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Synchronizing Tracking Control for
Flexible Joint Robots via
Estimated State Feedback
In this paper, we propose a synchronization controller for flexible joint robots, which
interconnected in a master-slave scheme. The synchronization controller is base
feedback linearization and only requires measurements of the master and slave lin
sitions, since the velocities and accelerations are estimated by means of model-
nonlinear observers. It is shown, using Lyapunov function based stability analysis
the proposed synchronization controller yields local uniformly ultimately boundedne
the closed loop errors. A tuning gain procedure is presented. The results are support
simulations in a one degree of freedom master-slave system.@DOI: 10.1115/1.1636197#
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1 Introduction
This paper addresses the problem of synchronization of ro

manipulators with flexible joints. It is assumed that not all t
joint state variables are measured, e.g., link and rotor veloc
are unknown, which is a very common situation when joint fle
ibility is present. In robotic systems synchronization is of gre
importance as soon as two robots have to cooperate. This c
erative behavior gives manoeuvrability and dexterity that can
be achieved by an individual system, e.g., multi finger rob
hands, multi robot systems, walking robots.

Typically robot coordination and cooperation, see@1,2#, and@3#,
form important illustrations of the same goal, where it is desi
that two or more mechanical systems, either identical or differ
are asked to work synchronously. This is obviously a control pr
lem that requires the design of suitable controllers to achi
the required synchronous motion. The problem of synchroniza
of robots, can be seen as tracking between the systems with s
additional challenges that are not considered in track
controllers.

Joint flexibility or joint clasticity, considerably affects the pe
formance of robot manipulators@4#, and is a major source o
oscillatory behavior. To improve the performance of robot m
nipulators, joint flexibility has to be taken into account in th
modelling and control of such systems. Joint flexibility can
caused by transmission elements such as harmonic drives,
or long shafts; and it can be modelled by considering the posi
and velocity of the motor rotor, and the position and velocity
the link. Therefore, the order of the dynamic model for a flexib
joint is twice that of a rigid joint, consequently, the controllers a
more complex than those for rigid joint robots. From a modelli
point of view, two dynamic models for the flexible joint robo
have been considered. In@5# an extended model for flexible join
robots is presented, which includes the full nonlinear dynam
interactions among joint flexibilities and inertial properties
links and actuators. If it is assumed that the kinetic energy of
electrical actuators is due only to their own rotor spinning, the
reduced model is obtained@6#. This reduced model satisfies th
conditions of full state linearization and decoupling via static st
feedback. Meanwhile it has been proved that the extended m
is fully linearizable and decouplable via dynamic state feedb
@7,8#. Other techniques like adaptive control, singular pertur
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tions, and robust control have been investigated to design e
tive controllers for flexible joint robots~see@9,10#!.

All the above mentioned controllers assume that all state v
ables are available, implying the presence of additional senso
each joint, which in practice is difficult if not impossible. Besid
the complexity in the implementation of measuring equipme
velocity measurements are often obtained by means of tach
eters, which are often contaminated by noise, or moreover, ve
ity measuring equipment is frequently omitted due to the savi
in cost, volume, and weight that can be obtained. To overco
this problem numerical differentiation, filters and the design
observers have been considered. Numerical differentiation and
ters possess the advantage of simplicity in implementation. H
ever they present a reduced bandwidth and in general there
an analytical method to guarantee that the closed loop system
be stable. On the other hand, observers are in general mo
based, and thus require information about the system, and
thus be more difficult to implement. Nevertheless, model-ba
observers allow, in most cases, a stability proof and a metho
ogy to tune the observer gains, which guarantee a stable cl
loop system. In@11# a nonlinear observer based on pseudoline
ization techniques has been proposed, a high gain observ
presented in@12#, and a semiglobal nonlinear observer is design
in @13#. From an implementation point of view, it is desirable th
controllers be designed to require few incasurements as poss
Examples of such philosophy are the controllers for flexible jo
robots proposed in@14# and @15#, which require only link and
rotor position measurements.

In this work, the main goal is to ensure synchronization b
tween two robots, where the robot for which the control w
be designed~slave! has flexible joints, and the robot, whose tr
jectories are to be followed~master!, may or may not have flexible
joints. This goal is carried out assuming only link positio
measurements.

Consider two fully actuated robots withn joints each and work-
ing in a master-slave scheme, such that the subindexesm, s iden-
tify the master and slave robot. Assume that the master robo
driven by a torquetm(•), that in the ideal case, ensures conve
gence of the link position and velocityqm , q̇m to a desired tra-
jectory qd , q̇d . However, the torquetm , the dynamic model and
parameters of the master robot, as well as the link velocity
accelerationq̇m , q̈m , are not available for design of the slav
controllerts(•). Also we assume that the slave rotor positionus ,
and the slave link and rotor velocities and accelerationsq̇s , q̈s ,
u̇s , üs are not measured. Therefore, the slave controllerts , that is
to be designed such that the link variablesqs , q̇sPRn synchronize
with the variablesqm , q̇m , can only depend on link position
measurements of both robots, i.e.,qm , qs , and estimated or re-
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constructed values ofus , u̇s , q̇m , q̈m , q̇s , q̈s . Notice that the
goal is to follow the link trajectories of the master robotqm , q̇m ,
and no the desired trajectoriesqd , q̇d for the master robot, which
may not be realized due to model uncertainties or disturban
e.g., noise, unknown loads.

A similar setup and goal have been considered in@16# for the
case of rigid joint robots. In@16# semiglobal uniform, ultimate
boundedness of the synchronization system is proved and a
tionship between the controller gains and the ultimate e
bounded is obtained. Throughout this paper for matrices the
duced normiAi5Almax(A

TA) is considered, withlmax(•) the
maximum eigenvalue. For any positive definite matrixA, Am and
AM denote its minimum and maximum eigenvalue, respective

This paper is organized as follows, Section 2 presents a red
model for the flexible joint robot and some of its properties.
nominal controller, assuming that all signalsus , u̇s , qm , q̇m , qs ,
q̇s are available, is introduced in Section 3. Section 4 presen
version of the nominal controller based on estimated values
us , u̇s , q̇m , q̇s . The closed loop system formed by the sla
robot and the synchronization controller is obtained in Section
and its stability analysis is presented in Section 6. Section 7 s
marizes a tuning gain procedure for the gains in the controller
observers. A simulation study is presented in section 8. So
conclusions are given in Section 9.

