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Abstract— In this paper we design a controller for synchro-
nization problem for two pendula suspended on an elastically
supported rigid beam. A relation to Huijgens’ experiments as
well as the practical motivation are emphasized.

I. INTRODUCTION

The high number of scientific contributions in the field
of synchronization reflects the importance of this subject.
Synchronization is a fundamental nonlinear phenomenon
which was discovered already in the XVIIth century: the
Dutch researcher Christian Huijgens discovered that a couple
of mechanical clocks hanging from a common support were
synchronized [1].

In the field of electrical engineering the burst of inter-
est towards synchronization phenomenon was initiated by
pioneering works due to van der Pol [3], [4] who studied
frequency locking phenomenon in externally driven nonlinear
generator as well as mutual synchronization of two coupled
oscillators. The achievements of modern electronics would be
impossible without solid synchronization theory developed in
last 60 years [5], [6].

In the field of mechanical engineering some of the appli-
cations are mentioned in the book on the subject [2]. One of
the recent directions in this field is to employ control theory
to handle synchronization as a control problem. For example,
in robotics the problem of synchronization is usually referred
to as coordination, or cooperation [7], [8]. The problem ap-
pears when two or more robot-manipulators have to operate
synchronously, especially in situations when some of them
operate in hazardous environment, while others (that serve
as reference) may be guided by human operation.

In this paper we study a controlled synchronization prob-
lem for two pendula hanging from an elastically fixed hori-
zontal beam. The problem of synchronization is formulated
as controller design problem. The control goal is twofold:
first, two pendula should be swung up to the desired level
of energy and, second they have to move synchronously in
opposite directions. This problem has a practical motivation:
during a start-up procedure of various vibrational transporters
and mills the synchronous motion of the rotors allows to
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Fig. 1. The setup

avoid resonance oscillations and to reduce energy consump-
tion. The system behaviour considered in this paper is closely
related to the phenomenon observed by Huijgens and this
relation is emphasized.

The paper is organized as follows. First we formulate the
problem statement. Next we analyze the behaviour of the
uncontrolled system. The controller is proposed and then
investigated in Section 4. Section 5 deals with the local
stability analysis of Huijgens phenomenon. The conclusions
are formulated in the last section.

II. PROBLEM STATEMENT

Consider the system schematically depicted in Fig. 1. The
beam of the mass M can move in the horizontal direction
with viscous friction with damping coefficient d. One side
of the beam is attached to the wall through the spring with
elasticity k. The beam supports two identical pendula of the
length l and mass m. The torque applied to each pendulum
is the control input.

The system equations can be written in a form of Euler-
Lagrange equations:

ml2φ̈1 + mlẍ cos φ1 + mgl sin φ1 = u1

ml2φ̈2 + mlẍ cos φ2 + mgl sin φ2 = u2

(M + 2m)ẍ + ml

2∑
i=1

(
φ̈i cos φi − φ̇2

i sin φi

)
=

−dẋ − kx, (1)

where φi ∈ S1 are the angles of the pendulums, x ∈ R
1 is



the horizontal displacement of the beam, and u1, u2 are the
control inputs.

Introduce the Hamiltonoin function of each pendulum:

H(φi, φ̇i) =
ml2φ̇2

i

2
+ mgl(1 − cos φi).

The problem which we are going to address in this paper is
to design a controller to swing the pendula up to the desired
energy level H∗ in such a way that the pendula move in
opposite directions. Therefore the control objective can be
formalized by the following relations:

lim
t→∞H(φi(t), φ̇i(t)) = H∗, i = 1, 2, (2)

lim
t→∞(φ1(t) + φ2(t)) = 0. (3)

The first relation implies that the periods of oscillations
of each pendulum are identical (frequency synchronization),
while the second relation indicates a particular case of phase
synchronization, so called anti-phase synchronization.

