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In this paper, we propose a synchronization controller for flexible joint robots, which are
interconnected in a master-slave scheme. The synchronization controller is based on
feedback linearization and only requires measurements of the master and slave link po-
sitions, since the velocities and accelerations are estimated by means of model-based
nonlinear observers. It is shown, using Lyapunov function based stability analysis, that
the proposed synchronization controller yields local uniformly ultimately boundedness of
the closed loop errors. A tuning gain procedure is presented. The results are supported by
simulations in a one degree of freedom master-slave sy$e®l: 10.1115/1.1636197

1 Introduction tions, and robust control have been investigated to design effec-
ive controllers for flexible joint robotg¢see[9,10).

. . t|
Th.'s paper ac_idreSS(_es th_e_problem of synchronization of rObOtAII the above mentioned controllers assume that all state vari-
manipulators with flexible joints. It is assumed that not all th

- X . . .ables are available, implying the presence of additional sensors in
joint state varlabl_es are measured, e.g., I'nk. and rotor_ Yeloc't'gach joint, which in practice is difficult if not impossible. Besides
are ”U"“OW”’ which is a very common situation V\(hen_ joint flex,q complexity in the implementation of measuring equipment,
!blllty is present. In robotic systems synchronization is of_ gre%locity measurements are often obtained by means of tachom-
importance as soon as two robots have to cooperate. This cogpss which are often contaminated by noise, or moreover, veloc-
erative behavior gives manoeuvrability and dexterity that can NR) measuring equipment is frequently omitted due to the savings
be achieved by an individual system, e.g., multi finger robofy cost, volume, and weight that can be obtained. To overcome
hands, multi robot systems, walking robots. this problem numerical differentiation, filters and the design of
Typically robot coordination and cooperation, $&¢], and[3],  observers have been considered. Numerical differentiation and fil-
form important illustrations of the same goal, where it is desire@rs possess the advantage of simplicity in implementation. How-
that two or more mechanical systems, either identical or differertver they present a reduced bandwidth and in general there is no
are asked to work synchronously. This is obviously a control prolan analytical method to guarantee that the closed loop system will
lem that requires the design of suitable controllers to achiebe stable. On the other hand, observers are in general model-
the required synchronous motion. The problem of synchronizatilased, and thus require information about the system, and may
of robots, can be seen as tracking between the systems with sdme be more difficult to implement. Nevertheless, model-based
additional challenges that are not considered in trackirgpservers allow, in most cases, a stability proof and a methodol-
controllers. ogy to tune the observer gains, which guarantee a stable closed
Joint flexibility or joint clasticity, considerably affects the perloop system. Ir{11] a nonlinear observer based on pseudolinear-
formance of robot manipulator§#], and is a major source of ization techniques has been proposed, a high gain observer is
oscillatory behavior. To improve the performance of robot maresented ifi12], and a semiglobal nonlinear observer is designed
nipulators, joint flexibility has to be taken into account in thd [13]. From an implementation point of view, it is desirable that
modelling and control of such systems. Joint flexibility can bgontrollers be designed to require few incasurements as possible.
caused by transmission elements such as harmonic drives, b mples of such philosophy are the controllers for flexible joint

or long shafts; and it can be modelled by considering the positiéﬂt ots pr_?_posed in14] andt[ls], which require only link and
and velocity of the motor rotor, and the position and velocity I?{ t%?3|\;\;)r:km?ﬁsur;er;ﬂnen S.I is to ensur nchronization b
the link. Therefore, the order of the dynamic model for aerxibIgN S work, the main goal IS 10 ensuré synchronization be-

joint is twice that of a rigid joint, consequently, the controllers ar een two robots, where the rabot for which the control wil
l gid joint, conseq Y, e designedslave has flexible joints, and the robot, whose tra-
more complex than those for rigid joint robots. From a modellin

. ! . - s ctories are to be followe@astey, may or may not have flexible
point of view, two dynamic models for the flexible joint robo edn ) y y

) - P Noints. This goal is carried out assuming only link position
have been considered. [B] an extended model for flexible joint measurements.

robots is presented, which includes the full nonlinear dynamic consider two fully actuated robots withjoints each and work-
interactions among joint flexibilities and inertial properties ofng in a master-slave scheme, such that the subindexssden-
links and actuators. If it is assumed that the kinetic energy of th, the master and slave robot. Assume that the master robot is
electrical actuators is due only to their own rotor spinning, thendiven by a torquer,,(-), that in the ideal case, ensures conver-
reduced model is obtaind@]. This reduced model satisfies thegence of the link position and velocity,,, §,, to a desired tra-
conditions of full state linearization and decoupling via static stajectory qq, q4. However, the torque,,, the dynamic model and
feedback. Meanwhile it has been proved that the extended mogatameters of the master robot, as well as the link velocity and
is fully linearizable and decouplable via dynamic state feedbaelkcelerationq,,, 4., are not available for design of the slave
[7,8]. Other techniques like adaptive control, singular perturb@ontroller7(-). Also we assume that the slave rotor positian

and the slave link and rotor velocities and acceleratigisds,
Contributed by the Dynamic Systems, Measurement, and Control DivisioA®f T ¢, §s are not measured. Therefore, the slave contraletthat is
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constructed values offs, 65, Om, Om, Os, Js. Notice that the  where C;;(q;) eR™"j=1,...n are symmetric matrices. It

goal is to follow the link trajectories of the master rologf, gy, follows that

and no the desired trajectorigs, g4 for the master robot, which Ci(q X)y=Ci(q: )X

may not be realized due to model uncertainties or disturbances, nen R

e.g., noise, unknown loads. Ci(q;,z+ ax)y=Ci(q;,2)y+ aCi(q; ,X)y
A similar setup and goal have been considerefil#] for the n

case of rigid joint robots. If16] semiglobal uniform, ultimate ~ for any scalarx and for allg;, x, y, ze R".

boundedness of the synchronization system is proved and a rela> The matricesM;(a;), Ci(a;,q;), B, R"*" are bounded