2 Reduced Dynamic Model of the Flexible Joint Robot
The dynamic model of a flexible joint robot can be obtained

extending the procedures already used for rigid robots@5#. Con-
sider a flexible joint robot, withn rigid links, all joints being
flexible, revolute, and actuated by electrical drives. LetqiPRn be
the link positions andu iPRn be the rotor positions, as reflecte
through the gear ratios, the subindexi 5m, s identifies the master
~m! and slave~s! robot. The differenceqi j 2u i j is the j-th joint
deformation, in view of small deformations, joint elasticity
modelled as a linear spring. The rotors of the motors are mode
as balanced uniform bodies having their center of mass on
rotation axis, so that the inertia matrix and the gravity term in
dynamic model are independent from the motor positionu i . As-
suming that the motion of the rotors can be considered as
rotations with respect to an inertial frame, then the kinetic ene
of each rotor is due to its own spinning. Therefore, the iner
coupling between links and rotors can be neglected and a red
dynamic model is obtained~see@6#!. Following @6# and the La-
grangian approach@17#, we obtain the dynamic model:

Mi~qi !q̈i1N~qi ,q̇i !1Ki~qi2u i !50 i 5m,s (1)

Ji ü i1Ki~u i2qi !1Bv,i u̇ i5t i (2)

N~qi ,q̇i !5Ci~qi ,q̇i !q̇i1gi~qi ! (3)

where the symmetric positive definite inertia matrixMi(qi)
PRn3n, the Coriolis and centrifugal termCi(qi ,q̇i)q̇iPRn,
and the gravity termgi(qi)PRn are all related to the rigid links
JiPRn3n is the constant diagonal inertia matrix of the moto
KiPRn3n is the constant diagonal matrix of the joint stiffnes
Bv,iPRn3n is the diagonal positive definite viscous friction coe
ficient matrix, andt i(•) is the n-vector of torques supplied by
the motors. The following properties are satisfied by the mo
~1!–~3!

• If the matrixCi(qi ,q̇i)PRn3n is defined using the Christoffe
symbols@18#, then the matrixṀ i(qi)22Ci(qi ,q̇i) is skew
symmetric.

• In addition, for the previous choice of the matrixCi(qi ,q̇i),
the Coriolis and centrifugal termCi(qi ,q̇i) can be written as:

Ci~qi ,q̇i !5F q̇iCi1~qi !

]

q̇iCin~qi !
G (4)
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where Ci j (qi)PRn3n j 51, . . . ,n are symmetric matrices. I
follows that

Ci~qi ,x!y5Ci~qi ,y!x
(5)

Ci~qi ,z1ax!y5Ci~qi ,z!y1aCi~qi ,x!y

for any scalara and for allqi , x, y, zPRn.
• The matricesMi(qi), Ci(qi ,q̇i), Bv,iPRn3n are bounded

0,Mim<iMi~qi !i<MiM for all qiPRn (6)

iCi~qi ,x!i<CiM ixi for all qi ,xPRn (7)

0,Bv,im<iBv,i i<Bv,iM (8)

3 Nominal Feedback Controller
Consider that~1!–~3! define the dynamics of two robots work

ing under a master slave scheme. Based on inverse dyna
computation and using De Luca and Lucibello@8#, the slave robot
with model ~1!–~3! can be fully linearized and decoupled via th
static feedback control law:

ts5Ks~us2qs!1Bv,su̇s1JsKs
21@Ms~qs!v~ t !

1a~qs ,q̇s ,q̈s ,qs
~3!!# (9)

a~qs ,q̇s ,q̈s ,qs
~3!!52Ṁ s~qs ,q̇s!qs

~3!1~M̈ s~qs ,q̇s ,q̈s!1Ks!q̈s

1N̈~qs ,q̇s ,q̈s ,qs
~3!! (10)

From ~1! it follows that q̈s , qs
(3) are related to lower order vari

ablesqs , q̇s , u̇s as:

q̈s52Ms
21~qs!~N~qs ,q̇s!1Ks~qs2us!! (11)

qs
~3!52Ms

21~qs!~Ṁ s~qs ,q̇s!q̈s1Ṅ~qs ,q̇s ,q̈s!1Ks~ q̇s2 u̇s!!
(12)

Therefore~9! can be written as function ofqs , q̇s , us , u̇s , i.e.:

ts5Ks~us2qs!1b~qs ,q̇s ,us ,u̇s!1w~qs!v~ t !

b~qs ,q̇s ,us ,u̇s!5Bv,su̇s1JsKs
21a~qs ,q̇s ,q̈s ,qs

~3!! (13)

w~qs!5JsKs
21Ms~qs!

Applying the controller~9! to the system~1!–~3! yields the linear
decoupled closed loop system:

qs
~4!5v~ t ! (14)

To ensure synchronization between the slave and the master
v(t) is proposed as:

v~ t !5qm
~4!2K3e~3!2K2ë2K1ė2K0e (15)

with KiPRn gain matrices and the synchronization errors defin
by:

e5qs2qm , ė5q̇s2q̇m (16)

where the master position trajectoryqm has to be at least fou
times differentiable, i.e.,qmPC4. Clearly, there exist genera
choices for the gain matricesKi such that the closed loop system
is stable, but for simplicity and without lost of generality, w
assume that the gain matrixKi is a multiple of the identity matrix,
i.e., Ki5ki I n , i 50, 1, 2, 3, withki positive scalars. Then, it is
straightforward to conclude that the synchronization errore is
exponentially stable, if the scalarski , i 50, 1, 2, 3 are chosen
such that the polynomials41k3s31k2s21k1s1k0 is Hurwitz.

4 Feedback Controller Based on Estimated Variables
As stated in Section 1, it is assumed that only the master

slave link positionsqm , qs are measured, thereforets ~9! andv(t)
~15! can not be implemented.
MARCH 2004, Vol. 126 Õ 163
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Let q̂s , q6 s , ûs , u6 s denote estimated values forqs , q̇s , us , u̇s ,
and v(t) given by ~15! is implemented based on estimated sy
chronization errors. Assuming thatq̂s , q6 s , ûs , u6 s are available,
the controller~13! can be modified as:

ts5Ks~ ûs2q̂s!1b~qs ,q6 s ,ûs ,u6 s!1w~qs!v~ t !

b~qs ,q6 s ,ûs ,u6 s!5Bv,su6 s1JsKs
21a~qs ,q6 s ,q̂̈s ,qs

~3!̂ ! (17)

a~qs ,q6 s ,q̂̈s ,qs
~3!̂ !52Ṁ s~qs ,q6 s!qs

~3!̂1~M̈ s~qs ,q6 s ,q̂̈s!1Ks! q̂̈s

1N̈~qs ,q6 s ,q̂̈s ,qs
~3!̂ !

where according to~11!, ~12!, estimates forq̈s , qs
(3) are given by

q̂̈s52Ms
21~qs!~N~qs ,q6 s!1Ks~ q̂s2 ûs!! (18)

qs
~3!̂52Ms

21~qs!~Ṁ s~qs ,q6 s! q̂̈s1Ṅ~qs ,q6 s ,q̂̈s!1Ks~q6 s2u6 s!!
(19)

