+T(d,r)
where
0 r<R
T(d,r) = Py* — P, R !
i R<r<é
—Ol()R + O[1R2 — O[2R3 r y2
and R = §'d.

Consider the vector y € R® defined by (22), and take
as a candidate Lyapunov function

V(y)=4y"P(y)y (32)

where P(y) = P(y)" is given by
[5 M(q,)  AM,(qy) 0 0 ]
| [ roMla) K +A Ky |
| |
N I (@l |
PO) ! 0 LL(Q)I Lpz 0 !
e T

W’(éq)l L,

€,y A, € R are positive constants to be determined, and
1(q),7(é,) are defined by

- Ko ~ Yo
q) = — e)i=—2 (34
D=1 @ T (Y

with p,,7, € R positive constants to be determined;
1(q),~(é,) are bounded, such that

0<p(@) <p, and 0<~(e) <1, (35)
Sufficient conditions for positive definiteness of P(y) are

Kd,m > )‘aMs,Ma Lp2,m > max {ﬂga 72} (36)

Therefore, conditions (17) and (18), together with the
boundedness from above of p(g),v(é,), imply that
there exist constants P,, and P,; such that

1P, < V() <3Pyl (37)

Along the error dynamics (25)-(27), and using
Assumption 2, the time derivative of (32) becomes

where

B, s dm) = €0@" + X" Cold,.8, + Lp8,) (G — L, 4)
+e0d Cylds 4) LG — 207G Cy(dy1d,)
X (§— Lyyq) + (&, +72])M,(q,)”
X (Cy(qys 8, + Lpié,) —2Cy(qy,44)

-~ ~ =T . —
x (&, + L,&,) +e,Mq M(q)q

1

2T 2T =T T -
4G G+Ae,e,— (G +pg )i (39)
and Q(y) = Q(»)" is given by
IVQII QIZ Ql3

o) = {Qsz ) Q23J (40)
05 0% 03

with the block matrices

Ki—XM(q;) O
On==s [ 0 /\OKJ
& —M(q5) Ly K, — KqLp
ee=3 [—AOMS(%)L,,] MoKy = KuLy)
01 =2 [ e T
2| =Ky —AKqLy
on - [ Lp—w LML) 'K, + uL,n)]
P L M) Ky ) (M (0 K, + L)
on - [ 0 IM(q)7'K, ]
P @) Ky + L) G+ ) Ma) ™ Ky L)
ou - [ Lot 1ML (g.) 'K, + vL,n)]
v L (M(q) 7K L) (M) K, + L)

To conclude stability of the variable y defined by (22),
we require positive definiteness of Q(y) and bounded-
ness of the term 3(y, ¢, §,,) along the closed loop error
dynamics. These two requirements are developed in the
following sections.

4.2.1. Boundedness of B3(y,qs, §n): First, from the defi-
nition of 1(g), v(é,) (34), it follows that

2T 7'
Kqg 9= —p

q 4 =T 22
— g ¢ < ullqll (41)
i ||q||>

T ele
T q €y
’queq =7

2T 202
1 le,e, <~lle,ll (42)
1+||eq||> 06 =M

Then by boundedness of 1.(g),~(é,) (35) we obtain that

2T 212 T L2
g G < pllgll” and Fé,e, < 7,llé,ll (43)

On the other hand, the definition of the tracking errors
(8) implies that
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qS = éS J’» qm

Then, from the definition of g, (20), we obtain a relation
between ¢, and g, which is given by

4=q+G+4d, (44)

Finally, the definition of the inertia matrix M (q,)
implies that
M (q,) =—M,q,) =———=¢,
o) =3, M(4y) g, &
hence, by property (5) and since ¢, only appears as argu-
ment of sinusoidal functions in M,(q,), we can conclude
that

M|l < IM(g)N < Mg par 14l (45)

where

oM(q)
M < |20,

s,pm = P}
qs

Then, from (43)—(45), properties (5) and (6), and taking
into account Assumption 3, it follows that 3(y, 4, §,,,) is
upperbounded by

