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Cooperative Oscillatory Behavior of Mutually
Coupled Dynamical Systems

Alexander Pogromsky and Henk Nijmeijétellow, IEEE

Abstract—in this paper, we make a qualitative study of the dy- observe nontrivial phenomena called local diffusion and global
namics of a network of diffusively coupled identical systems. In propagation.

particular, we derive conditions on the systems and on the cou- . . . . . s
pling strength between the systems that guarantee the global syn- In this paper, we are interested in oscillatory behavior in net

chronization of the systems. It is shown that the notion of “min- Works composed of identical dynamical systems and coupled
imum phaseness” of the individual systems involved is essential in in arbitrary arrays viaiffusive couplingthat is, the systems

ensuring synchronous behavior in the network when the coupling are mutually coupled through a linear output coupling. In other
exceeds a certain computable threshold. On the other hand, it is words, we assume that with the given elementary dynamical

shown that oscillatory behavior may arise in a network of identical . S
globally asymptotically stable systems in case the isolated systemsSyStem a specific output (read-out map) is given and the cou-

are nonminimum phase. In addition, we analyze the synchroniza- Pling between various systems in the network is defined through
tion or nonsynchronization of the network in terms of its topology; ~ weighted differences of the for&(y; — ), with & some posi-

that is, what happens if either the number of couplings and/or sys- tive number and;;, Yj indicating the outputs of th#h andjth
temsincreases? The results are illustrated by computer simulations systems.

of coupled chaotic systems like the Rossler system and the Lorenz . . . . .
systen?. y y It turns out that, in a network of diffusively coupled identical

systems, two structural phenomena can be encountered and ana-
lyzed. Namely, on the one hand, we will study the synchroniza-
tion of all systems in the network, implying that the dynamics

of all individual cells will asymptotically match with each other.

I. INTRODUCTION Of course, it does not imply that the dynamics of each separate

ECENTLY, an increasing interest has been devoted to tR¥¢Stem “dies out,” but, in contrast, what can happen is that some
study of cellular neural networks (CNNs) [4], [20], [23],oscnlatory motion in a separate dynamical system will be en-

[24] (see also [19]). A CNN consists of mutually coupled dytorced.through the qoupling in an iQenticaI way in all systems.
an illustration, this happens for instance when a network of

namical systems and, due to the interactions, it can exhibit coﬁ’?ﬁ ical g " " " h
plex behavior even in cases when each cell itself is descrifdgntical Lorenz systems is built and the couplings between the
by fairly simple differential equations. Among the possible ajFeParate systems are strong enough.

plications of CNNs, we mention the very interesting fields of On the other hand, we will treat the occurrence of asyn-
telecommunication [12] and mathematical biology [9]. chronous oscillatory behavior in a diffusively coupled network.

Even CNNSs consisting of simple cells form, after coupling this case, the basic observation is that, through the coupling
high dimensional nonlinear systems, and therefore such CNIgsthe systems, oscillatory motion in each of the systems can
are difficult to study analytically. However, recently, som®e enforced, even if the individual system will stabilize if no
progress in the qualitative study of CNNs has been macf@_uplin_g exists. Conditipns _for the presence of oscillatory be-
A thorough analysis of CNNs consisting of cells describedgvior in a network of diffusively coupled systems are derived
by first-order differential equations coupled in linear one-din an earlier paper by the authors [16] and are contrasted with
mensional (1-D) arrays can be found in [20] and [24]. It wakde conditions for synchronization.
shown that, even in such a simple setting, it is possible toGiven the possible occurrence of one of the two scenarios, a

very interesting case arises if the number of cells in the network
. . . . apd/or the number of nonzero interconnections is changed. In
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The paper is organized as follows. In Section Il, we presentConsider the nonlinear time-invariant affine system
necessary background material. Section Il deals with the syn-
chronization phenomena occurring via diffusion. In Section 1V, {37 = f(z) + g(z)u ©)
we briefly discuss the conditions resulting in generation of os- y = h(z)
cillations via diffusion. Some useful properties of diffusive net-

works are discussed in Section V. Section VI contains some cyHierex € R™ isthe statey, € R™ is the input which is assumed
cluding remarks. to be any continuous and (essentially) bounded function of time:

u() € C°N Ly, y(t) € R™isthe outputf: R* — R™, f(0) =
Il. PRELIMINARIES 0, g: R* — R™™ are smooth enough to ensure existence of
solutions in any reasonable sense, e.g., in the sense of Filippov,