4.1 An Observer for the Synchronization Errors. From
the work of Berghuis and Nijmeijer@19#, we propose the modified
controllerv(t) ~15! as:

v52K3ẇ22K2ẇ12K1ė̂2K0ê (20)

where ê, ė̂, ẇ1 , ẇ2 represent estimates fore, ė, ë, e(3) respec-
tively. They are obtained by the observer:

ė̂5w11G1ẽ

ẇ15w21G2ẽ
(21)

ẇ25w31G3ẽ

ẇ35G4ẽ

with G iPRn3n, i 51, 2, 3, 4 diagonal positive definite gain ma
trices and the estimation synchronization error defined by:

ẽ5e2ê (22)

4.2 An Observer for the Slave Variables.qs , q̇s , us , u̇s.
Based on the dynamic model~1!–~3!, we propose the nonlinea
Luenberger observer:

d

dt
q̂s5q6 s1m1q̃

(23)
d

dt
q̂̇s52Ms

21~qs!~N~qs ,q6 s!1Ks~ q̂s2 ûs!!1m2q̃

d

dt
ûs5u6 s1m3q̃

(24)
d

dt
u6 s5Js

21~ts~qs ,q̂s ,q6 s ,ûs ,u6 s!2Ks~ ûs2q̂s!2Bv,su6 s!1m4q̃
164 Õ Vol. 126, MARCH 2004
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whereq̂s , q6 s , ûs , u6 s correspond to the estimates ofqs , q̇s , us ,
u̇s , and m1 , m2 , m3 , m4PRn3n are diagonal positive definite
gain matrices. The joint estimation errors are defined by

q̃5qs2q̂s , ũ5us2 ûs (25)

5 Closed-Loop System
In this section, the total error dynamics is obtained.
Proposition 1. Consider the master and slave flexible joint r

bots, which are described by~1!–~3!, the slave robot in closed
loop with the synchronization controllerts ~17!, v ~20! and the
observers~21!, ~23!, and ~24!, then the synchronization closed
loop error dynamics is given by:

e~4!1K3e~3!1K2ë1K1ė1K0e

5qm
~4!1K3~ ẽ~3!1G1ë̃1G2e8 !1K2~ ë̃1G1e8 !1K1e81K0ẽ

2Ms
21~qs!F~qs ,q̇m ,q̈m ,qm

~3! ,ė,ë,e~3!,q̃,q8 ,ũ,u8 ! (26)

ẽ~4!1~G12K3!ẽ~3!1~G22K3G12K2! ë̃

1~G32K3G22K2G12K1!e81~G42K0!ẽ

5qm
~4!2K3e~3!2K2ë2K1ė2K0e

2Ms
21~qs!F~qs ,q̇m ,q̈m ,qm

~3! ,ė,ë,e~3!,q̃,q8 ,ũ,u8 !,

(27)

q̈̃52Ms
21~qs!~~2Cs~qs ,ė1q̇m!2Cs~qs ,q81m1q̃!!~q81m1q̃!

1Ks~ q̃2 ũ !!2m1q82m2q̃

ü̃52Js
21Ks~ ũ2q̃!2Js

21Bv,s~u81m3q̃!2m3q82m4q̃ (28)

Proof: A sketch of the proof is given in Appendix 1. j
Notice that F can be considered as a disturbance term t

affects ~26! and ~27!. Also notice that~26! and ~27! present a
linear structure, therefore, the following proposition can be f
mulated.

Proposition 2. Define states x1 , . . . ,x8PRn as x15e, x25ė,
x35ë, x45e(3), x55ẽ, x65e8 , x75 ë̃, x85ẽ(3), and yPR4n as
y15q̃, y25q8 , y35 ũ, y45u8 . Such that the state vectors x and
are given by x5@x1

T x2
T x3

T x4
T x5

T x6
T x7

T x8
T#T and y

5@y1
T y2

T y3
T y4

T#T. Then~26!, ~27!, and ~28! can be written as:

ẋ5Ax2BMs
21~qs!F~qs ,q̇m ,q̈m ,qm

~3! ,x2 ,x3 ,x4 ,y1 ,y2 ,y3 ,y4!

1Bqm
~4!

ẏ5 f ~qs ,q̇m ,x,y! (29)
A53
0 I n 0 0 0 0 0 0

0 0 I n 0 0 0 0 0

0 0 0 I n 0 0 0 0

2K0 2K1 2K2 2K3 K0 p1 p2 K3

0 0 0 0 0 I n 0 0

0 0 0 0 0 0 I n 0

0 0 0 0 0 0 0 I n

2K0 2K1 2K2 2K3 K02G4 p12G3 p22G2 K32G1

4 PR8n38n (30)

B5@0 0 0 I n 0 0 0 I n#TPR8n3n

(31)
Transactions of the ASME



p15K3G21K2G11K1 , p25K3G11K2

with 0, I nPRn3n the zero and identity matrices.
The nonlinear vector function f(qs ,q̇m ,x,y) is given by:

f ~qs ,q̇m ,x,y!5F y2

2Ms
21~qs!~2Cs~qs ,x21q̇m!2Cs~qs ,y21m1y1!!~y21m1y1!

2Ms
21~qs!Ks~y12y3!2m1y22m2y1

y4

2Js
21Ks~y32y1!2Js

21Bv,s~y41m3y1!2m3y22m4y1

GPR4n (32)
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Proof: This follows from simple substitution of the statesx and
y. j

6 Stability Analysis
The stability analysis is based on a Lyapunov function, wh

derivative can be bounded in terms of the closed-loop errors.
proven that the bound is negative in an annulus around the or
To derive bounds on the derivative of the Lyapunov function
following assumption is required.

Assumption 3. The signals q˙ m , q̈m , qm
(3) , qm

(4) are bounded for
all t P@ t0 ,`), therefore there exist VM , AM , DM and EM such
that:

sup
t

i q̇mi5VM,`, sup
t

i q̈mi5AM,`

(33)
sup

t

iqm
~3!i5DM,`, sup

t

iqm
~4!i5EM,`

In practice, it is often not difficult to obtain the master trajector
bounds~33! on the basis of the master desired trajectoriesqd(t)
and its derivatives, although due to friction effects, tracking
rors, etc., the actual motion of the master robot may differ from
desired motion. Also the boundsVM , AM , DM , andEM can be
obtained by considering the structural limitations of the robo
such as maximum velocities and accelerations of the motors
the other hand, for the sake of simplicity the following assumpt
is imposed.

Assumption 4. All the gains in the controller (17), (20), and
the observer (21) are a positive multiple of the unit matrix, i.e.,
the form K5kI, where k is a positive scalar.