Although the problem statement formulated above looks
rather artificial it can find an important practical motivation.
The system we are going to study is a typical system which
models vibrational transporters and mills of several kind [2],
[9]. When the rotors of those setups are operating at nominal
speed they can demonstrate synchronous phenomenon [2],
[9]. At the nominal speed the setup does not consume
significant power compared to that during the start-up mode.
To decrease the energy consumption during the start-up
procedure one can swing up the imbalanced rotors like
oscillating pendula until they gain enough potential energy to
operate in the rotational mode. One of the main difficulties
in applying this technique is the vibration of the beam. This
is due to the fact that during the start-up procedure the
frequency of the external force applied to the beam

F := ml
2∑

i=1

(
φ̈i cos φi − φ̇2

i sin φi

)

can be in resonance with the eigenfrequency of the beam
that results in high level of the energy dissipation by the
beam. This effect is known to everybody who observed
vibrations of the washing machine during first seconds of
wringing. On the other hand, if the two (identical) rotors
move synchronously in opposite directions the resulting force
applied to the beam is zero. Therefore, the controller able to
achieve the objectives (2,3) can be utilized during the start-
up procedure to pass through the resonance and to reduce
the power consumption. The main benefit in this case is an
opportunity to install lighter and less expensive motors than
that used in uncontrolled start-up procedure. The problem of
this kind was considered for example in [10], [11], [12], [13].

III. ANALYSIS OF THE UNCONTROLLED SYSTEM

We begin our study with the analysis of motion of the
uncontrolled system taking ui ≡ 0 in the system equations.

To analyze the limit behaviour of this system consider the
total energy as a Lyapunov function candidate:

V =
m

2

2∑
i=1

(
ẋ2 + l2φ̇2

i + 2ẋφ̇il cos φi

)

+
Mẋ2

2
+ mgl

2∑
i=1

(1 − cos φi) +
kx2

2
.

Clearly, V ≥ 0. Calculating the time derivative of V along
the solutions of the uncontrolled system yields

V̇ = −dẋ2 ≤ 0,

so the system can be analyzed by La Salle’s invariance
principle from which it follows that all the system trajectories
tend to the set where

φ1 = −φ2, φ̇1 = −φ̇2, x = 0, ẋ = 0.

From this observation one can make a few important
conclusions. First, the uncontrolled system can exhibit syn-
chronous behaviour. Clearly, it follows that the Hamiltonian
of each pendulum tend to a common limit. However, due
to energy dissipation the limit value depends on the initial
conditions and particularly, if one initializes the pendula from
an identical point, the oscillations will decay. Therefore the
uncontrolled system exhibits a behavior which is very close
to the desired one, and there is one thing left to the controller
– to maintain the energy level for each pendulum.

To demonstrate the behaviour of the uncontrolled sys-
tem we made a computer simulation for the following
system parameters: M = 10 kg,m = 1 kg, g =
9.81 m/sec2

, l = 1 m, d = 20 N · sec/m, k = 1 N/m,
φ1(0) = 0.5 rad, φ2(0) = 0, φ̇1(0) = φ̇2(0) = 0, x(0) =
0, ẋ(0) = 0. The simulations confirm that the system
trajectories tend to the synchronous mode where the pendula
oscillate in anti-phase, while the oscillations of the beam
decay.

IV. CONTROLLED SYNCHRONIZATION

In this section we propose a controller to solve the
synchronization problem. To this end we assume that all the
state variables are available for measurements. The controller
basically consists of two loops. The first loop makes the syn-
chronization manifold globally asymptotically stable, while
the second loop swing the pendula up to the desired energy
level.

To analyze the system behaviour in the coordinates trans-
verse to the desired synchronous mode one can add two
first equations of (1). Then to make the synchronous regime
asymptotically stable one can try to cancel the terms which
depend on ẍ by means of appropriate feedback. It gives a
simple hint how to derive the following controller:

(
u1

u2

)
= (I2 + Σ)−1

(
s1

s2

)
(4)
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Fig. 2. Synchronization of two pendula in the uncontrolled system. a -
oscillations of the pendula; b - oscillations of the beam.

where

Σ = K

(
cos2 φ1 cos φ1 cos φ2

cos φ1 cos φ2 cos2 φ2

)
≥ 0

K =
m2l

M + m sin2 φ1 + m sin2 φ2

and

s1 = −γφ̇1

[
H(φ1, φ̇1) + H(φ2, φ̇2) − 2H∗

]
+ w cos φ1 + v

s2 = −γφ̇2

[
H(φ1, φ̇1) + H(φ2, φ̇2) − 2H∗

]
+ w cos φ2 + v

where γ is positive gain coefficient and

w = K
(g

2
(sin 2φ1 + sin 2φ2)