The Euclidean norm irR" is denoted simply as - |, 4t |east on a finite time interval < t < Ty, .; h: R* — R™ is

|2/ = 2Tz, where™ defines transposition. The notationye oyt mapping.
col(w, @2, -+, xy) stands for the column vector composed of g hnose there exists a nonnegative differentialsterage
the elements:y, -- -, x,,. This notation will also be used in the¢,ctionV: R — R., V(0) = 0 and nonnegative continuous

case where 'Fhe componenisare vectors again. We will study ¢, ction S: R* — R., S(0) = 0 such that for all admissible
notions relative to nonempty subsetsof R", 0 € A; for such jn5 1.4, and initial conditionse(0) = o and for all time in-
a setA, [z = dist(z, A) = infyca dist(z, n) denotes the gantsy < ¢+ < 17, , the following dissipation inequalityis
distance fromr € R™ to A. valid: ’

AfunctionV: X — R, defined on a subsef of R*,0 € X
is positive definitéf V() > 0forall z € X\{0} andV (0) = Viz,u) <ylu—S(z). (4)
0. Itis radially unboundedif X = R™) orproperif V(z) — o -
as|z| — oo. A nonnegative functio’: X — R, is said to be
positive definite with respect to the sdtif V(x) > 0 for all
x € X\AandV(z) = 0forall z € A. Itis proper with respect
to A if boundedness of () implies boundedness ¢f| 4.

If a quadratic formz " Pz with a symmetric matrix? = PT
is positive definite, then the matrik is called positive definite.
For positive definite matrices, we use the notatior- 0; more- v = 0 (which in control theory is referred to as taero dy-

over,” > Q means that the matrik — @ is positive definite.  amicg andV is positive definite, then the origin is an asymp-
~ Amatrix A for which all eigenvalues have negative real parigiica|ly stable equilibrium of the zero dynamics. Secondly, if
is called Hurwitz or stable. V is positive definite, then the origin is a stable equilibrium of

An invariant setd C R” for the dynamicsi = f(z) is said e free systemi( = 0) (in case of strict passivity the origin is
to be noncritically stableif it is Lyapunov stable, that is, all asymptotically stable).

solutions starting close enough tbremain close to4 for all The theory of passive systems plays an important role in

- L -

¢ > 0 and additionallyz(t)| 4 < Ce™**|(0)|.4 for sufficiently  ,q4erm control theory [3], [14], [26]. In a natural way it extends

small|(0)|.« with positiveC, &. __ the notion of positive real linear systems to nonlinear systems.
The system: = f(x) is calledLagrange stablaf all its In this paper we need some weakened version of passivity

solutions are bounded. If all solutions eventually end up withifl, c5;se we focus our attention on systems exhibiting oscillatory
a bounded domain which can be chosen independently of {he . ior foru = 0.

initial conditions, then all solutions are referred taudtinately Next we define semipassive systeffhis notion was intro-

bounded _ _ _ duced in [15]; in [17], an equivalent notion was caltpeasipas-
Given a system of autonomous differential equations  gjyity Roughly speaking, a semipassive system behaves like a
i = F(x) 1) passive system for sufficientl_y lardre|. More precisely, assume
that there exists a nonnegative functidnR™ — R, such that
wherez € R™. We will say that the system (1) is oscillatory infor all admissible inputs, for all initial conditions and for all
the sense of Yakubovich, 8*oscillatoryif any solution of (1) is  for which the corresponding solution of (3) exists, we have
bounded and for almost all initial conditions the corresponding ]
solution does not tend to a constant (see, e.g., [25]). Viz,u) <y u— H(z) (5)
For matricesA and B, the notationA ® B (the Kronecker
product) stands for the matrix composed of submatritg€3, where the functiond: R* — R is nonnegative outside some
ie., ball:

AnB ApB -+ Ap,B
AnB  ApB .- Ay B

Then the system (3) is calledhassive systersee, e.g., [3] and
[10]. If, additionally, S is positive definite, then the system (3)
is calledstrictly passive

From the definition of passive systems, one can draw two im-
portant conclusions. First, if the strictly passive system (3) pos-
sesses some inherent dynamics consistent with the constraint

>0, V|2 p= H(z) > o|z|) (6)