BO s, Gm) < =20 Co gl = Ly arlll)
< (gl + llgll + Var)
+e0Co Ly adllg Nl + gl + Vi)
— A (llgll + pollgl)
+eoCon(l1gll + Ao llgll)
x (Il 11l = Ly g1
+leg (L eIl = L1 nl1411)
= 2M3, Copr (11811 + 12 1)
% (llell + Lyi aclle, DG+ N1l + V)
+eo XM ldllllglllgl + 14l + Var)
+ ol + ol I
+ M5 Con(l1eg ]l +oll, 1)
x (eIl + Loy ullg, 1) (46)

where the vector yy € R® is defined as

vy =Lllgll Nlal 1al gl gl llelil @7

4.2.2. Negative definiteness of V(y): From the upper-
bound of B(y,4qs, ) (46), the upperbound of u(g),
v(éq) (35), and considering yy defined by (47), it fol-
lows that V' (y) (38) can be upperbounded as

V() < llywll(a = Qumllynll + aallynl®) (48)

where Qy,,, > 0 is the minimum eigenvalue of the matrix
Oy = Q%
Oun, 9n, 9,
Oy = QszN 0»n, Ox, (49)
Q1T3N Q%N 033,

with the block matrices

0 Kim = XMy INVu(Coar = Mypr)
1y = &o
L B (Con = M) MKy
0 e [ =M, ;L K, 0 = Kasa Loyt = ConrLpy ot Vi
oy =5
2 “NMpLpiyr No(Kyne = KaneLypt s = ConaLpr it Vie)
e Ko —KimLpm
O, = >
=MNKanr = NKayLpiu
Ly — 21 “I_;(M\—.r}le.]vI + o L1 ar)
Oz, = 1 1
|3 (Mo Ky s + oLyt a) oMKy + Lpom)
0 1M, Ky
On, = : :
|3 (MKt + Lyoat) 3 (1o +70) MoKy st + Yo Lp2.01)
_Lpl.m =29, +2M ) Co Vi qs6
Oy, = . .
qs6 Vo (Mo Ky 4 Loy +2M 5, C g Vg Lyt )

qs6 = “I_;(M\—.nlle.]vI +YoLpiae) + My Con Vi (Lpt.ae + %)

and oy, a, are given by

ao = (14 Vi) VAu (50)

o = \/8M5,Cy i <m+ LpLM)

+ EoCs7M<1 + \//\—o> (LpLM +2 LpLM)

+ MS—J}I CsﬁM (5 + 1/ Yo + 2LpLM
+\/70Lp11M + Lot ar +% + Lyt v/ + 4/ S%LpLM>
+ 50(\/ C&,M(l + 2\/Lp11M> + ¢A0(Ms1pM + C&,M))

+ Ve (2m<1 + \/LpLM) + o/ M+ CLM)

(51)

If the gains K, K,,L,,L,, and the constants ¢,, \,,
I, Y, satisfy conditions (17) and (18), then Qy given
by (49) is positive definite. Then the right-hand side
in (48) corresponds to (31), and together with (37) and
Proposition 1, this allows us to conclude uniformly ulti-
mately boundedness of yy (47) and consequently of y
(22). By (23) we therefore can conclude that the original
state x, given by (21), is uniformly ultimately bounded.

Moreover, a, depends explicitly on L, )/, such that
¥, defined as in Proposition 1, can be made small by a
proper choice of L, ), and thus the upperbound for the
closed loop errors ég,e,,¢,¢€,¢é

4 €, can be made small.
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m (mass) (Kg)

/. (mass centre) (m)

i (inertia) (Kg mz) ! (length) (m)