Based on the above assumptions, the main result of this pap
formulated as follows.

Theorem 5. Consider the master and slave flexible joint robo
described by (1)–(3), the slave robot in closed loop with the co
troller ts (17), andv (20) and the observers (21), (23) and (24
Assume that the gain matrices Ki andG j , i 50, 1, 2, 3, j51, 2, 3,
4 are chosen such that the matrix A, given by (30), is Hurwitz, a
additionally the minimum and maximum eigenvalues of the ga
m l , l 51, 2, 3, 4, i.e.,m lm and m lM , satisfy:
Journal of Dynamic Systems, Measurement, and Control
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m1m.max$0,2Msm
21~l02CMVM !,~2l0Msm!21

3~4l0
22MsmKsm22CMVM~2l01Msmm1M !

1MsmMsMm2M !% (34)

m2m.max$0,2a31
21a30,2a41

21a40% (35)

m3m.max$0,m332
,m342

%, m3M,min$m33
2 ,m34

2 % (36)

m4m.max$0,Jsm
21~4h0

22JsmKsm22h0Bv,sM1Jsmm4M !%
(37)

where Msm and Jsm are the minimum eigenvalue of the link an
motor rotor inertia matrices, and the scalarsl0 , h0 , m332

, m342
,

m33
2 , m34

2 , a30, a31, a40, a41 are defined via the gain tuning
procedure of Section 7. Then the synchronization closed-loop
rors and the estimation errors are semi-globally uniformly ul
mately bounded.

In particular, it means that ther exist a region of convergen
depending on the controller gains, such that if the initial errors
time t50 are in this region they will remain bounded for all tim
t>0 with a bound smaller that the region of convergence.

Proof: The proof is divided in three parts, first the candida
Lyapunov function and conditions for positive definitiveness a
presented. Second the derivative of the Lyapunov function al
~29! is bounded, and finally sufficient conditions for negative de
niteness are formulated.

6.1 Lyapunov Function. Consider the synchronization
closed-loop error dynamics given by~29!, and take as a candidat
Lyapunov function:

V~qs ,x,y!5xTPxx1
1

2
yTPy~qs ,y!y (38)

where the positive definite symmetric matrixPx is the solution of
the Lyapunov equationPxA1ATPx52Qx , for any given sym-
metric positive definite matrixQx , andPy(qs ,y) is given by:
Py~qs ,y!5F FKs12l0m11b1I n 2l0I n

2l0I n Ms~qs!
G 0

0 FKs1m41b2I n 2h~y3!I n

2h~y3!I n Js
G G
with b1 , b2 scalars to be determined, andh(y3) defined by:

h~y3!ª
h0

11iy3i
l0 , h0.0 are constant scalars; then for allũ, u8 it holds that:

0,ih~y3!i,h0 , ḣ~y3!y4
Ty3<h0iy4i2

Existence ofPx is guaranteed ifA, which is given by~30!, is
MARCH 2004, Vol. 126 Õ 165
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Hurwitz. By Assumption 4, a sufficient condition forA being Hur-
witz is that the scalar polynomiall(s), given by:

l~s!5s81g1s71g2s61g3s51~g41k1g11k2g21k3g3!s4

11~k0g11k1g21k2g31k3g4!s31~k0g21k1g3

1k2g4!s21~k0g31k1g4!s1k0g4 (39)

is Hurwitz. ki , g j are the scalars associated to the gainsKi and
G j , i 50, 1, 2, 3,j 51, 2, 3, 4. Thus by choosing the gainsKi and
G j , it can be ensured that the matrixA is Hurwitz. Therefore,
there exists a unique positive symmetric matrixPx , which satis-
fies PxA1ATPx52Qx , for any given symmetric positive defi
nite matrixQx .

On the other hand, sufficient conditions for positive definiten
of Py(qs ,y) are:

m1m.
1

2l0Msm
~4l0

22MsmKsm2Msmb1!
(40)

m4m.
1

Jsm
~4h0

22JsmKsm2Jsmb2!

Finally, positive definiteness ofPx and Py(qs ,y) imply positive
definiteness ofV(qs ,x,y) ~38!. Moreover, there exist positive
constantsPm andPM such that forjT5@xT yT#:
166 Õ Vol. 126, MARCH 2004
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1

2
Pmiji2<V~qs ,x,y!<

1

2
PMiji2 (41)

6.2 Derivative of the Lyapunov Function. Along the error
dynamics~29!, the time derivative ofV ~38! is given by:

V̇52xTQxx2xTPxBMs
21F2FTMs

21BTPxx

1yTPy~qs ,y! f ~x,y!1
1

2
yTṖy~qs ,y!y1xTPxBqm

~4!

1qm
~4!TBTPxx (42)

that can be written as

V̇52@x y#TF Qx Qxy

Qxy
T Qy

G FxyG1V~qs ,q̇m ,q̈m ,qm
~3! ,qm

~4! ,x,y!

(43)

with QxPR8n38n the symmetric positive definite matrix
Qx52(PxA1ATPx) andQyPR4n34n
Qy53
2l0~Ms

21Ks1m2! a1 a2 a3

a1
T Msm122l0 h~y3!m32

1

2
Ks

1

2
Jsm3

a2
T S h~y3!m32

1

2
KsD T

2h~y3!Js
21Ks a4

a3
T 1

2
~Jsm3!T a4

T Bv,s22h~y3!I n

4
a152

1

2
~b1I n1Msm2!

a252l0Ms
21Ks1h~y3!~m41Js

21Bv,sm32Js
21Ks! (44)

a35
1

2
~Bv,sm31Jsm42Ks!

a45h~y3!Js
21Bv,s2

1

2
~m41b2I n!

QxyPR8n34n depends on the entries ofPxPR8n38n, and it is given by:

Qxy53
Px141Px18

Px241Px28

Px341Px38

Px441Px48

Px45
T 1Px58

Px46
T 1Px68

Px47
T 1Px78

Px48
T 1Px88

4 Ms
21KsJs

21@~Bv,sm32Ks! 0 Ks Bv,s# (45)

The scalar functionV(qs ,q̇m ,q̈m ,qm
(3) ,qm

(4) ,x,y) is locally Lipschitz and is given by:

V52xTPxBMs
21~F1KsJs

21Ks~y12y3!2KsJs
21Bv,s~y41m3y1!!1xTPxBqm

~4!1

2~F1KsJs
21Ks~y12y3!2KsJs

21Bv,s~y41m3y1!!TMs
21BTPxx1qm

~4!TBTPxx

2~2l0y1
TMs

211y2
T!~2Cs~qs ,x21q̇m!2Cs~qs ,m1y1!!~y21m1y1!