A®B= (2

1in fact, the functionV” needs not necessarily be differentiable. In this case,
) ) ' we will assume that” is locally Lipschitz continuous, i.e., it satisfies a Lip-
AnB ApB - A B schitz condition on any compact set. Indeedy(f) is a bounded solution in
.o .. the sense of Filippov, then it is an absolutely continuous function of time and
WherleAij’ i, j =1---n, stands for théjth entry of then X n thereforel (2 (1)) is also an absolutely continuous function of time, that s, its
matrix A. time-derivative exists almost everywhere.
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for some continuous nonnegative functiodefined for|z| > p. wherej =1, ---, k, z;(t) € R™ is the state of thgth system,

If the function X is positive outside some ball, i.e., (6) holds for:;(¢) € R™ is the input,y;(t) € R™ is the output of thegth

some continuous positive functi@nthen the system (3) is saidsystem,f(0) = 0, and B, C are constant matrices of appro-

to bestrictly semipassive priate dimension. We say that the systems (10)diffasively
The concept of semipassivity allows one to find simple comroupledif the matrix C'B is similar to a positive definite matrix

ditions which ensure boundedness of the solutions of intercamd the systems (10) are interconnected by the following feed-

nected systems. Considerpossibly different) systems of the back:

form (3) as
@) @) u; = —v1(y; —y1) — vi2(yy —v2) — - —vir(y; —w) (11)
z; = filx;)+ g;(x;)u; ]
{u;' — hj»(x;) I (7) wherev;; = v;; > 0 are constants such thgz?#i ~4i > 0 for
’ ali =1, k.
where_j =1,k . . Note that if we define the coupling matrixasl’ := (v;;),
Define the symmetrié x & matrixI" as Vi = Zé;j 7i;» then the feedback (11) can be written in a
X matrix notation as
Z’Yli —712 o Tk uw=-T@ Ly
=2
k An observation that the use of the Kronecker product makes the
—7Y21 Z Yoi vt T2k study of CNN more convenient is made in [28].
I'= i=1, %2 (8)

I1l. SYNCHRONIZATION OF DIFFUSIVELY COUPLED SYSTEMS

k1 These days, synchronization of dynamical systems is a very
Z’W popula_r topic. It attracts the attention of resear_ch_ers from dif-
= ferentfields (see, e.g., the November 1997 special issue of IEEE
TRANSACTIONS ONCIRCUITS AND SYSTEMS—I: FUNDAMENTAL
wherey;; = ;i > 0 and all row sums are zero. The MaTyeory AND APPLICATIONS). Various definitions of this phe-

trix I' is symmetric and therefore all its eigenvalues are régdlomenon exist and below we define synchronization following
Moreover, applying Gerschgorin’s theorem about localizatighy

of eigenvalues (see, e.g., [22]), one can see that all eigenvalu€g ynsider a dynamical system described by tietercon-
of I are nonnegative, that is, the mattixs positive semidefi- nectedsystems of ordinary differential equations:
nite.
The following result gives conditions under which the solu-  S;:&; = F;(x1, 22, ..., &k, t), i=1 ...,k (12
tions of the interconnected systems (7) are bounded. .
hereF;: R™ x .- x R™ xR, — R™. A general coordi-

Lemma 1: [16]: Suppose that the systems (7) are semipa¥. o ;
sive with radially unbounded storage functidris R" — R.,. nate-free definition of the problem of controlled synchroniza-

Then all solutions of the systems (7) in closed loop with thiion involves a coordinate-free definition of dynamical systems
feedback and can be found in [2]. Associated with the systems (12) con-

sider the following functior:

—Vkl —Tk2

w; = —1(y — 1) — vy —y2) = = vy — ) (9) !
QW) = lza(t) — zi(#)]. (13)
=2

with v;; = v > 0 exist for allt > 0 and are bounded,
that is, the system (7), (9) is Lagrange stable. Moreover, if the . _ _
systems (7) are strictly semipassive with radially unbound&¥e say that solutions of the systetsisare synchronized if the
storage functiond;: R — R, then all solutions of the value of the functiony) is identically zero for the solutions of
coupled system (7), (9) exist for all> 0 and are ultimately (12).
bounded. Definition 2: The solutionsey(¢), ..., zx(¢) of the systems
Next we give a definition of diffusive coupling dfidentical 51, - -, Sk With initial conditionsz, (0), . .., xx(0) are called
systems. This definition was introduced in [16] and was inspiréynchronizedf
by the paper of Smale on interaction between two cells [21].