Link 1 (m) 10 0.54 0.02 1.0
Link 2 (m) 7 0.42 0.01 0.8
Link 1 (s) 12 0.6 0.05 1
Link 2 (s) 5 0.5 0.03 0.8
Table 1. Parameters of the master (1) and slave (s) robots.
Joint 1 (m) Joint 2 (m) Joint 1 (s) Joint 2 (s)
q(0) (rad) 0.8 1.8 0.1
4(0) (rad/s) 0 0 0
Table 2. Joint initial conditions.
Notice that the minimum value for y, is given by . .
Joint 1 Joint 2
Onm/(2a,), and recall that Q (49) depends on K, ..
On the other hand, a region of attraction is given é4(0) (rad) 0.5 0.8
by é,(0) (rad/s) 0 0
45(0) (rad) 0.5 0.7
P 7,(0) (rad/s 0 0
B={xeR" ‘ Il < 2o A (52 (0 (radly
TN Par — —
Table 3. Initial conditions for observers.

where 7' is given by (24), P,,, P,, are defined by (37), and
¥, as in Proposition 1, with (31) given by (48). Since the
size of the region of attraction B (52) is proportional to

¥», this region can be expanded by increasing y,.

The ultimate boundedness result is due to the
absence of measurements of §,,, see (48) and (50), there-
fore we have the following Corollary.

Corollary 1: If §,(t) =0 for t € (t5,00), tp > to, and
additionally the conditions on Theorem 1 are satisfied,
then the control law (7), and both observers (9) and (11)
yields semi-global exponential convergence of the errors
&, e, 6,8, 6,8,

Proof: From (48) and (50) we have the following. If

conditions in Theorem 1 are satisfied and §,,(¢f) = 0 for
t € (t,00), t; > ty, then for ¢ > 1, (48) reduces to

V(y) < ||yN||2(_QNm + O‘2||yN||)

with Qu,, > 0.
On the other hand, the region of attraction (52)
guarantees that Qy,, > a,|lyy| and thus V(y) can be

upperbounded as
V() < —sllywl? for all

From the last equation and (37), we conclude that there
exist some constants m*, p > 0, such that

t>t

(D)]1* < m*e|lp(1y)]1? for all

by (23) we can conclude the same for x given by
0. O

t>t

Remark 2: An example of Corollary 10 is obtained
when the set point regulation of the master robot is
considered.

5. Simulations

The master (m) and slave (s) robots are planar
manipulators ¢; € R*, i =m,s, with revolute joints,
working in the x—z plane. The dynamic model is given
in Spong and Vidyasagar (1989) and their parameters
are listed in table 1.

The controller for the master robot 7, is the
adaptive control law proposed by Slotine and Li
(1987). The desired trajectory for the master robot is
given by

14 0.25sin (0.5 1)
Qd(l) =

= d
0.8 +0.25cos (0.5 1) (rad)

The initial conditions for both robots and the obser-
vers (9) and (11) are listed in tables 2 and 3.

The gain matrices, involved in the controller (7), and
both observers (9) and (11), are considered to be of
the form kI, where k is a scalar and I € R**2. The
scalars associated with these gain matrices are chosen
as follows.

K, K, A4 Ay Ly L,

100 10 50 50 50 50

Table 4. Controller gains.
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Slave position estimation errors €y4, €4 [rad].
: . . T T . T T

Jx0” Slave position estimation errors €14, €, [rad).
T T T T T T T

T T

il i‘}\[y\

i
|

Figure 4. Slave position estimation errors €, &,.
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Time [s]
Input torques 715, 725 [Nm).
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500 T T

. Input torques 115, 725 [Nm)].

Figure 5. Input torques 7y, 7.

Figure 1 shows convergence between the slave tra-
jectories ¢4, ¢,, and the master trajectories ¢, q,-
However, by spliting the time axes after the ultimate
boundedness region has been achieved (¢ > 10), it can
be noticed that the tracking errors e, e,, are in fact
bounded (see figure 2, right). Figures 3 and 4 show
that the estimated errors for slave and master joint posi-
tions are also bounded. At the same time figures 3 and 4
show fast convergence of the estimation errors during
the transient (see Remark 1). The high peaks in the slave
input torques 7, 7, (figure 5) compensate the initial
tracking errors ey, ey, which are 1 (rad) and —0.9
(rad) respectively (see figure 2 and table 2).