12l0y1
TMs

21Cs~qs ,y2!~y21m1y1!1y2
TCs~qs ,y2!m1y112ḣ~y3!y4

Ty3 (46)
Transactions of the ASME
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6.2.1 Boundedness of V˙ . The next lemma synthesizes a ge
eral bound forV̇ given by ~43!.

Lemma 6. Consider V̇given by (43) and introduce the vecto
xN ,yN , and jN :

xN5@ ix1i ix2i ix3i ix4i ix5i ix6i ix7i ix8i #T

yN5@ iy1i iy2i iy3i iy4i #T (47)

jN5@xN
T yN

T #T

Then V̇given by (43) can be upper-bounded as:

V̇<2jN
TRVjN1Q~VM ,AM ,DM ,EM ,jN! (48)

with Vm , Am , Dm , Em given by (33), Q(Vm ,Am ,Dm ,Em ,jN) a
scalar function that contains products of at most order 5 in ter
of the entries ofjN , and the matrix RV is given by

RV5F Rx Rxy~VM ,AM ,DM !

Rxy
T ~VM ,AM ,DM ! Ry~Vm!

G (49)

Rx , RxyPR834, RyPR434, Q and the positive definite matrix
RxPR838 as in Appendix 2.

Proof: See Appendix 2. j

The upperbound ofV̇ given by ~48! can be reduced to a func
tion of the norm ofjN .

Lemma 7. In terms of the vectorjN , (47), the upper-bound o
V̇, (48) can be reduced to

V̇<ijNi~r 02r 1ijNi1r 2ijNi21r 3ijNi31r 4ijNi4! (50)

where r1 is the minimum eigenvalue of the matrix RV , (49), and
the positive scalars r0(EM), r 2(m1M ,m3M), r 3(m1M), r 4(m1M)
are determined byQ(VM ,AM ,DM ,EM ,jN), with VM , AM , DM ,
EM the upperbounds for q˙ m , q̈m , qm

(3) , qm
(4) , which are defined by

(33).
Proof: This follows directly from ~48! and the definition of

jN . j

6.2.2 Negative Definiteness of V˙ . Equation~50) is an upper-
bound for V̇, such that V˙ is negative if and only if r1 is positive
and thevectorjN holds xj,1,ijNi,xj,2 . Where xj,1 and xj,2 are
the roots of the polynomial:

g~xj!5r 02r 1xj1r 2xj
21r 3xj

31r 4xj
4 (51)

such thatg(xj),0 if xj,1,xj,xj,2 .
Notice thatxj,1 and xj,2 determine the region in whichV̇ is

negative definite. Thusxj,1 and xj,2 together with the minimum
Pm and maximumPM bounds of the Lyapunov functionV, ~41!,
determine the region of convergence of the synchronization clo
loop system, similar as in@16#. The scalarr 1 is the minimum
eigenvalue of the matrixRV ~49!, so, r 1 is positive if and only if
RV is positive definite. The following lemma is useful to prov
positive definiteness ofRV .

Lemma 8. (See [20]) If LPRm3m and MPRn3n are given
positive semidefinite matrices and XPRm3n, then the symmetric
block matrix:

xLM5F L X

XT M
G (52)

is positive semidefinite if and only if there exists a matrix
PRm3n, such that X5L1/2CM1/2. If L and M are positive definite,
then this criterion is equivalent to:

iL21/2XM21/2i2<1

Moreover xLM is positive definite if and only if L and M are
positive definite and

iL21/2XM21/2i2,1 (53)
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Before applying the above lemma, it is required to prove that
matrix Ry is positive definite.

Proposition 9. Consider RyPR434 the matrix defined in (49),
and define scalarsb1 , b2 as:

b152CMVM~2Msm
21l01m1M !2MsMm2M (54)

b252h0Jsm
21Bv,sM2m4M

Then sufficient conditions for positive definiteness of Ry are:
1. l0.0
2. m1m.max$0,2Msm

21(l02CMVM)%

3. 0,h0,min$Bv,sm/4, 1
8JsM

(JsMBv,sm

18JsMJsm
2 Ksm)1/2)%

4. m3m.max$0,m332
,m342

%, m3M,min$m33
2 ,m34

2 %

5. m2m.max$0,2a31
21a30,2a41

21a40%
with m332

, m342
, m33

2 , m34
2 , a30, a31, a40, a41 given in

Appendix 3.
Proof: See Appendix 3. j
The conditions listed in Theorem 5 clearly imply the conditio

in the above lemma, therefore it can be ensured thatRy is positive
definite and then Lemma 8 can be used.

For RV , given by~49!, the condition~53! can be written as:

iRx
21/2RxyRy

21/2i2,1

Notice thatRxy depends on the gainsm1 and m3 , but does not
depend onm2 , h0 , l0 . Then, if the gainsm1 , m3 have been
chosen according to Proposition 9, it follows thatRxy is only
determined byPx , ~38!, that is determined byQx ~43!. The matrix
Rx in RV , given by~49! is only determine by the positive definit
symmetric matrixQx , therefore by choosingQx it can be ensured
that det(Qx)@1 and thus det(Rx)@1. Also notice that the only entry
of Ry which depends onm2 is a0* thus by choosing the minimum
eigenvalue of the gainm2 it can be ensured that det(Ry)@1. There-
fore, it follows that the entries ofRx

21/2RxyRy
21/2 are small. As a

result iRx
21/2RxyRy

21/2i2,1 can be ensured, and thusRV , given
by ~49!, is positive definite. Since the condition forRV being
positive definite is given by the minimum eigenvalue of the ga
m2 then it follows that the minimum eigenvalue ofRV , i.e., r 1 , is
determined by the minimum eigenvalue ofm2 , that implies that
r 1 can be chosen such that it dominates the other terms in~50!. To
emphasize the last conclusion, notice thatr 0 , r 2 , r 3 , r 4 do no
depend on the gainm2 .

Finally, notice that according to Section 6.1, Proposition 9, a
the above paragraph, it follows that if conditions in Theorem 5
fulfilled, then the functionV, given by~38!, is a Lyapunov func-
tion with V̇,0 in an annulus around the origin determine byxj,1 ,
xj,2 , ~51!, and the minimumPm and maximumPM bounds of the
Lyapunov functionV, ~41!, see@16#. Therefore the synchroniza
tion closed loop errors are uniformly ultimately bounded in su
annulus. j

The ultimate boundedness result is due to the absence of m
surements of derivatives of the master trajectoryqm , therefore,
we have the following corollary.

Corollary 10. If set point regulation of the master robot i
considered and the master robot controller is able to achie
steady state in finite time, then qm

(4)(t)50 for tP(t2 ,`), with t2
>t0 , the convergence time of the master robot trajectories
additionally the conditions on Theorem 5 are satisfied, then
controller ~17!, ~20!, and the observers~21!, ~23!, and~24! yield
local exponential convergence of the closed-loop errors.