®)

tionship between the controller gains and the ultimate error 0<M:.<lIIM:(a)ll<M... for all aeR" 6
bounded is obtained. Throughout this paper for matrices the in- im=IMi(@) =M di< ©)
duced norm||A||= VA nadAA) is considered, With\q,(-) the [Ci(ai ¥)[[<Cimlx|| for all g;,xeR" (7

maximum eigenvalue. For any positive definite maixA,, and

Ay denote its minimum and maximum eigenvalue, respectively.
This paper is organized as follows, Section 2 presents a reduced .

model Forpthe flexgible joint robot and some ofpits properties. Nominal Feedback Controller

nominal controller, assuming that all signas, s, Qm, 0m, 0s, . Consider that1)—(3) define the dynamics of two robots work-

Qs are available, is introduced in Section 3. Section 4 presentdg under a master slave scheme. Based on inverse dynamics

version of the nominal controller based on estimated values fgpMPputation and using De Luca and Lucibé#, the slave robot

o, '05, G, Ge. The closed loop system formed by the Slangth model (1)—(3) can be fully linearized and decoupled via the

robot and the synchronization controller is obtained in Section %t’atlc feedback control law:

O<Bv,im$”Bv,iH$Bv,iM (8)

and its stability analysis is presented in Section 6. Section 7 sum- 7e=Kq(0s—qs) + B, 5;95+ IS IM(gg)v(t)
marizes a tuning gain procedure for the gains in the controller and _ '
observers. A simulation study is presented in section 8. Some + a(Qs,Gs,0s,9) ] (9)

conclusions are given in Section 9. L. g . o a oL .
@(0s,0s,0s,9s ) =2M(ds,9s)ds” + (Ms(ds s, 0s) + Ks) Qs

_ L OTH _ +N(Gs.Gs.85.95Y) (10)

The dynamic model of a flexible joint robot can be obtained br\é ) - (3) '
extending the procedures already used for rigid robslsCon- From (1) it follows thatds, qs™ are related to lower order vari-
sider a flexible joint robot, wittn rigid links, all joints being ablesqs, gs, 05 as:
flexible, revolute, and actuated by electrical drives. dyet R" be - -1 :

= — + —

the link positions and); e R" be the rotor positions, as reflected ds=~Ms (a9 (N(Gs,09) + K(0s~ 65)) (11)
through the gear ratios, the subindexm, sidentifies the master (3= M ~1(q.)(My(qs,89)de+ N(Ge e Ge) + Ko(Ge— 65))
(m) and slave(s) robot. The differencey;; — ¢; is the j-th joint ds s (09 (M(0:. Q)05+ N(Gs. 05 8:) +Ko(9 5(12)
deformation, in view of small deformations, joint elasticity is _ _ _ .
modelled as a linear spring. The rotors of the motors are modeli&tierefore(9) can be written as function af, qs, 6s, s, i.€.:
as balanced uniform bodies having their center of mass on the

2 Reduced Dynamic Model of the Flexible Joint Robot

rotation axis, so that the inertia matrix and the gravity term in the 7s=Ks(85=0s)+ B(0s,0s. 05, 05) + @(gs)u (1)
dynamic model are independent from the motor posifipnAs- 0e 0. 0)=B. 0.+ JK-1L ()] 13
suming that the motion of the rotors can be considered as pure Blds.0s. 65,65 =B, 565+ I "a(ds.0s.0s.057) - (13)
rotations with respect to an inertial frame, then the kinetic energy @(gs) =JKs M (g

of each rotor is due to its own spinning. Therefore, the inertial . . .
coupling between links and rotors can be neglected and a redué@Plying the controller©) to the systeni1)—(3) yields the linear
dynamic model is obtainetsee[6]). Following [6] and the La- decoupled closed loop system:

grangian approacfil7], we obtain the dynamic model: q@=0v(t) (14)
Mi(g)Gi+N(q;,q)+Ki(qi—6)=0 i=m,s (1) To ensure synchronization between the slave and the master robot
y y t) is proposed as:
Jibi+Ki(6i—a)+B, 6= (2 v(t) Is prop

. D =g¥ - K.e® —K.e—K,e—
N(q;,qi)=Ci(a;,0i)q; +gi(di) @ . U(_t) qm_ (et mHaeKe -Koe. (15)_

where the symmetric positive definite inertia matrid;(q) \l;VIt.h K; e R" gain matrices and the synchronization errors defined

e R"™", the Coriolis and centrifugal ternC;(q;,q;)q;R", y: o

and the gravity terng;(qg;) € R" are all related to the rigid links, €=0s—0m, €=0s—0Um (16)

Ji ERM: is the constant diagonal inertia matrix of the Motor§ypare the master position trajectogy, has to be at least four
KieR™" is the constant diagonal matrix of the joint stiffnesSymnes- gifferentiable, i.e.q, e C*. Clearly, there exist general

B, e R"*"is the diagonal positive definite viscous friction coefpices for the gain matricd§ such that the closed loop systems

ficient matrix, and7;(-) is the n-vector of torques supplied by js staple, but for simplicity and without lost of generality, we
the motors. The following properties are satisfied by the modgls,,me that the gain matii is a multiple of the identity matrix,
D-G) ) . ] ) ) ) i.e, Ki=kjl,, i=0, 1, 2, 3, withk; positive scalars. Then, it is
+ If the matrix C;(q; ,q;) € R™" is defined using the Christoffel sirajghtforward to conclude that the synchronization erds
symbols[18], then the matrixM;(q;) —2C;(q; ,q;) is skew exponentially stable, if the scalaks, i=0, 1, 2, 3 are chosen
symmetric. ) such that the polynomial®+ kys®+k,s?+ k;s+ kg is Hurwitz.
« In addition, for the previous choice of the mat&(q; ,q;),

the Coriolis and centrifugal teri@;(q; ,g;) can be written as: . .
g /(a0 4 Feedback Controller Based on Estimated Variables