On the other hand the simulations were run for
different values of the gains, it was observed that by
increasing the gains K, L,;, the bound of the closed

loop system can be made arbitrarily small; at the same
time by increasing K, the convergence time can be
decreased. And thus, we can conclude that the per-
formance showed in the simulations agrees, and more-
over it could be predicted, with the stability result
obtained in §4.

6. Remarks and discussion

e The proposed control law gives rise to coordina-
tion in the joint space. Coordination in the Carte-
sian space is obtained only if the length of the links
of the slave robot are equal to the corresponding
links in the master robot.

e In the feedback control (7) and the observer (11)
the available signal e, is used, instead of its esti-
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mate é,. This is done so as to take advantage of the
available information, i.e. the position measure-
ment ¢, and the tracking position error ¢;. As a
result robustness, and better stability and per-
formance at transients are obtained.

The variables ¢, g, defined by (19), can be inter-
preted as the estimation error in the joint variables
of the master robot g,,,,,. Therefore, §,§ give an
idea of how good the estimation of the master
robot variables can be made based on measured
and estimated variables of the slave robot. So, the
slave robot, under the proposed controller, can be
considered as a physical estimator for the master
robot dynamics.

The uniform ultimately boundedness result is of
local nature, with region of attraction (52). This
region of attraction and the bound for the closed
loop errors depend on y, in a proportional way.
This is an intrinsic property of the considered
method, see Proposition 1 and §4.2.2, and thus a
compromise has to be made.

Nevertheless, the region of attraction mainly
depends on the initial estimate errors. Therefore
if small initial estimate errors (see observers (9)
and (11)) are chosen, then high initial tracking
errors can be considered. The high dependency
on the estimate errors is the price to be paid for
the lack of available measurements or high quality
measurements.

The conditions given by (18) imply relations
between the minimum and maximum eigenvalues
of L,;, L,,, at the same time Qy,, and «, depend
on the maximum eigenvalue of L,;. All this rela-
tions have to be taken into account to choose the
control and observer gains K;, K, L, L.
Nevertheless a study, that is omitted for brevity,
shows that y, > §y; can always be satisfied.

On the other hand L, is also related with the
value of P, see (37), such that by increasing L,
P, also increases. But there is still freedom on the
gain K, such that the ratio P,,/P,, can be kept far
from zero, and thus shrinking of the region of
attraction is avoided.

Even without knowledge of the bounds implied in
(17) and (18), the closed loop system can be made
uniformly ultimately bounded, by selecting the
control gains large enough. However, such high
gain implementations are not always desirable in
practical circumstances.

Conditions (18) and the simulation results re-
semble—without being—high gain observer be-
haviour. Therefore, we could think that similar
results may be obtained by some other techniques,

e.g. variable structure control. However more dif-
ficult stability conditions and more complicated
controls would arise.

Moreover, the proposed control has the
advantage that the control gains can be physically
interpreted. Consequently an insight of how they
affect the closed loop performance can be
obtained, which in general is more difficult to
determine for variable structure implementations.

e The controller and observers (7), (9) and (11) are
model based, nevertheless the stability analysis
allows a straightforward robustness analysis for
parametric uncertainties. Because of linearity of
the robot dynamical model (1), we have that the
parametric uncertainties appear as an additive
term in ¥, given by (38). And thus, if we consider
bounded parametric uncertainties, then this new
bounded term appears in (48). So, by retuning
the gains we can ensure that V is negative definite,
such that the convergence properties of the closed
loop system are preserved.

In case of unmodelled dynamics the stability
analysis is not straightforward, moreover, it highly
depends on the kind of unmodelled dynamic
effect.

e A future extension of the proposed technique
arises when flexible joint robots are considered.
In that case fourth order derivatives of the posi-
tion are required, which makes the application of
numerical differentiation and low pass filters
unpractical. On the other hand the master—slave
scheme is quite restrictive, nevertheless the exten-
sion of the proposed controller for some other
schemes seems to be straightforward, such is the
case of cooperative schemes, decentralized multi-
robot systems.

e The proposed control law provides a systematic
way of proving stability and boundedness of the
closed loop system. This is a drawback of some
other schemes for estimating velocities, such as
numerical differentiation or low pass filters. For
those techniques, in general, do not exist formal
stability proofs or a methodology to guarantee
stability of the closed loop system.