Proof: If qm
(4)(t)50 for tP(t2 ,`), t2>t0 , with t2 the time in

which the master robot achieves stationary state, then it imp
that the upper-bound forqm

(4) is zero for tP(t2 ,`), t2>t0 , and
thus from Assumption 3 it follows that:

EM5sup
t>t2

iqm
~4!i50
MARCH 2004, Vol. 126 Õ 167
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Fig. 1 Master and slave link positions q m , q s , and synchronization position error e
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so r 0(EM)50 in ~50!. Thus, if conditions in Theorem 5 are sa
isfied, for t>t2 ~50! reduces to:

V̇<ijNi2~2r 11r 2ijNi1r 3ijNi21r 4ijNi3! (55)

with r 1 , r 2 , r 3 , r 4.0, andV̇<0 if xj,1,ijNi,xj,2 . As a con-
sequence, there exist a positive scalark, such thatV̇ can be upper-
bounded as:

V̇<2kijNi2 for all t>t2 , xj,1,ijNi,xj,2

From the last equation and~41!, we conclude that there exist som
constantsm* , r.0, such that:

ijN~ t !i2<m* e2rtijN~ t2!i2 for all t>t2 ,xj, 1,ijNi,xj,2

and thus fromjN(t), ~47!, it follows that the close-loop errors ar
locally exponentially stable. j

Remark 11. The proposed synchronization controller~17,20! is
designed to guarantee synchronization between two robots. N
ertheless, it can be used as a tracking controller by taking
desired trajectory qd(t) as the master robot trajectory qm(t). In
case of tracking the desired trajectory qd(t) and its derivatives
are known, such that qm

(4)5qd
(4) can be included through the con

trol v(t) ~20!. In such case, the closed-loop error~29! does not
depend on qm

(4)5qd
(4) , and the stability analysis would result in V˙

given by~55!. Therefore, for tracking of a known desired referen
qd(t) the proposed synchronization controller~17!, ~20! with v̂(t)
~20! modified as:

v̂~ t !5qd
~4!~ t !2K3ẇ22K2ẇ12K1ė̂2K0ê

yields semi-global exponential convergence of the closed-loop
rors.

7 Design Procedure
The tuning gain procedure can be summarized as follows:

1. Choose the gainsKi andG j , i 50, 1, 2, 3,j 51, 2, 3, 4 such
that l(s) ~39! is Hurwitz.

2. Determine the bounds of the physical parametersMs(qs),
Cs(qs ,q̇s), gs(qs) and their partial derivatives with respe
to qs .

3. Determine the bounds of the master trajectoriesq̇m , q̈m ,
qm

(3) , qm
(4) .

4. Choosel0.0, m1M.0, m4M.0 and a bound for the maxi
mum eigenvalue ofm2 , i.e., m2M .

5. Choose m1 , such that m1m.max$0,2Msm
21(l0

2CMVM),(2l0Msm)21(4l0
22MsmKsm24CMVMl0

22CMVMMsmm1M1MsmMsMm2M)%
6, MARCH 2004
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e
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6. Choosem0 , such that 0,m0,min$Bv,sm/4, 1
8JsM

(JsMBv,sm

1(JsM
2 Bv,sm

2 18JsMJsm
2 Ksm)1/2)%

7. Select m3 , such that m3m.max$0,m332
,m342

%, m3M

,min$m33
2 ,m34

2 %, see Appendix 3.
8. m4m.max$0,Jsm

21(4h0
22JsmKsm22h0Bv,sM1Jsmm4M)%

9. ChooseQx a symmetric positive definite block diagonal m
trix, with n3n block entries, such that det(Qx)@1.

10. DeterminePx such thatPxA1ATPx52Qx

11. Choosem2 , such thatm2m.max$0,2a31
21a30,2a41

21a40%,
see Appendix 3, andm2m large enough to ensure
iRx

21/2RxyRy
21/2i2,1.

8 Simulations
The slave~s! and master~m! robot considered in the simulatio

consist of one rigid link with a flexible joint, rotating in a vertica
plane. The dynamic model is given by:

Miq̈i1Ki~qi2u i !1
1

2
migl i sin~qi !50, i 5m, s

Ji ü i1Ki~u i2qi !1Bv,i u̇ i5t i

The master robot parameters areMm50.5, Km575, Bv,m52,
mm51.4, l m51, Jm50.04 ~all values are in SI units!, and its
initial conditions are qm(0)51 rad, q̇m(0)50 rad/s, um(0)
51.1 rad,u̇m(0)50 rad/s. The master robot is driven by the co
troller ~9! and ~15!, the gains on~15! are chosen ask0m51, k1m
53, k2m56, k3m53. The desired link master trajectory is:

qmd~ t !5110.5 sin~ t ! @rad#

The slave robot parameters areMs50.4, Ks5100, Bv,s55, ms
51, l s51, Js50.02. The initial conditions for the slave robot a
qs(0)50.5 rad, q̇s(0)50 rad/s,us(0)50.51 rad,u̇s(0)50 rad/s.
The initial conditions for the observers~21!, ~23!, and ~24! are
chosen asê(0)520.1, w1(0)50, w2(0)50, w3(0)50, q̂s(0)
50.4, q6 s(0)50, ûs(0)50.4, andu6 s(0)50.

The scalar gains ints , ~20!, and the observers~21!, ~23!, and
~24! are chosen to bek0565, k1540, k2510, k354, g1540,
g25700,g354000,g451000,m151, m255, m351, m455. As
it is shown in Fig. 1, the synchronization error between the ma
and slave link position is stable and bounded after the trans
period has finished. The same is concluded for the estima
errors in Figs. 2 and 3.

In agreement with the stability analysis, the simulations ha
shown that the final bound of the errors depends on the gainsm2
and K0 , see Section 6.2.2. Meanwhile the transient behavio
mainly determined bym1 , m3 and the gainK1 , this is due to the
Transactions of the ASME
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Fig. 2 Input torque ts and estimation synchronization position error ẽ
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fact theK1 defines the poles of the linear partAx in ~29!, andm1 ,
m3 weight the effect of the estimation errors through the termF in
~29!. Therefore if m1 , m3 are large, as well as the estimatio
errors, then the termF has a large influence in the synchroniz
tion error dynamics, this large influence lasts until the estimat
errors reach a vicinity around zero.

The simulation study shows that in order to minimize the pe
during the transient period, it is important to tune the gains ov
~20! such that the polynomiall(s) ~39! corresponds to an over
damped system. At the same time the gainsm1 , m3 should be set
small to minimize the influence~through the termF! of the esti-
mation errors.