We will understand a diffusive medium as a dynamical system @) =0 (14)
consisting of a number of interconnected identical dynamicgr all t ¢ R,
systems. Each separate system has inputs and outputs of thehe solutionsz;(t), - - -, zx(t) of the systemsS:, -- -, Si
same dimension. The diffusive coupling is described by a stafigth initial conditions z(0), - - -, z;(0) are asymptotically
relation between inputs and outputs. Notice that our approagfhchronizegif
to describe the diffusion is different from that proposed in [24].

Definition 1: Given the smooth systems lim Q(t) = 0. (15)

&; = f(x;) + Buy (10) Asymptotic sy_nchronization can be interpreted as the conver-
y; = Cx; gence to the “diagonal” setl = {xy, ---, 2 € R™: z; =
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xj; 4, j = 1, ---k}. If this is the case for all initial conditions Proof: The existence and uniqueness of solutions of the
in some open neighborhood gf, then the synchronization is closed loop system, at least on a finite time interval, follows
equivalent to the attractivity afd. For practical reasons, it is from the smoothness of the right-hand side of the closed system.
convenient to consider a stronger version where thedset By Lemma 1, all solutions are ultimately bounded and hence
not only attractive but also Lyapunov stable. This case is calledist for allt > 0:

strong synchronizatiofB].

Remark 1: Note that attractivity of4 does not necessarily hﬂi}ip |2i(t)| < B-,
imply Lyapunov stability ofA. Indeed, even if4 is a singleton, L sup |y (8)] < B i=1 .k (18)
e.g., A = {0}, then even if any solution of the systein= oo T o

f(@), £(0) = 0, x(t) € R", n = 2 starting close to the origin . cver from the proof in [15] and [16], one can see that the

satisfiesz(¢) — 0 ast — oo it does not mean that the origin is ;
; . boundss., B, d td donth I thix
asymptotically stable, see [7, Section 40]. A oULNASS, By do ot depend on Me couping matt

. . Letz = col(zy, -+, xx) € R¥, 2 = col(zy, --+, ) €
o e et s salons s o SOOI, . ) € 2. s anew s
9 yap variables?, = z1, &2 = 1 —Z2, - - -, T = 1 —Zk. In Matrix

weak synchronizatiof8]. Although the case of weak synchro-
nization is of some theoretical interest, for practical purpos
it is not so important because small disturbances affecting the
system can destroy the synchronization. In the sequel, we will 1 o’
study strong synchronization, namely we will present sufficient P= < 1 -1, )
conditions whend has a compact asymptotically stable subset.

In what follows, we are interested in the case of identical syWith 1 = col(1, ---, 1) and0 = col(0, -- -, 0).
chronization of identical systems forming a diffusive network. Notice that

In this case, we rewrite the systems (10) in a form which can . 0
be obtained from (10) via a linear change of coordinates due to Prr— = <0 r, )
the nonsingularity of® B (see, e.g., [16]):

notation, this change of coordinates can be writte asM x,
ereM = P @ I, is the nonsingular matrikn x kn with

where the(k — 1) x (k — 1) matrix 'y has eigenvalues

z; = a7, yj) (16) 2 Tve T
U5 = a(zj, y;) + CBuy Denotew; = col(zz, -+ -, %) andwy = col(gz, -+ -, Gx),
- I o o wherez; =z, 22 = 21 — 22, - Y1 =YL, Y2 = Y1 — Y2+
wherez;(t) € R*™™, ¢: R X R™ — R, a: R X and so on. Assumption A2 implies the existence of a positive
R™ — R™. definite functionVy: R&—1—m) _ R such that
Let the eigenvalues of the matrixbe ordered a) = v; <
b2 Lo Loy Vi(wy, wy) < —aq|un?
Theorem 1: Consider thé: smooth diffusively coupled sys- w2=0
tems (10) and (11), which, because of the nonsingulari€y8f  with «; > 0.
are rewritten as (16) and (11). Assume the following. SinceI’ = TIT, one can conclude that there exists
Al. The system a nonsingular(k — 1) x (k — 1) matrix F such that
FIi Pt = diag(y2, - -+, y). Introduce new coordinates
{Z =q(z,y) 17) @1 = (F®Lin)wn andis = (F ® L, Jw,. Since stability is
y=a(z, y)+CBu invariant under a change of coordinates, there exists a positive