7. Conclusions

In the present paper we have designed a control
scheme for coordination of robot manipulators that
requires only position measurements. The control
scheme is formed by a feedback controller, which uti-
lizes estimates for the tracking errors, as well as for the
velocity and acceleration variables. These estimates are
obtain by two non-linear observers. The resulting closed
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loop system was proved to be semi-globally uniformly
ultimately bounded. Also a relation between the bound
of the errors and the design parameters was given, which
can be used to guarantee the desired tracking accuracy.
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Appendix A

Consider the matrix Qy given by (49); AQ, repre-
sents the determinant of the ith leading minor of Qy.
Sufficient conditions for positive definiteness of Qy are
given by (17) and (18), with L4, Lyogs, Lyogs, Lprgs,

2 P
Lpqu,aa Lpqu,ba qu2; qu6; qul given by
qul = )‘aMs,M
K o )‘a VM(MAPM - C‘S,M)2
P42

4(Kd,m - )‘a MS,M)

L, ,3: denotes the solution of the equation
AQ; = aiL,;3 + ay = 0,with a;,a, the resultant coeffi-
cientg in the factorization of L, ,, in AQ3, and L, ,,
substituted by L, 3. ’ .

L,4: denotes the solution of the equation
AQy = biLyyys + by = 0, with by, b, the resultant coeffi-
cients in the factorization of L,,,, in AQy, and L,
substituted by L,.4.

-1

Lpqu,a = 2(70 - CS,M VM s,M)' )

L,145,: denotes the largest solution of the equation
AQ5 = CO —+ Clelq5 —+ C2L§1q5 = 0, Wlth Co, Cl,Cz the
resultant coefficients in the factorization of L,;, in
AQs, and L, ,, substituted by L, s.

L,,s: denotes the solution of the equation
Cz = rlezqs +r2 = 0, Wlth Cz as in Lpqu,b; rl,rz the
resultant coefficients in the factorization of L, in ¢,,
and L, substituted by Ls.

L6 denotes the largest solution of the equation
AQ6 = ta + tle2q6 + 12L§2q6 = 0, Wlth lo, tl) l‘z the resul-
tant coefficients in the factorization of L, ,, in AQg, and
L, ,, substituted by L,y,.

K,,: denotes the solution of the equation #, =
51Ky46 +52 =0, with 1, as in Ly, 51,5, the resultant
coefficients in the factorization of K, in ,, and K, ,,
substituted by K.

Appendix B

First, we obtain the error dynamics in terms of the
tracking errors (e, é,), the estimation tracking errors

(¢,¢), and the estimation position and velocity errors
(é4,€,). Second, we consider the coordinate transforma-
tion defined by (19) and (20).

B.1. Tracking error dynamics

Substitution of 7, (7) in (1), by adding and subtract-
il’lg Ka'és + Ms(qs)Qm + Cs(qs; 4s)4111a and considering the
tracking errors defined by (8), we obtain that

Ms(qa)es + Cs(qsa qa)es + Ka'és + ers
= Ms(qs)(qm - qm) + Cs(qsa QS)ql11
_Cs(qsa qs)ém - Kd(és - ea) (53)

From (8), (10), (12) and (13), the following equalities can
be established

Qm — 4 = e— éq
q]11 - ql11 = é - éq (54)

qm — G = a (e - eq)

Considering (10), (12), (54) and property (4), it follows
that
Cs(qs; qs)ém - Cs(qsa 4s)4111
= Cs(qs; qs)z; - 2Cs(qs; qs)z;q + Cs(qs;gq)gq
+ Cs(qs;gq)és - Cs(qs;gq)g (55)