9 Conclusions
A synchronization controller for flexible joint robots intercon

nected on a master-slave scheme, has been proposed. The co
ler only requires measurements of the master and slave link p
tions, the velocities and accelerations are estimated by mea
model-based nonlinear observers.

It has been proved that the proposed control law yields lo
uniformly ultimately boundedess of the closed-loop errors. It
also shown that the final bound of the errors depends on the fo
derivative of the master robot trajectories. A tuning gain proced
to guarantee the stability result has been summarized.
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Appendix 1
Proof of Proposition 1. Consider a state space representat

of ~1!–~3!, with statesqs , q̇s , us , u̇s , then from the observer
~23!, ~24! and the joint estimation errors~25!, it follows that:

q85 q̃̇2m1q̃

q̇852Ms
21~qs!~~2Cs~qs ,q̇s!2Cs~qs ,q̃̇!! q̃̇1Ks~ q̃2 ũ !!2m2q̃

u85 ũ̇2m3q̃ (56)

u̇852Js
21Ks~ ũ2q̃!2Js

21Bv,sũ̇2m4q̃

The first and third equation of~56! imply that:

q̃̇5q81m1q̃, q̈̃5q̇82m1q8 (57)

ũ̇5u81m3q̃, ũ̇5 u̇82m3q8 (58)

therefore~16! and ~56! yield the joint estimation error dynamic
~28!.

Consider the joint estimation errors given by~25!, and intro-
duce the variablesq̃̈, q(3)̃ as:

q̃̈5q̈s2 q̂̈s , q~3!̃5qs
~3!2qs

~3!̂ (59)

Differentiating~1! twice, and by considering~2!, ts given by~17!,
and property~4! it follows that:

Ms~qs!~qs
~4!2v~ t !!1C~qs ,q̇s ,q̈s ,qs

~3! ,q̃,q̃̇,q̃̈,q~3!̃,ũ, ũ̇ !50
(60)
Fig. 3 Estimation link and motor position error q̃ , ũ
MARCH 2004, Vol. 126 Õ 169
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where C(qs ,q̇s ,q̈s ,qs
(3) ,q̃,q̃̇,q̃̈,q(3)̃,ũ, u̇̃) represents the mis

match with the desired linearization, which is caused by abse
of the high order derivatives ofqs , qm , us .

According to the definition ofq̃̈ ~59!, and by considering~11!,
~18! and ~57! it follows that:

q̃̈52Ms
21~qs!~~2Cs~qs ,q̇s!2Cs~qs ,q81m1q̃!!~q81m1q̃!

1Ks~ q̃2 ũ !! (61)

In a similar way, but considering~59!, ~12! and~19!, it is obtained
that:

q~3!̃52Ms
21~qs!~Ṁ s~qs ,q̇s!q̈s2Ṁ s~qs ,q6 s! q̂̈s1Ṅ~qs ,q̇s ,q̈s!

2Ṅ~qs ,q6 s ,q̂̈s!1Ks~ q̃̇2 ũ̇ ! ! (62)

where, by considering property~4! and after a straightforward
computation,

Ṁs~qs ,q̇s!q̈s2Ṁ s~qs ,q6 s! q̂̈s5
]Ms~qs!

]qs
~ q̃̇q̈s1~ q̇s2 q̃̇! q̃̈!

(63)

Ṅ~qs ,q̇s ,q̈s!2Ṅ~qs ,q6 s ,q̂̈s!

5Cs~qs ,q̃̇!q̈s1~Cs~qs ,q̇s!2Cs~qs ,q̃̇!! q̃̈1
]gs~qs!

]qs
q̃̇

1FCs1~qs!

]

Csn~qs!
G ~ q̃̈q̇s1~ q̈s2 q̃̈! q̃̇!

1q̇s

]

]qs
FCs1~qs!

]

Csn~qs!
G ~ q̃̇q̇s1~ q̇s2 q̃̇! q̃̇!

1 q̃̇
]

]qs
FCs1~qs!

]

Csn~qs!
G ~~ q̇s2 q̃̇!~ q̇s2 q̃̇!! (64)

Let F(qs ,q̇m ,q̈m ,qm
(3) ,ė,ë,e(3),q̃,q8 ,ũ,u8 ) denotes the function

C(qs ,q̇s ,q̈s ,qs
(3) ,q̃,q̃̇,q̃̈,q(3)̃,ũ, ũ̇) after substitution of the rela

tions ~57!, ~58!, ~61!, ~62!, ~63!, ~64!, and~16!, it holds that

F~qs ,q̇m ,q̈m ,qm
~3! ,ė,ë,e~3!,q̃,q8 ,ũ,u8 !

5C~qs ,q̇s ,q̈s ,qs
~3! ,q̃,q̃̇,q̃̈, q̃ ~3!,ũ, ũ̇ ! (65)
170 Õ Vol. 126, MARCH 2004
nce
where F(qs ,q̇m ,q̈m ,qm

(3) ,ė,ë,e(3),q̃,q8 ,ũ,u8 ) is the result of a
straightforward chain of substitutions and simplifications. Sub
tution of ~65! and ~20! in ~60!, and considering~21!, yields the
synchronization error dynamics~26!.

Consider the observer~21! and the estimation synchronizatio
errors~22!, then it follows that:

ê~4!2G1ẽ~3!2G2ë̃2G3e82G4ẽ50 (66)

Subtraction of~66! from the synchronization error dynamics~26!,
and considering the estimation synchronization errors~22!, yields
the estimation synchronization error dynamics~27!. j

Appendix 2
Proof of Lemma 6. From the properties of the matrice

Ms(qs), Cs(qs ,q̇s)q̇s , the gravity termgs(qs), ~see Section 2!,
and because their nonlinear terms contain only sinusoidal fu
tions of qs , we have that for allqsPRn, their partial derivatives
can be bounded as:

I ]Ms~qs!

]qs
I<M pM , I ]2Ms~qs!

]qs
2 I<M ppM

I ]gs~qs!

]qs
I<GpM , I ]2gs~qs!

]qs
2 I<GppM

I FCs1~qs!

]

Csn~qs!
G I<CqM ,

I ]

]qs
FCs1~qs!

]

Csn~qs!
G I<CpM , I ]2

]qs
2 FCs1~qs!

]

Csn~qs!
G I<CppM .

For the sake of simplicity and without loss of generality, let a
sume thatQx52(PxA1ATPx) is a symmetric positive definite
block diagonal inatrix, withn3n block entries, and denote th
i-th diagonaln3n block of Qx by Qxi . Then from the definition
of xN , yN , andjN ~47!, andV̇ given by ~43!, it follows that the
term xTQxx in ~43! can be bounded asxN

TRxxN , with RxPR838

Rx5diag$QxiM% i 51, . . . ,8 (67)

where QxiM is the maximum eigenvalue ofQxi , and such that
positive definiteness ofQx implies thatRx is positive definite.