. aiCia(ai) As stated in Section 1, it is assumed that only the master and
Ci(gi,a)=| (4)  slave link positionsy,,, qs are measured, thereforg (9) ando (t)
aiCin(a;) (15) can not be implemented.
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Letqs, s, 65, O denote estimated values fqg, ds, s, 65, Whereqs, Gs, 05, 05 correspond to the estimates @f, d, 6s,
andv(t) given by (15) is implemented baAsedA_on estimated syng_ and u;, w,, wz, macR™" are diagonal positive definite
chronization errors. Assuming that, §s, 65, 0 are available, gain matrices. The joint estimation errors are defined by
the controller(13) can be modified as:

7e=K( 05— Go)+ B(ds, G, 05, 8 + o(gg)v(t)

B(0s.Gs, b5, 09 = B, 05+ I K *a(qsGs.85,0)  (17) S Closed-Loop System
In this section, the total error dynamics is obtained.

q:qs_as: hé: 0s— ’és (25)

a(0s.Gs.8s,09%) = 2M (05,699 + (M(qs, Gs, 0s) + K<) O Proposition 1. Consider the master and slave flexible joint ro-
B L bots, which are described byl)—(3), the slave robot in closed
+N(0s,Gs.9s,9) loop with the synchronization controllets (17), v (20) and the

. i . @) ) observers(21), (23), and (24), then the synchronization closed-
where according t¢11), (12), estimates fogs, g¢” are given by 50 error dynamics is given by:

Gs=—Mg 1 (ds)(N(qs,Gs) + K(Gs— 65)) (18) 644K el + K ot K o+ Kqe
(53): - Mgl(QS)(Ms(QS ,Gs)Gst N(Qs,Gs,Gs) + Ks(Gs— 0389) = qg:]‘)-i- K, (8®+ Fl;é+ I,6)+ KZ(;é--i- I'é)+KE+Kqe
—1 . . 3) o ~ A~ &
4.1 An Observer for the Synchronization Errors. From — Mg (a9 P(ds Am.Gm Oy &.8,6%,6,0,0,0)  (26)
the work of Berghuis and Nijmeijdi9], we propose the modified -
controllerv(t) (15) as: B+ (T —Ky)e® +(I',— KT —Ky)e
U=_K3V.V2_K2W1_K1-é_ Koé (20) +(F3_K3F2_K2F1_Kl)é+(r4_ P<0)’.é

whered, &, w,, W, represent estimates fey e, &, e® respec- =gV —Kze®—Ke—K,e—Kge

tively. They are obtained by the observer: . o 3 . - o~
—Mg (QS)®(Qqum1meq(rn) 161919(3):q,q,0, 0),

e=w,+I 8 27)
Wy =w,+ I, @1 - . o ) . 3
W,y=ws+ I ;€ q=—Mg (0s)((2C4(qs e+ Am) = Cs(ds, G+ p10)) (A + 10)
Wy=T & +Ks(G=0)~ pad— 20
with T'; e R™", i=1, 2, 3, 4 diagonal positive definite gain ma- = L~ 1 . - . -
trices and the estimation synchronization error defined by: 0=—Js " Ks(60—0) = Js "B, o6+ u30) — u3q— a0 (28)
e=e-ée (22)  Proof. A sketch of the proof is given in Appendix 1. [ |

) . . Notice thatd® can be considered as a disturbance term that
4.2 An Observer for the Slave Variables.qs, ds, 6s, 0s.  affects (26) and (27). Also notice that(26) and (27) present a
Based on the dynamic modél)—(3), we propose the nonlinear |inear structure, therefore, the following proposition can be for-

Luenberger observer: mulated.
d Proposition 2. Define states x . . . XgeR" as x,=e, x,=¢,
gr s~ Gst Had x3=8, x4=e¥, xs=8, xs=6€, x;=¢, xg=€(), and ye R*" as

(23)  y,=7, y,=0, y3=6, y,= 6. Such that the state vectors x and y
are given by X[X[X;X3XiXeXgX;Xg]' and vy

d. “
_. — _l A ~ _ ~
gt ds= ~Ms (A5} (N(Gs,As) + K(ds ™ 0)) + w120 =[y]ysysysl". Then(26), (27), and (28) can be written as

d. . : - L
gt 0= 05 1 X=AX=BMg Y (q))®(ds,Um ., Am A’ X2, X3,X4,Y1,Y2,Y3,Y4)
| R
g _q-1 N oAy A _ . .
dt 93 ‘]S (TS(QSvQS1quas|93) KS(GS QS) BU,505)+/‘L4q y:f(qS,qlely) (29)
|
r I, 0 0 "
0o 1, 0
0 0 o I, 0
A _KO _K]_ _K2 _K3 KO KN ) K3 ERSHXSH (30)
0 0 0 0 0 In 0 0
0 0 0 0 0 I
0 0 0 0 0 0 In
L _KO _Kl _K2 _K3 KO_F4 771—F3 7T2_F2 KS_Fl_

= T 28nXxn
B=[0 001,00 01,]"eR 31)
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771:K3I‘2+K2F1+K1, 772:K3F1+K2

with 0, I,,e R"*" the zero and identity matrices
The nonlinear vector function(fs,d,,X,Y) is given by

Yo
—M;(ds)(2C(ds, Xo+ Gm) — Co(ds Yo+ 1Y1)) (Y2 + p1Y1)
f(ds,Qm.X,y)= —Mg (A9 Ke(Y1—Y3) — m1Y2— moY1 e R4 (32)
Ya

=35 ' Ko(Y3= Y1) =I5 "By o(Yat+ 13Y1) — maYo— maYa

}F/’root This follows from simple substitution of the statesan-d wim>max0,2M ;XA o— Cy Vi), (2h oM g 2
X (AN~ MK s~ 200 V(2N o+ Msrptan)

6 Stability Analysis
+ MsmMsMMZM)} (34)

The stability analysis is based on a Lyapunov function, whose
derivative can be bounded in terms of the closed-loop errors. It is
proven that the bound is negative in an annulus around the origin.
To derive bounds on the derivative of the Lyapunov function the
following assumption is required.