+ l(φ̇2
1 sin φ1 + φ̇2

2 sin φ2) − dẋ − kx
)

and

v =
mgl

2
(sin φ1 + sinφ2) − λ2 sin(φ1 + φ2) − λ1(φ̇1 + φ̇2)

with positive λ1, λ2.
The analysis of the closed loop system then can be

performed in two steps. First, one can prove that the set
φ1 = −φ2, φ̇1 = −φ̇2 is globally asymptotically stable. It
follows from the equations of the closed loop system with
respect to the variable φ1 + φ2:

ml2(φ̈1 + φ̈2) + λ1(φ̇1 + φ̇2) + λ2 sin(φ1 + φ2) =
−γ(H(φ1, φ̇1) + H(φ1, φ̇1) − 2H∗)(φ̇1 + φ̇2).

Therefore, if λ1 > 2γH∗ the set φ̇1 = −φ̇2, φ1 = −φ2 is
globally asymptotically stable.

There is only one invariant subset of this set, namely, x ≡
0, and hence, the limit dynamics of each pendulum is given
by the following equation

ml2φ̈ + mgl sin φ = −2γφ̇[H(φ, φ̇) − H∗]

and therefore the control objective

lim
t→∞H(φ̇(t), φ(t)) = H∗

is achieved for almost all initial conditions [14].
The above arguments can be summarized as the following

statement:
Theorem 1: Suppose λ1 > 2γH∗, then in the closed loop

system (1,4) the control goal (2,3) is achieved for almost all
initial conditions.

To demonstrate the ability of the controller to achieve
the control objective we carried out computer simulation for
the same system parameters as before with the following
parameters of the controller: H∗ = 9.81, λ1 = 20, λ2 =
4.905, γ = 0.045. The results of the simulation are presented
in figure 3 for the following initial conditions φ1(0) =
0.1, φ2(0) = 0.2, φ̇1(0) = φ̇2(0) = 0, x(0) = 0, ẋ(0) = 0.

As predicted by the theorem there is a set of zero Lebesgue
measure of exceptional initial conditions for which the
control objective can not be achieved. For example, if one
initiate the system at the point where φ1 = φ2, φ̇1 = φ̇2,
the oscillations of both pendula and the beam will decay.
However, from practical point of view, it is not difficult to
modify the controller to handle this problem.

As we have mentioned, the controlled synchronization can
be utilized to avoid resonance oscillations during start-up
procedure of speeding up the rotors installed on a common
support. To demonstrate this effect we carried out the next
simulation. In this case the desired energy level H∗ is greater
than the critical level 2mgl, H∗ = 5mgl. We also decreased
the damping coefficient d to make the motion of the beam
oscillatory: d = 5. The gains γ, λ1 are decreased as well,
γ = 0.005, λ = 6. The rest parameters are the same as in
the previous simulation. The results are plotted in figure 4. It
is seen that during the start-up procedure the rotors oscillate
synchronously and the amplitude of the beam oscillations is
small.

In the beginning of this section we assumed that all the
state variables are available for measurements. This assump-
tion allows to design a simple controller with a relatively
simple stability analysis. From the practical point of view,
one can impose some additional constraints on the controller,
i.e. to avoid the measurements of the beam position/velocity.
This problem is definitely feasible but requires a bit more
sophisticated analysis.
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Fig. 3. Synchronization of two pendula in the controlled system. a -
oscillations of the pendula; b - oscillations of the beam.
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Fig. 4. Synchronization of two imbalanced rotors during the start-up
procedure. a - oscillations of the rotors; b - oscillations of the beam.