o . o . definite functionV,: R&—D(—m) _ R 4 Va(41) such
is strictly semipassive with respect to the inpuand 2 = Ry = Va(in)

outputy with a radially unbounded storage function

VIR" — R, Va(iy, )| < —anpliin|?
A2. There exists a2-smooth positive definite function W2 =
Vo:R*™™ — R, and a positive numbetx such that for somea, > 0.
the following inequality is satisfied Now consider the following Lyapunov function candidate:
(VVo(z1 — 22)) ' (q(z1, w) — 22, 1)) < —alz1 — 22 Va(iiry, 1ira) = Va(tin) + § g wa. (19)
forall z1, z0 € R*™™, 4 € R™, Notice that, due to the ultimate boundedness of all solutions

Then, for all positive semidefinite matriceE as in (8), and theC*-smoothness of the functiort, we have forfz| <
all solutions of the closed-loop system (16), (11) are uf:- |yl < By
timately bounded and there exists a positiyesuch that
for all positive semidefinite matrice§” with eigenvalues

0 =m £ 7 < - £ vy forwhichy, > 7there for someC, > 0, and, hence, due to smoothness of the

exists a globally asymptotically stable compact subsghnt-hand side of the closed-loop system, it follows that
of the diagonal setd = {y; € R™ z ¢ R(r—m)

Y= Y 2= Ry, iv J = 17 ) k} ‘./2(@17 1112) - ‘./2(@17 0) < 01|1111| . |1I]2|

|V Va ()| £ Colwy|
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and The result of Theorem 1 can be considered as a generalization
of the result presented in [15] to the case of an arbitrary topology

d - . . o in the network.

W2 W2 < Cs|n] - [wa] — (728 — Cs) 2| At this point, it is useful to make some comments. Consider
the systems (16). It can be seen that these systems have inherent

for |2| < B., |y| < B, and for some nonnegativé;, Cy, Cs dynamics consistent with the external constraints= 4> =

| =

with 2 > 0 being the smallest eigenvalue of the matfl®. -+ = yx governed by the following equations:
Hence 21 = q(z1, 1)
Vs < —azlig | + (Cy + Co)|ainy | - |1z : (21)
— (728 — C3)|in 2. 2 = q(2r, y1)
In other words, for sufficiently large, > 7, where
) v1 = a(z1, y1)- (22)
__(Ci+ ) G . .
7= daaf3 B Moreover, Assumption A2 can be interpreted as follows. The
dynamics (21) driven by an admissihbjg(t) has a noncritically
we have for some > 0 stable set; = z, = --- = 2. Therefore, Assumption A2 is

a natural generalization of the notion of noncritical minimum
phaseness to the case of stabilization of sets. For the most gen-
eral characterization of asymptotic stability and robust stability
of invariant sets in terms of Lyapunov functions, see [11].

Va(iby (£), w2 (t)) < Va(11(0), 1(0)) Recall that noncritical minimum phaseness of each sub-
system means that the system

Vs < —e(|in[? + o). (20)

Integrating this inequality ovep, ¢) yields

which proves the Lyapunov stability of the set = 0, wy = 0.

Next we prove that this set contains a compact attractive subset
which attracts all solutions. has a noncritically stable zero solution. As one can notice, As-
Integrating (20) over [0;0) (recall that we have proved thatgymption A2 is a sufficient condition for noncritical minimum
all solutions are bounded and therefore exist on the infinite tim@aseness. A possible characterization of Assumption A2 can

z= Q(zv 0)

interval) yields be given by the use of concept of convergent systems.
oo Consider the following system:
Vs (0), wa(0) 2 ¢ [ (s () +1ia(®P) ,
0 2=q(z, d) (23)

The left-hand side of this inequality is bounded and the i'@vherez(t) € R®, d(t) € D, D is some compact subset Bf
tegrand is nonnegative, therefore the integral exists and is{fie functiond: R — D is assumed to be continuous and the
nite. Consequently, all solutions of the closed-loop system gjg.or fieldg: R* x D — R is locally Lipschitz continuous in
bounded, and the right-hand side of the closed-loop system,isnq continuous ir.