Assumption 3 The signals g, dm. a{>, q') are bounded for

Mam™>Mmax 0,— ag,'asy, — a1 agel (39)

mam>mMaXOuas pas o mam<Min{ugs, uzst  (36)

-1 2
all t e[ty,), therefore there exist )/, Ay, Dy and Ey such Ham>MaX 0I5 (479~ Isiksm™ 2770y sm+ Jsmitam )}
that (37
suflgmll=Vu<e, suplgml|=Ay<o where M, and %, are the minimum eigenvalue of the link and
t t motor rotor inertia matrices, and the scalaxs, 7y, sz , taq4

33
(33) M3z, Ma3a, 830, A1, 840, A4q are defined via the gain tuning

procedure of Section 7. Then the synchronization closed-loop er-
N . . ) _rors and the estimation errors are semi-globally uniformly ulti-
In practice, it is often not difficult to obtain the master trajectoriefately bounded

bounds(33) on the basis of the master desired trajectocjg) In particular, it means that ther exist a region of convergence
and its derivatives, although due to friction effects, tracking eftepending on the controller gains, such that if the initial errors at
rors, etc., thv_e actual motion of the master robot may differ from itgne t=0 are in this region they will remain bounded for all time
desired motion. Also the boundg,, Ay, Dy, andEy can be t=0 with a bound smaller that the region of convergence
obtained by considering the structural limitations of the robots, pygof The proof is divided in three parts, first the candidate
such as maximum velocities and accelerations of the motors. @fapunov function and conditions for positive definitiveness are
the other hand, for the sake of simplicity the following assumptiopresented. Second the derivative of the Lyapunov function along

is imposed. o (29 is bounded, and finally sufficient conditions for negative defi-
Assumption 4 All the gains in the controller (17), (20), and pjteness are formulated.
the observer (21) are a positive multiple of the unit matrix, i.e., of

sudgy[=Du<=, suflay’|=En<c
t t

the form K=Kkl, where k is a positive scalar. 6.1 Lyapunov Function. Consider the synchronization
Based on the above assumptions, the main result of this pape¢lsed-loop error dynamics given 639), and take as a candidate
formulated as follows. Lyapunov function:

Theorem 5. Consider the master and slave flexible joint robots, 1
described by (1}(3), the slave robot in closed loop with the con- T T
troller 75 (17), andv (20) and the observers (21), (23) and (24). V(Gs, X y) =X P+ 2Y Py(ds,y)y
Assume that the gain matrices &ndT';, i=0,1, 2, 3, j=1,2, 3,
4 are chosen such that the matrix A, given by (30), is Hurwitz, anehere the positive definite symmetric matR is the solution of
additionally the minimum and maximum eigenvalues of the gaitise Lyapunov equatio®,A+ATP,= —Q,, for any given sym-
m, 1=1,2, 3,4, i.e,u, and uy , satisfy: metric positive definite matriQ,, andP,(qs,y) is given by:

(38)

Ket+2houy+B1ln  2holy } 0
p (q y)_ 2)\Oln Ms(qs)
e 0 KstuatBaln  2n(ya)l,
27(y3)ly Js
[
with B;, B, scalars to be determined, amdys) defined by: No, 70>0 are constant scalars; then for @l @ it holds that:
7 0<ln(ys)ll<mo, n(ya)yiys=mnollyal?
7(Ys) ::1+||y3\| Existence ofP, is guaranteed ifA, which is given by(30), is
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Hurwitz. By Assumption 4, a sufficient condition férbeing Hur- 1 1
witz is that the scalar polynomial(s), given by: EPmH§H2$V(qs,X,Y)S 3 Pull€l? (41)

N(S) =88+ y;87+ 7,58+ y38°+ (y4+ Ky y1+ Ko yo+ Kays) st
(s 7 2 VoS (vatkiyitheyathsys) 6.2 Derivative of the Lyapunov Function. Along the error

++ (Koy1t Ky vat+ Koya+Kava) S+ (Koyat Kivs dynamics(29), the time derivative oV (38) is given by:
+koya)S?+ (Koyatk1ya)s+Kova (39) _

is Hurwitz. k;, y; are the scalars associated to the gansnd V=-X"Qx~X"PBM*®—d M BTP,x

Ly, i_=0, 1,2,3,)=1, 2,3, 4. Thus by choosing _the gaiksand '

I';, it can be ensured that the matixis Hurwitz. Therefore, +yTPy(as,y) F(x,y) + EYTPy(QS,Y)Y+XTPxBQ$)

there exists a unique positive symmetric maffix, which satis-

fies P,A+ATP,=—Q,, for any given symmetric positive defi- L a@TBTP.x (42)
nite matrix Q, . Gm X
On the other hand, sufficient conditions for positive definiteness
of Py(qs,y) are: that can be written as
1
Him™> 57— (ANG— MoK sm—MgmB1)
™ 2M oM smem e @) . JQc Qu[x e
1 V=—[x Y] QT Q, |y +Q(Qs-qm1qqum Am’ +%,Y)
/L4m>J_(47/g_JsmKsm_‘]smﬂ2) o Y (43)

sm

Finally, positive definiteness d?, and P,(qs,y) imply positive
definiteness ofV(qs,x,y) (38). Moreover, there exist positive with Q, e R®"8" the symmetric positive definite matrix

constantsP,, and P, such that foré"=[x"yT]: Qx=—(PyA+ATP,) andQ, e R*"4"
|
[ 2N o(Mg 'K+ p) oy a; ag ]

. 1 1

a; Msu1—2hg 7(Y3) 3= EKS EJS#S

Qy= 1\ ~
Y ay 7(Y3) s~ > Ks 27(y3)J5 'K ay

T 1 T T

a3 E(Js/‘@) Ay Bv,s_277(y3)|n

1
ay=-— E(ﬁl' ntMsuo)

a=—NoMg K+ n(ys) (pa+ I3 *B, sies—J5 'Ky (44)

1
aszz(Bv,sM3+JsM4_ Ks)

_ 1
ag=0(y3)ds 'Bys= 5 (at aln)

Qyye R¥™4" depends on the entries Bf e R®"*®", and it is given by:

Pyiat Pys]
Pyoat Pyog
Pyast Pyag
PyastPyag| _
Quy=| PLot Pysg | Ms Keds '[(By sita=Ks) 0 K B, ¢] (45)
PJas™ Pyes
P47+ Pyrs
Pt Pxas]

The scalar functio)(qs,qm.dm.at ,q% ,x,y) is locally Lipschitz and is given by:
Q= —x"P,BM (P +KJS Ky~ Ya) — KIS B, o(Ya+ ay1) + X PyBal +
—(P+KJISK(y1-y3) — KIS "B, o(Va+ uay1) Mg BTPx+q TBTP,x
—(2Ngy1Mg M +Y2)(2C4(0s XoF Om) — Co( s, 1Y1)) (Y2 + s1Y1)
+2NgY 1M "Cy(s.Y2) (Y2 + i1Y1) +Y3C(Us.Y2) way1t+ 27(Y2) Va3 (46)
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6.2.1 Boundedness of VThe next lemma synthesizes a genBefore applying the above lemma, it is required to prove that the

eral bound forV given by (43).

matrix Ry is positive definite.

Lemma 6. Consider Vgiven by (43) and introduce the vectors Proposition 9. Consider R e R**“ the matrix defined in (49),

Xn,YN s and &y

and define scalarg,, B, as

=Ll Il sl 1%l Ixsll [xell [l lIxgll1"

yn=Clyall llyall lysl llyai1" 47
En=Ixy yal" 1.
Then \/given by (43) can be upper-bounded as: 2.
V=Rt O(Vy A Dy En k) (48) O
with Vi, A, Dy En given by (33) O (Vi ,An D Emyén) @ 4.

scalar function that contains products of at most order 5 in terms 5

B1=2C\Vy(2M ik o+ tam) — Msmptam

Bo= ZﬂoJ;n%Bv,sM_ Mam

(54)

Then sufficient conditions for positive definiteness paR:

No>0
prim>max{0,2M s 5(\ o= CyVin)}
0< 1< Min{B, snf4, 5, JswBysm
+ BJSMngKsm)l/z)}
Ham™>Max0,uss ,pas }, Ham<MiN{ugs, last

of the entries ofy, and the matrix R is given by
Ry Rey(Vm »Apn ;D)

R =
VIRV Ay D) Ry(Vin)

(49)

. pram™>max{0,— az;'azy, — Aar Ag0}
With was , M4, M3z, Haa, 30, A31, 340, Qa1 GiVen in
Appendix 3
Proof. See Appendix 3. |
The conditions listed in Theorem 5 clearly imply the conditions

R, RyeR®** R, eR*** O and the positive definite matrix in the above lemma, therefore it can be ensuredRas positive

R, e R8*® as in Appendix 2

Proof: See Appendix 2. |

The upperbound oY given by (48) can be reduced to a func-

tion of the norm oféy, .

definite and then Lemma 8 can be used.
For Ry, given by(49), the condition(53) can be written as:

IR R R, Ml<1

Lemma 7. In terms of the vectogy, (47), the upper-bound of Notice thatR,, depends on the gaing; and u3, but does not

v, (48) can be reduced to

V=llénl(ro=rallénl+rall ol énlP+rallén®)  (50)

where r, is the minimum eigenvalue of the matrix R(49), and

the positive scalars g(Ev), ra(mim . #am), T3(mim), Fa(tam)
are determined b¥) (Vy ,Ay Dy Em - én), With Vi, Ay, Dy,

Ew the upperbounds for,g, Gm, 9, a{¥, which are defined by
(33).

Proof. This follows directly from(48) and the definition of
N - u

6.2.2 Negative Definiteness of VEquation(50) is an uppef
bound for V, such that Vis negatie if and only if r, is positve
and thevector £y holds %, ;<[[&y[|<X;,. Where % ; and x; , are
the roots of the polynomial

O(Xe) =101 X+ T XE+T X+ 1 4X¢ (51)

such thatg(x,) <O if X1 <X <X>. _
Notice thatx,, and x,, determine the region in whicN is

negative definite. Thus,, and x,, together with the minimum

P, and maximumP,, bounds of the Lyapunov functiow, (41),

determine the region of convergence of the synchronization clo

loop system, similar as ifi16]. The scalarr, is the minimum
eigenvalue of the matriRy (49), so,r, is positive if and only if

Ry is positive definite. The following lemma is useful to prov

positive definiteness dRy, .

Lemma 8. (See [20]) If Le R™™ and Me R"™" are given
positive semidefinite matrices and=XX™*", then the symmetric
block matrix:

X
M

is positive semidefinite if and only if there exists a matrix
e R™", such that X= LY¥2CM*2, If L and M are positive definite,
then this criterion is equivalent to

HL*l/ZXM *1/2H2S 1

L
XT

XLM (52)

depend onu,, 79, Ag. Then, if the gainsu,, wus have been
chosen according to Proposition 9, it follows tHat, is only
determined byP, , (38), that is determined b, (43). The matrix
R, in Ry, given by(49) is only determine by the positive definite
symmetric matrixQ,, therefore by choosin@, it can be ensured
that detQ,)>1 and thus deR)>1. Also notice that the only entry
of R, which depends o, is ag thus by choosing the minimum
eigenvalue of the gaip, it can be ensured that d&§j>1. There-
fore, it follows that the entries dR, *’R,,R, "% are small. As a

result||R; Y"R,yR; ¥4|,<1 can be ensured, and th&, given

by (49), is positive definite. Since the condition fét, being
positive definite is given by the minimum eigenvalue of the gain
1o then it follows that the minimum eigenvalue B, , i.e.,rq, is
determined by the minimum eigenvalue @f, that implies that

r, can be chosen such that it dominates the other terf&0jnTo
emphasize the last conclusion, notice thgt r,, r3, r, do no
depend on the gaip,.