V. HUIJGENS’ PHENOMENON

The results of the previous sections are immediately related
to the experiment carried out by C. Huijgens in 1665. He
detected that a couple of pendulum clocks hanging from
a common support had synchronized, i.e. their oscillations
coincide perfectly and the pendula moved in opposite direc-
tions. Huijgens described in detail such coupled clocks: “In
these clocks the lengths of the pendulum was nine inches and
its weight one-half pound. The wheels were rotated by the
force of weights and were enclosed together with weights
in a case which was four feet long. At the bottom of the
case was added a lead weight of over one hundred pounds
so that the instrument would better maintain a perpendicular
orientation when suspended in the ship. Although the motion
of the clock was found to be very equal and constant in
these experiments, nevertheless we made an effort to perfect
it still further in another way as follows ... the result is still
greater equality of clocks than before.” Some of the original
Huijgens’ drawings are reproduced in figures 5, 6.

Particularly, Huijgens desribed what is now called “fre-
quency synchronization”, i.e. being coupled two oscillators
with nonidentical frequencies demonstrate synchronous os-
cillations with a common frequency. The frequency synchro-
nization of clocks was observed, for example in [2], where
the clocks were modelled by Van der Pol equations with
slightly different periods of oscillations. Via the averaging
technique it was shown that the system of interconnected os-
cillators possesses an asymptotically stable periodic solution.

In this section we show how to realize the phase synchro-
nization for a very simple yet illustrative model of clocks.
The pendulum clocks can be modelled in different ways,
see, e.g. [15]. In our clock model we combine together two
simple ideas: first, the oscillations of the clock pendulum
should be described by equations of the free pendulum with
a given level of its energy; second, the model should take into
account a mechanism to sustain this level. Then, the simplest
model of the pendulum clock is given by the following
equation:

ml2φ̈ + mgl sin φ = −γφ̇[H(φ, φ̇) − H∗], γ > 0.

This equation has orbitally stable periodic solution which
corresponds to the motion of the free pendulum with the
energy equal to H∗. This limit cycle attracts almost all initial
conditions as can be seen from the following relation for the
Hamiltonian function H(φ, φ̇):

Ḣ = −γφ̇2(H − H∗).

The model of the two clocks hanging from a beam as shown
on figure 1 can be thus derived as the system (1) with

ui = −γφ̇i[H(φi, φ̇i) − H∗], i = 1, 2.

From the equations of this model it follows that the system
has at least two invariant sets Ω1 := {φ̇1 = −φ̇2, φ1 =



−φ2, x = 0, ẋ = 0} and Ω2 which is a some subset of
the set {φ̇1 = φ̇2, φ1 = φ2}. Computer simulation shows
that both of them can be stable provided the constant H∗ is
relatively small, while for large values of H∗ the system can
demonstrate erratic behaviour. Therefore, we perform a local
stability analysis for the set Ω1 assuming that H∗ is a small
parameter. Under this assumption the system equations are

ml2φ̈1 + mlẍ + mglφ1 = u1

ml2φ̈2 + mlẍ + mglφ2 = u2

(M + 2m)ẍ + ml(φ̈1 + φ̈2) = −dẋ − kx

with
ui = −γφ̇i[H(φi, φ̇i) − H∗], i = 1, 2

and

H(φ, φ̇) =
ml2

2
φ̇2 +

mgl

2
φ2.

Linearizing this system around the set H(φ1, φ̇1) =
H(φ2, φ̇2) = H∗ yields the following equation (written with
a little abuse in notations):

ml2(φ̈1 + φ̈2) + 2mlẍ + mgl(φ1 + φ2) = 0
(M + 2m)ẍ + ml(φ̈1 + φ̈2) = −dẋ − kx

and the local stability of the set Ω1 follows. Therefore
synchronous motion of clocks’ pendula is asymptotically
stable.

VI. CONCLUSIONS

In this paper we considered the problem of controlled
synchronization of two pendula hanging from a common sup-
port. This problem can find an important practical application
- to avoid resonance vibration during start up procedure of
speeding two imbalanced rotors. We proposed a controller
which is able to solve the synchronization problem in such
a way that the pendula reach the desired level of energy and
they move synchronously in opposite directions. In this case
the oscillations of the support beam can be avoided. It is
worth mentioning that the solution proposed in this paper
is based on the synchronization phenomenon experimentally
observed by C. Huijgens in 1665. This example demonstrates
that (non)linear control can be utilized in various applied
problems related to synchronization.
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