Substitution of (55) in (53), and considering (10) and
(54), yields

Ms(qa)es + Cs(qsa qa)es + Ka'és + ers
= Ms(qs)a (e - eq) + Kde
_2Cs(qsa qs)z;q + Cs(qsagq)gq + Cs(qsaz)q)és

_Cs(qugq)g+ Ca(qqu)g (56)

B.2. Estimation tracking error dynamics

Define states x;,x, € R" as x; :=e¢,, X, :=¢é,, and
obtain a state space representation for (56). In the states
X1, X, the estimation tracking errors (10) are given by

€=x; —é, Z:xz—ei, (57)
Therefore, from the state space representation of (56)
and the observer defined by (9), the estimation tracking
error dynamics are given by
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=
d~ -1 .
ae = Ms(qs) - Cs(qsﬂ qs)x2 - I(dXZ - prl

e ——

+ Ms(qs) (Aé - Aéq) + Cs(qsa qs)g

[oN

t

+ Cs(qsa qg)es + (Cs(qsagq) - 2Cs(qsﬂ qs))zq
+ Cs(qsagq)(XZ _;) + I(dg + Ka’gs + Kpés} - AZé

Considering (12), (54) and (57) and after a straightfor-
ward computation, these equations reduce to

d_ = 5
ae:e—Ale (58)

d"; - ~ NS
Eeq = Ms(qs) 1{_er - 2Cs(qsﬂ qs)eq

+ Cs(qsagq)gq} - AZé (59)

B.3. Estimation velocity error dynamics

From the definition of the tracking errors (8), it
follows that

QS = eA Jr Qm (60)

Define states z;,z, € R" as z; := ¢, z, := ¢,, and obtain
a state space representation for (56). In the states z, z,
the estimation velocity errors (12) are given by
éq:Zl_QA'a éq:ZZ_qs (61)
So, from the state space representation for (56), with

states z,z,, and observer (11), the estimation position
and velocity error dynamics are given by

d_ ~ -

aeq =é,—Lye,

d~ -1 ,

aeq = Ms(qs) - (Cs(qsﬂ 22) + Kd)es - ers

e ——

+ Ms(qs) (Aé - Aéq) + Cs(qsa ZZ)Ae:

[oN

t
+ (Cs(qsﬂgq) - 2Cs(qsﬂ 22))Ae:q + Cs(qsagq)és

- Cs(qsﬂgq)g + Cs(qsﬂ qg)e.s

+ Kdé + Ka’és + ers} - LPZéq + Qm

considering (12), (54) and (61), these equations reduce to

Eéq =é,—Lye, (62)
d~ d ~ ~ -1
aeq = E (e - eq) + Ms(qs)
X {_2Cs(qsﬂ ZZ)Ae:q + Cs(qsﬂgq)gq}
- LPZéq + Qm (63)
Finally, from (59) and (63), it follows that
Eéq = gq —Lye, (64)

ag = Ms(qs)_l{_zKpé - 2Cs(qsa qA)Aéq + Cs(qsagq)gq}

- 2AZé + LPZéq - Qm (65)

where the fact that z, = ¢, has been used.

B.4. Coordinate transformations

Consider the coordinate transformation defined by
(19), subtraction of (59) and (64) from (58) and (65)
gives rise to the dynamics for ¢, ¢

d ~ PO ~
aq:e_eq_l’plq
d ~ ~ -1 S - .
a (e - eq) = _Ms(qs) Kp(q + eq) - Lp2q —qm

where Assumption 1 has been used.
From (59) and (64), it follows that

aeq =¢,—L,e,

d"; - ~ ~ NS
aeq = Ms(qs) 1{_Kp(q + eq) - 2Cs(qsa qs)eq

+ Cs(qsagq)gq} - LPZ(q + éq)

From the last four equations we obtain the error
dynamics (26) and (27). And by adding and subtracting
qu + Cs(qsa QS)Lplq + Kdelq + M(qs) (Lplq - Lplelq)
from (56), and considering the coordinate transforma-
tion defined by (19) and (20), it results in (25).
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