From Qy ~44!, the termV ~46!, and the bounds of the partia
derivatives ofMs(qs), Cs(qs ,q̇s)q̇s , andgs(qs), it follows that
yTQyy can be bounded asyN

TRyyN , with RyPR434
Ry53
a0* a1* a2* a3*

a1* Msmm1m22l012CMVM h0m3M2
1

2
KsM

1

2
JsMm3M

a2* h0m3M2
1

2
KsM 2h0JsM

21Ksm a4*

a3*
1

2
JsMm3M a4* Bv,sm24h0

4
a0* 52l0~MsM

21~Ksm12CMVMm1m!1m2m!, a1* 5CMVM~2Msm
21l01m1M !2

1

2
MsMm2M2

1

2
b1

a2* 52l0Msm
21KsM1h0~m4M1Jsm

21Bv,sMm3M2Jsm
21KsM!,

a3* 5
1

2
~Bv,sMm3M1JsMm4M2KsM!, a4* 5h0Jsm

21Bv,sM2
1

2
m4M2

1

2
b2 (68)
Transactions of the ASME
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The matricesRx andRy are related to the bounds of the quadra
terms inx and y of V̇ ~43!. Nevertheless, there exist other cro
quadratic terms inx and y which come fromQxy ~45! and V.
These cross quadratic terms are bounded, such that,Rxy corre-
sponds to the bound of the cross quadratic terms of:

ixTQxyxi1ixTPxB@2Ms
21~F1KsJs

21Ks~y12y3!

2KsJs
21Bv,s~y41m3y1!!1qm

~4!#i

Let considerF1KsJs
21Ks(y12y3)2KsJs

21Bv,s(y41m3y1), this
term can be bounded as

iF1KsJs
21Ks~y12y3!2KsJs

21Bv,s~y41m3y1!i<F11F r
(69)

whereF1 contains terms of first order inx, y, andF r contains the
remaining terms~orders 2, 3 and 4!. After a long straightforward
computation it is obtained thatF1 is given by:

F15~~a11a3!m1M1a21a3m3M !iy1i1~a11a3!iy2i1a2iy3i

1a3iy4i

a152Msm
21CMVM@AM~M pM12CqM!1GpM1KsM1VM

2 ~M pM

12CpM!#1CpMVM~6AM12Msm
21CMVM

2 !14CppMVM
3

12~AM
2 1CpMAMVM12Msm

21CpMCMVM
2 !

1Msm
21VM~2M pM1CM1CqM!@GpM13CpMVM

2 1~M pM

1CM1CqM!~AM12Msm
21VM

2 !#1DM~2M pM1CM1CqM!

12Msm
21CMVMAM~M pM12CqM!12GppM12M ppMAMVM

a25KsmMsm
21$2AM~M pM12CqM!1GpM1KsM1VM

2 ~M pM

12CpM!%11Ksm$Msm
21CpMVM~21VM !

1~Msm
21VM !2~M pM1CM1CqM!~2M pM1CM1CqM!%

a35KsmMsm
21VM~2M pM1CM1CqM!

Therefore, the matrixRxy is given by:

Rxy5Msm
21PQ@R1* a11a3 a21KsM

2 Jsm
21 a31KsMJsm

21Bv,sM#

PQ53
~Px141Px18!M

~Px241Px28!M

~Px341Px38!M

~Px441Px48!M

~Px451Px58!M

~Px461Px68!M

~Px471Px78!M

~Px481Px88!M

4 (70)

R1* 5~a11a3!m1M1a21a3m3M1KsMJsm
21~Bv,sMm3M2Ksm!

Remark 12. Notice that a1 , a2 , a3 are uniquely determined by
the physical parameters of the slave robot and the bounds of
master trajectories, and thus they do not depend on the con
and observer gains. As a consequence a1 , a2 , a3 must be evalu-
ated only once.

At this point all the quadratic terms ofV̇ have been bounded in
terms of Rx , Ry , Rxy , and xN , yN , jN . Therefore it is only
necessary to bound all the remaining terms originated fromV.
From ~46! and considering~69!, it follows that:

iV~qs ,q̇m ,q̈m ,qm
~3! ,qm

~4! ,x,y!i<Q~VM ,AM ,DM ,EM ,jN!
(71)

where by consideringPQ , ~70!, Q(VM ,AM ,DM ,EM ,jN) is
given by:
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Q52xN
T PQ@Msm

21Fr 1EM#12l0CMMsm
21iy1iiy2i~ iy2i

1m1Miy1i !1CMm1Miy1iiy2i21CM~m1Miy1i12ix2i !

3~2l0Msm
21iy1i1iy2i !~ iy2i1m1Miy1i !

j

Appendix 3
Proof of Proposition 9. First notice that the definition ofb1 ,

b2 given by ~54!, imply that a1* 50, a4* 50 in Ry ~68!. Second,
let Ryi denote the determinant of thei-th leading minor ofRy ,
then conditions forRyi.0, i 51, . . . ,4, aregiven by:

• Ry1.0 if l0.0, m1m.0, andm2m.0
• Ry2.0 if m1m.2Msm

21(l02CMVM)
• For Ry3 , first notice that it can be written asRy35a31m2m

1a30, with a315b32m3M
2 1b31m3M1b30, and b32,0. Then

a31.0 if m332
,m3m , m3M,m33

2 , where

m332
,m33

2 5
1

4JsMh0
~2JsMKsM74~2JsMh0KsM~Msmm1m

12~CMVM2l0!!!1/2!

becausea31.0, thenm2m.2a31
21a30 implies Ry3.0.

• Ry4 can be written as Ry45a41m2m1a40, with a41

5b42m3M
2 1b41m3M1b40, andb42,0 if h0 holds:

0,h0,minH Bv,sm

4
,

1

8JsM
~JsMBv,sm

1~JsM
2 Bv,sm

2 18JsMJsm
2 Ksm!1/2!J

Then b42,0 implies thata41.0 if m342
,m3m , m3M,m34

2 ,
where

m342
, m34

2 5
1

2~h0~2JsM~4h02Bv,sm!!2Jsm
2 Ksm!

3~2JsMKsmh0~4h02Bv,sm!6~2JsMKsmh0!1/2

•~~4h02Bv,sm!@Jsm
2 KsM

2 18h0~2l022CMVM

2Msmm1m!~JsM
21Jsm

2 Ksm22h0~4h02Bv,sm!!# !1/2!

becausea41.0, thenm2m.2a41
21a40 implies Ry4.0.

If the above conditions are satisfied, then the determinants o
the leading minors ofRy are positive. Therefore from the Sylves
er’s criterion, it follows thatRy is positive definite. j
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