locally Lipschitz continuous, therefore the right-hand side of Following Demidovich [5], we give the following definition:
the closed-loop system is bounded for any solution, or, equiva-pefinition 3: The system (23) is said to lmenvergentf

lently, . (#), w2(#) are bounded. Henoe, (¢), w,(¢) are uni- i) all solutionsz(¢) are well defined for alt € (—o0, +00)
formly continuous irt and thereforéi; ()| + |w2(¢)|? is uni- and all initial conditions:(0) ’

formly continuous it as well. So, we have proved that there i) there exists a unique globally asymptotically stable solu-

exists a fin_ite integral (frorg zerg) upNto im;inity) of t.he uni- tion Z(¢) bounded for all-so < ¢ < oc, i.e., for any
formly continuous functionw, (¢)|* + |w=(¢)|*. According to solution(#) it follows that
Barbalat's lemma [18], [19], this function tends to zero, that is )
|y (£)|? + |wa(t)|*> — 0 ast — oc. Combining this with (18), lim |z(t) — Z(t)| = 0.
we obtain the result. [ | oo

Remark 2: Since Assumption Al implies ultimate bounded- Moreover, if for all initial conditions from the arbitraérball
ness of all solutions, it is sufficient to require that Assumptiocentered at(t,) there are” > 0 anda > 0 independent ofy,
A2 is valid only on the compact sét| < 5., |y| < B,. A such that it followgz(¢) — z(¢)| < Cexp(—af(t —to)), we will

Let us explain the result of Theorem 1. It claims that undsay that the system (23) moncritically convergent
the conditions imposed the diagonal set= {z; € R™: z1 = If, additionally, the system (23) is convergent for all contin-
xo = --- = x3,} contains a bounded closed invariant globallyous functions! from the given clas® = {d € C°: R — D},
attractive seid; C A, thatis, the distance between any solutiothe system (23) is referred to esnvergent irD.
x(t) and this set vanishes with time. Additionally, it claims that According to [5], there exists a simple sufficient condition
this set is Lyapunov stable: the maximum of the distance bshich guarantees that the system (23) is convergent (see [5, p.
tweenz(t) and.A; depends continuously on the initial distanc@86]; we give a slightly more general result which can be derived
between:(0) and.A. from [5] via a linear coordinate change):
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Theorem 2: Assume that there exists a positive definite mahen this ellipsoid lies inside the ball
trix P = P’ > 0 such that all eigenvalues of the symmetric
matrix E={,y, ma? +y’ + (z—0o -1 S K* (o +7)*} (27)

1 dq dq T

: [P(a7< 0)+(Se0) P

) lating the time derivative df” along solutions of the system (25)
are negative and separated from zero forad R* and¢ € D. yields

Then the system (23) is noncritically convergent in the class
D.

The proof of this theorem is based on the calculation
of the time derivative of the quadratic Lyapunov functiorTherefore, the functiolV is a storage function which proves
(2(t) — z(t)) T P(2(t) — z(t)). This quadratic function can bestrict semipassivity of the system (25) from the inputo the

which means that all solutions of the uncontrolled system ap-
proach within some finite time the set defined by (27). Calcu-

V(.’El, Y1, 21, U’) = V(.’L’l, Y1, 21, 0) +.’L’1U,.

used to check Assumption A2. outputz;.
Example 1: The following example illustrates Theorem 1 for Secondly, we find theero dynamlcby imposing the external
a network of Lorenz systems. constraintse; = xj, j = 1, , k:

Consider the following: systems: )
(Y1 =TT1 — Y1 — T121

iy =o(y; — ;) +uy 71 = —bz1 + 11911
yJ = ”51 Yj — Lz (24) Yo = TX1 — Y2 — T172

—bz; + z;y; 29 = —bzy + 192
withj:1,~~~,kand : (28)
Un = TT1 — Yk — T12k
Z = —bzp + iy
We will show that if the eigenvalue, of the matrixI" is 21 = o(y1 — z1).
large enough then the systems asymptotically synchronize
according to

uj = =y (x; — 1) — vy — w2) — - — vwlz; — ).

Now we show that the system

{?)1 =Trr— Y — Nz
Z|x1 —z;(t)] =0, 2= —bz + 11

is noncritically convergent for any bounded(¢). Indeed, the
symmetrized Jacobi matrix for this system has two eigenvalues

Z o1 (8) — wi(B)] =0, —1and—b and, therefore, according to Theorem 2, there exists
a quadratic function which satisfies Assumption A2 of Theorem

k 1.