Finally, notice that according to Section 6.1, Proposition 9, and
the above paragraph, it follows that if conditions in Theorem 5 are
fulfilled, then the functiorV, given by(38), is a Lyapunov func-
tion with V<0 in an annulus around the origin determinexyy ,

Kiep (51), and the minimun®,, and maximunP,, bounds of the
Lyapunov functionV, (41), see[16]. Therefore the synchroniza-
tion closed loop errors are uniformly ultimately bounded in such
eannulus. |

The ultimate boundedness result is due to the absence of mea-
surements of derivatives of the master trajectqyy, therefore,
we have the following corollary.

Corollary 10. If set point regulation of the master robot is
considered and the master robot controller is able to achieve
steady state in finite time, thel?(t)=0 for te (t,,%), with t,
=ty, the convergence time of the master robot trajectories. If
additionally the conditions on Theorem 5 are satisfied, then the
controller (17), (20), and the observerg1), (23), and(24) yield
local exponential convergence of the closed-loop errors

Proof If q{?(t)=0 for te (t,,%), t,=t,, with t, the time in
which the master robot achieves stationary state, then it implies
that the upper-bound foq'? is zero forte (t,,%), t,=>t,, and

Moreover x, \ is positive definite if and only if L and M are thus from Assumption 3 it follows that:

positive definite and

[L=¥2XM~Y3,<1 (53)
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Masier and slave link positions gp,. ¢s. Synchronization position error e.
35 T T T T 0.6 T T T

1‘5 20 25 0 5 10 115 20 25

Fig. 1 Master and slave link positions  gq,,, g5, and synchronization position error e

sory(Epm)=0 in (50). Thus, if conditions in Theorem 5 are sat-

6. Choose iy, such that 6<uo<min{B, 4, &  (JoB
isfied, fort=t, (50) reduces to: Ko Ko By snf4: &, JotBosm

. 2 2 3 +(‘]§MBg,sm+8‘JsM‘]§nKsn)1/2)}

V< EnP(=rat+rollEnll+rsllEnll?+rall ) (55) 7. Select us, such that wam>max0,uwss ,tas b, Mawm
With ry, 15, rg, 1,>0, andV=0 if x. <[ & <X.,. As a con- <Minifss, taat, se(_elApptza'ndlx 3.
sequence, there exist a positive scalasuch tha/ can be upper- 8- Ham> Max0,Jsm (4775~ JsnKsm—270By, sm+ Jsmitam)}

bounded as: 9. Choosd), a symmetric positive definite block diagonal ma-
o trix, with nxn block entries, such that d€g)>1.
Vs—«kl&l> for all t=t,, x:1<[én] <X 10. DetermineP, such thatP,A+ATP,= —Q,
N -1 -1
From the last equation ar{d1), we conclude that there exist some 11- Chooséu,, ;”Chsthat“§m> m‘l"‘x{o'* 831 a30|'17 a1 40}
constantan®, p>0, such that: see Appendix 3, andu,, large enough to ensure

IR RyRy Mlo<1.
[énlP=m*e " én(to)lI> for all t=tp,x, 1<[|énll <X
iamd Itlhus frorrf,\,(t)l,I (47),bi|t follows that the close-loop errors are§  Simulations
ocally exponentially stable. | . . . .
Re?\garlfll The groposed synchronization controli@r7,20 is Th_e slave(s) 6.‘”.d ”.‘aSte.fm) robot_ cor!s[dered n thg 5|mulat_|on
designed to guarantee synchronization between two robots. N& nsist of one rigid link with a flexible joint, rotating in a vertical
ertheless, it can be used as a tracking controller by taking tH¥@ne. The dynamic model is given by:

desired trajectory g(t) as the master robot trajectory,gt). In . 1

case of tracking the desired trajectory(®) and its derivatives Migi+Ki(gi—6)+ 5 migl sin(q)) =0, i=m, s
are known, such that{ =q(" can be included through the con- ) _

trol v(t) (20). In such case, the closed-loop err@9) does not Ji0;+Ki(6;—q)+B, ;0=

depend on f{f’=q{", and the stability analysis would result in V 3 B 3
given by(55). Therefore, for tracking of a known desired referenc%—]he_ rlnzstler_ri)bgt E%rgzn((a;ﬁrs aﬁn_aoés’#nél_ 7?12)83;1"; 2t
gq(t) the proposed synchronization controlig7), (20) with v (t) m-o =T me e values are | unis s

(20) modified as initial - conditions are gy(0)=1rad, g,(0)=0rad/s, 6,(0)
) =1.1rad,f,(0)=0 rad/s. The master robot is driven by the con-
0(1)=0g5"(t) — Kaw,— Kow, — K e— K@ troller (9) and (15), the gains or(15) are chosen ako,=1, Ky

=3, ko,,=6, k3, =3. The desired link master trajectory is:
yields semi-global exponential convergence of the closed-loop er- 2m 3m ! ! J vt

rors. Omg(t)=1+0.5sint) [rad]

The slave robot parameters avk,=0.4, Ks=100, B, =5, mg
. =1,1s=1,J,=0.02. The initial conditions for the slave robot are
7 Design Procedure 0s(0)=0.5 rad, q5(0)=0 rad/s, 65(0)=0.51 rad, 9,(0) =0 rad/s.
The tuning gain procedure can be summarized as follows: The initial conditions for the observelg1), (23), and (24) are
. . . chosen a®(0)=-0.1, w;(0)=0, w,(0)=0, w5(0)=0, qs(0)
1. Choose the gain§; andI’;,i=0, 1, 2, 3,j=1, 2,3, 4such _ - P _ 4 o
that\(s) (39) is Hurwitz. =0.4,95(0)=0, 65(0)=0.4, andfs(0)=0.
2. Determine the bounds of the physical paramebt$q,), The scalar gains in, (20), and the observer21), (23), and

4 ) X e . (24) are chosen to bé&,=65, k;=40, k,=10, kz3=4, y,=40,
%gqs,qs), 0<(qs) and their partial derivatives with reSPeCly, =700, y5=4000,7,=1000, 11 =1, u,=5, u5=1, us=5. As
.