> Imt) =z =0 Thus, all the conditions of Theorem 1 are satisfied and so

j=2 there exists a numbef such that for sufficiently large, >

7 the system of: diffusively coupled Lorenz systems has an

aslt:ir:t \7\2 check that the system asymptotically stable compact subset of the{sat = x> =
CE DR, YL T Y2 T =Ygy A1 T 22 = = 2k )
1=0c(h —x1)+u To confirm the theoretical results, we carried out some com-
L =7rr— Yy — L1721 (25) puter simulations. First consider the case of two Lorenz systems
2 = —bz + 21 (k = 2 with “standard parameters’ = 10, » = 28, b = 8/3)

is strictly semipassive with respect to the inpland outputr; . coupled by the following coupling matrix

To this end, consider the smooth function 3 _3
v=( )

L@t (- —1)?)  (26) 9

2
This matrix has eigenvalues (0, 6) and, as is seen from Fig. 1, it
lts time derivative with respect to the uncontrolled systeghsyres synchronization of two coupled systems [initial condi-
(u(t) = 0) satisfies tions are taken as followsz (0) = 0, 4 (0) = 1, 2 (0) = 3,
‘ o+r\2  (o41)? x2(0) = 1, 12(0) = 0.1, 22(0) = 3.1]. Fig. 1 shows that the
V=—ozl—yi—-b < ) +bh—. quantity(z1(¢) — z2(t))? decays as a function of time.
2 4 . -
Next, a simulation was performed for the case of three Lorenz
It is seen thal” = 0 determines an ellipsoid outside of whichSystems with the coupling matrix defined as follows,
the derivative ofV is negative. IfK satisfies

V(ﬂfl, Y1, 21)

& -2 -6

1 b 1 I"=1-2 4 -2
2_-~_.9Y -
K —4+41nax{a,1} _6 -2 3
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Fig. 1. Synchronization of two Lorenz systems. Fig. 2. Synchronization of three Lorenz systems.

I has as eigenvalues (0, 6, 14) and, according to the theoretigastraint” ® I,,,4y = 0 are locally asymptotically noncritically
results, it guarantees synchronization since its smallest nonzenstable, or each system in the diffusive network is hyperbol-
eigenvalue is the same as in the previous case. This fact candadly nonminimum phase. Additional conditions should be
observed from Fig. 2. During the simulation, the initial condiehecked to prove that the origin is a unique equilibrium for all
tions are taken as follows:; (0) = 0, 41(0) = 1, 21(0) = 3, (or admissible) coupling matricés(for details, see [16]).
22(0) = 1, 42(0) = 0.1, 22(0) = 3.1, 21(0) = 0.3, 1 (0) = 0, We illustrate a possibility of diffusion-driven instability by
21(0) = 1. A an example of diffusively coupled systems of third order. This

is the minimal order of systems which can become oscillatory

IV. ON DIFFUSION-DRIVEN INSTABILITY via diffusion [16].
Example 2: Consider the followingk diffusively coupled

In the previous section, we considered a phenomenon whij tems

can be observed in a network of diffusively coupled minimum

phgse sys.tems. Even in the case when each separate. fr_ee system i1 = Az (14 |21[2) + By

oscillates irregularly, coupled together they may exhibit some iy = Awa(1 + |22]2) + Bus

kind of synchronization. In this case, synchronization can be

considered as a sign of cooperation via diffusion. However, as :

a result of cooperation via diffusion, arrays of coupled systems iy, = Azg(1+ |zx]*) + Buy

may also exhibit asynchronous oscillatory behavior. Namely, as-

sume that each free system in the array of diffusively couplédierez; € R? y; = Cay,

systems is globally asymptotically stable. A common under-

standing of diffusion is a smoothening or trivializing process; % = =1y —y) — 2y —y2) — - — vy — vk

however, a network of diffusively coupled globally asymptoti-

cally stable systems may demonstrate oscillatory behavior. and
In [16], an explicit construction of diffusively coupled

globally asymptotically stable systems being oscillatory when L=l 1

) o . N . A= 1 0 0
interconnected is given. One of the possible motivations of this 4 9 1-3
problem lies in the field of mathematical biology (see [21]). - -

In some sense, the problem is opposite to the synchronization 0

problem. Namely, a network of diffusively coupled globally B=[|0o|, Cc=(@01).
asymptotically stable systems will be oscillatory if all trajecto- 1

ries are bounded and the whole system has a unique hyperbolic

equilibrium. Therefore, to prove oscillatory behavior in thétis easy to see that each free systesn=t 0) is globally asymp-
diffusive network, we need to prove instability of the uniquéotically stable (it follows from the fact that the matukis Hur-
equilibrium. This is contrary to the proof of stability in the casavitz).