3. Determine the bounds of the master trajectofigs § itis shown in Fig. 1, the synchronization error between the master
@) ) M and slave link position is stable and bounded after the transient
Om” s Om’ - . period has finished. The same is concluded for the estimation
4, Choose\0>0, ,ulM_>0, tam>0 and a bound for the maxi- grrors in Figs. 2 and 3.
mum eigenvalue of.,, i.e., uow - In agreement with the stability analysis, the simulations have
5. Choose pu;, such that u;,>max0,2M: (No shown that the final bound of the errors depends on the gains
fCMVM),(Z)\OMsm)’l(MSfMsmKsmf4CMVM)\0 and K,, see Section 6.2.2. Meanwhile the transient behavior is
—2CuVuMgmuim +MsMsmatam) } mainly determined by, 3 and the gairky, this is due to the
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luput torque 5. Estimation synchronizalion position error €.
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Fig. 2 Input torque 75 and estimation synchronization position error é

fact theK, defines the poles of the linear pdx in (29), andu,, Appendix 1

w3 weight the ef‘f_ect of the estimation errors through the tQTn'n_ Proof of Proposition 1. Consider a state space representation
(29). Therefore if uq, u3 are large, as well as the estimation .

errors, then the term has a large influence in the synchroniza®f (D—=(3), with statesqs, qs, 65, s, then from the observer

tion error dynamics, this large influence lasts until the estimatiddd: (24 and the joint estimation error&3), it follows that:
errors reach a vicinity around zero. dza_ G
The simulation study shows that in order to minimize the peaks H1

during the transient period, it is important to tune the gaingon <_ _ M1 2 SN TINT+K(T— ) — T

(20) such that the polynomial(s) (39) corresponds to an over- q s (A5)((2C4(0s,05) = Co(ds, @) A+ K(G= 6)) ~ 120

damped system. At the same time the gains ws should be set o= F— us (56)

small to minimize the influencé&hrough the ternb) of the esti- 3

mation errors. “ _ ~ - _ ~ ~
0=—3."K(6-9)— I35 'B, s0— 140

9 Conclusions The first and third equation db6) imply that:

A synchronization controller for flexible joint robots intercon- ~ . ~ = = -
nected on a master-slave scheme, has been proposed. The control- =0+ 4=0- w4 (57)
ler only requires measurements of the master and slave link posi- s R -
tions, the velocities and accelerations are estimated by mean of 0=0+usd, 0=0—pus3q (58)
model-based nonlinear observers. therefore(16) and (56) yield the joint estimation error dynamics

It has been proved that the proposed control law yields locglg).
uniformly ultimately boundedess of the closed-loop errors. It is Consider the joint estimation errors given 85), and intro-
also shown that the final bound of the errors depends on the foufifi.e the variabIeE ATsJ) as:
derivative of the master robot trajectories. A tuning gain procedure ' . -

to guarantee the stability result has been summarized. a=Gs—0s, q®=q®—-q® (59)

Differentiating(1) twice, and by considerin@®), 75 given by(17),
Acknowledgments and property(4) it follows that:
The first author acknowledges support from the CONACYT o -~
(National Council for Science and Technoldgiexico, Scholar- ~ My(qe) (95— v (1)) +¥(qs,0s,0s,95,9,0,9,9°,6,6) =0
ship No. 72368. (60)

~ o~

Estimation link position error .
. T

Estimalion motor position error 6.
0.1 T T 0.12 T T T

0.08
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Fig. 3 Estimation link and motor position error q, 0
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where W (qs.gs,ds.06.9.8.9°
match with the desired linearization, which is caused by abserﬁj‘éalghtforward chain of substitutions and simplifications. Subst-

of the high order derivatives afs, g, ¢

According to the definition oﬁ (59, and by consideringl1),

(18) and(57) it follows that:
E:
+KJ(G-0))

In a similar way, but considering9), (12) and(19), it is obtained

- M;l(qs)((zcs(QS vqs)f Cs(qs ﬁ*#lﬁ))(ﬁﬂhﬁ)

tution of (65 and (20) in (60), and considering21), yields the
synchronization error dynamid¢g6).

Consider the observéR1) and the estimation synchronization
errors(22), then it follows that:

8483 —T,8-T6-T,8=0 (66)

Subtraction of(66) from the synchronization error dynamiz6),
and considering the estimation synchronization er(ag3, yields

(61)

that: the estimation synchronization error dynami2g). |
= 1 : . T oo Appendix 2
q :_Ms (ds)(M4(ds,0s)ds—M(0s,0s)ds+ N(ds,ds,ds)

- N(Qs 1615 1as)+ K ('E]—'Z’))

Proof of Lemma 6. From the properties of the matrices

M(ds), Cs(ds.0s)0s, the gravity termgg(gs), (see Section 2

2
(62) and because their nonlinear terms contain only sinusoidal func-

where, by considering properti#) and after a straightforward tions of g5, we have that for alhse R", their partial derivatives

computation, can be bounded as:
: Co S (q ) ~
M(0s,0s)ds— M(ds,0s)ds= — (qq$+(q$ ) 1) (W;—(qS) <Myn, i MS(ZqS) <Mp,m
(63) ds dQg
N(stqsvds)fN(QS‘asvas) ”ag;—;qS) \Gpm. i gS(ZqS) = ppM
s d0s
~. 99s(q >~
Cy(Qs,a) st (Cy(0s,9s) —C (qs:Q))q+ qus Csl_(qs)]
: <C
am
+ CSl'(qS) (~ +( ~)~) Csn(qs)
4gs+(gs—a)q
Colao] p Csl_(qs)] ‘ 52 | Csi(ds)
A <Com. |I=75| <Cppm-
.0 Csl:(QS) ~. L e~ s Csnl(gs) 995 Csn(ds)
+qsa_qs c ( ) (A5 +(ds—a)q) For the sake of simplicity and without loss of generality, let as-
snlds sume thatQ,=— (P,A+ATP,) is a symmetric positive definite
Ca(Qs) block diagonal inatrix, withnxn block entries, and denote the
’ai : (9 _'a)(q _'a)) (64) i-th diagonaln<n block of Q, by Q,;. Then from the definition
9 Cer(ds) s s of Xy, Yn, andéy (47), andV given by (43), it follows that the

Let <I>(qs,qm,qm,qm ,e e,e®q 4, G,6,6) denotes the function

9,9.0, q(3) '9,0) after substitution of the rela-
tions (57), (58), (61), (62), (63), (64), and(16), it holds that

W(ds.9s,s,98)

q)(q31qm xdm xq;(ﬁ) :éxé:e(s),a,

termx"Q,x in (43) can be bounded ag,R.xy , with R, e R®*8

R=diagQyy} i=1,....,8 (67)

where Q,;y is the maximum eigenvalue @,;, and such that

positive definiteness d®, implies thatR, is positive definite.
From Q, (44), the term(} (46), and the bounds of the partial

derivatives ofM4(qy), Cs(qs,qs)qs, andgg(qs), it follows that

§,6,6)

=V(0s.05.85.0,6,0.8,79 ,6.6) (65) yTQ,y can be bounded agR,yy, with R, e R***
|
i aé a’{ CV; aa T
. 1 1
a7 Mgnbim=2No+2CuVn  pouam— 2 Ksm EJlebsM
R,= 1 _
Y a3 MoM3m — EKSM 2770‘]51\%Ksm Ay
* l *
ag stMMSM @y By,sm— 470
af = 2N o(Moy(Ksm+2CyVisim) + om),  af =CyuVu(2Maho+ pam) — 5 Msmttom — Eﬁl

al=—\

E(Bv,sMﬂaM +Jsmttam — Ksm),
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1

B 1
ay = ﬂOJsrrllBu,sM_ §#4M - 5,32

(68)
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The matriceR}, andR, are related to the bounds of the quadratic @ =2x. TPQ[M ot ®r +Ey]+20CyM

smllyalllyalldlly

terms inx andy of v (43) Nevertheless, there exist other cross

quadratic terms irx andy which come fromQ,, (45 and ().
These cross quadratic terms are bounded, such Ejatcorre-
sponds to the bound of the cross quadratic terms of:

IXTQuyX|l + [XTPyB[ = Mg (@ + K Jg *K(y1—Y3)
—Kgg Bu s(Yat m3ys) )+q(4)]H

Let consider® + KSJ; Ks(Y1—Y3)— KS.]; B, s(Y4t m3y1), this
term can be bounded as

1D +KJg 'K(Y1—Ya) —Ksdg B, o(Yat+ may) [ <Py + D,

(69)

where®d, contains terms of first order ix y, and®, contains the
remaining termgorders 2, 3 and ¥ After a long straightforward
computation it is obtained thab, is given by:

Oy =((a;+ag) mim+aztagusw)ydl+(ar+as)lyl+azlysl
+agl|y4ll

a;=2M 2 Cy V[ An(Mpm+2Cqm) + Gpm+ Ksmt V(M py
+2Cm) 1+ ComVm(6AY+2M 1 1CyViy) +4ComV iy
+2(AM+C MAMVYM+2Mgy c MCMVM)

McaVu(2M o+ Cy+ Cam)[Gpm+3ComViy + (M
+Cp+ Cam) (Ay+2M Vi) 1+ Dy(2M py+ Cyy+ Co)
+2M§mCMVMAM(M M+ZCqM)+ZGppM+2MppMAMVM

=KsnMyg, {ZAM(MpM+2CqM)+GpM+KSM-‘:-VM(M
+2CpM)}++Ksm{Ms_meMVM(2+VM)
+(M;¢VM)Z(MPM+CM+ch)(2MpM+cM+ch)}
=KsrMemVpm(2M py+Cy+ Cqm)
Therefore, the matri>lRXy is given by:
ny=Ms_n:1LPQ[R1€ a;+ag a;+Kiydon
[ (Py1a+ Pxighw |
(Px2at Px2g)m
(Px34+ PX38)M
(Pxaat Pxaglm
(Pxast Pxsg)m
(Pxast Pxeg)m

(Pyart Pxzglm
| (Pxag™ Pxggwm |

-1
RT =(a;+ag) uaw+a+aguam + Ksmdsm(By smmram — Ksm)

Remark 12. Notice that g, a,, a; are uniquely determined by

a3+ KowdsmB, su]

(70)

+ pamllyal) + Cumamllyllly2l2+ Cu e amllyall + 2lIx,l)
X (2N oM gllyall+ ly2) (llyall+ s amllyall)

Appendix 3

Proof of Proposition 9. First notice that the definition g8,
B2 given by (54), imply thatay =0, o =0 in R, (68). Second,
let Ry; denote the determinant of thieth leading minor ofR,
then conditions foR,;>0,i=1, ... ,4, aregiven by:

Ry1>0 if Ag>0, ,ulm>0 andu,m>0
* Ry2>0 if p1m>2Mgi(No—CyViy)
. For Rys, first notice that it can be written &y;=aguom
+agg, with ag;= b321u'3M+b31/-L3M+b301 andb;,<0. Then
a3>0 if w3z <pam, maw<msz, Where

M33_, Haz= YRRV (ZJSMKSM+4(2‘]SM770KSM(MSqu’lm

+2(CyVu—1o)))"?
becauseaz; >0, thenu,m> —azaz, implies Ry3>0.
Rys can be written asRy =asuomtas, Wwith as
= b42,u3M +Dbyuzm+bag, andb,,<0 if 7 holds:

1
8J M (JSMBu,sm

BU sm

<7<
Onomln4

+ (JZMBU sm+ 8JSM‘]ngsm)llz)

Then b,,<0 implies thatas;>0 if way <pam, mam<isza,
where

M3a_s M3a=

2(70(2dsm(410= B, sm)) = I2Ksm)
X(ZJSMKsmWO(A'nO_Bv,srn)i(z‘]sMKsmﬂO)llz
- ((419= B, sm)[J5KZw+8776(2Mg—2Cy Vi

~Mamitm) JsudenKsm— 2770(470~ By sm)) D)

becausea,;>0, thenuym™> —asas, implies Ry,>0.

If the above conditions are satisfied, then the determinants of all
the leading minors oR, are positive. Therefore from the Sylvest-
er’s criterion, it follows thatR, is positive definite. |
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