of synchronization. The boundedness of trajectories can bd.etl’ = (v;;), vii := Ef# ~;; be the coupling matrix with
established via the semipassivity property. To ensure that #igenvaluesy; < --- < . Then, withy; sufficiently large,
origin becomes unstable for al), greater than some thresholdthe coupled system becomes Y-oscillatory. The key idea behind
value ¢y is the largest eigenvalue of the coupling mafilx this example is (see [16]) that the individual systemsraote

it is sufficient to require that the dynamics consistent with th@inimum phase.
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%, ®

We can demonstrate this example by computer simulation. ,,
Consider three systems coupled by the following coupling ma-

trix:
2 —1 -1 '
"=\ -1 2 -1
-1 -1 2

05

It is seen from Fig. 3 that this coupling ensures oscillatory be-
havior of the network despite the fact that each free system is
globally asymptotically stable. Initial conditions are taken as
21(0) = (1,0, 0) T, 22(0) = (0, 1, 0) " 23(0) = (0, 0, )T.A

The above results allow for a better understanding of different s},
oscillatory phenomena occurring as a result of cooperation via
diffusion. Loosely speaking, in an array of diffusively coupled
minimum phase systems, one can expect the existence of syr -1; —
chronous properties while, in contrast, an array of diffusively tme
coupled nonminimum phase systems may exhibit oscillatory hﬁ‘g. 3. Oscillatory behavior in the network of nonminimum phase systems.
havior even when each free system is globally asymptotically
stable.

[

plete topology of the network. Many different structures of the
network correspond to the sarh@nd V. As before, denote the
eigenvalues of the matrik as0 = y; < v < --- < . For
In the previous sections, we discussed some oscillatory phgry givenk and N, the largest possible, subject to different
nomena occurring as a result of diffusive interaction betweegpologies will be denoted ag(k, N) while the smallest pos-
identical subsystems. We presented results which are essentigiiye ;. will be denoted asy(k, N).
based on some properties of the malrixvhich describes the  As we have seen in the previous sections, stability analysis
topology of the interconnections. In this section, we will discusf diffusive networks essentially depends on the eigenvajues
the synchronization or nonsynchronizing oscillatory behavior ghd-~,, of the matrixI" which describes the topology of the in-
the diffusively coupled systems in relation to the topology of therconnections. Therefore, in the design of diffusive networks,
coupling. Clearly, a crucial role in this regard is played by thghe following discrete optimization problems are of interest.
coupling matrixI*, and more specifically, by the eigenvalugs  Given N and &, find the structure of a (regular) network
(in case of minimum phase systems, see Section IlJanh  which maximizesy,(k, N) [maximizesv;(k, N)] under the
the case of nonminimum phase systems, see Section IV).  constraint that all nonzerg;;, i # j are bounded from below
Definition 4: A system consisting of diffusively coupled and above by given constants.
systems is said to becellular diffusive networkf it cannotbe | general, an analytic solution to these problems is unknown.
decomposed into two or more disconnected subsystems.  However, using methods of discrete programming, one can find
Definition 5: The maximal numbe/V of cells connected to splutions based on numerical computation. Clearly, the compu-
one cell in a diffusively coupled array of systems is called thgtional complexity increases significantly with largein what

V. THE TOPOLOGY OFDIFFUSIVE NETWORKS

densityof the cellular network. follows, we will present a solution for particular cases and then
Definition 6: A cellular diffusive network is said to beg- we will focus attention to the asymptotic behaviC.m@(k-7 N)

ular if and~,(k, N) whenk tends to infinity.
1) All coupling constants are equal;; = ~ for all ¢ # j Example 3:Consider the following problem. Given the
2) Each cell is connected t§ other cells. density N, find k£ and a structure for a regular network such

Notice that we did not impose other restrictions on thénat v.(k, V) is maximal possible for alk. A solution to
topology of the interconnections, for example symmetry dhis problem is trivial:k = N + 1. It corresponds to the “all
the interconnections (e.g., cyclic or rosette-like structuresd all” structure. In this case, the matrxhask — 1 = N
Note that regular networks can model very complex structuregenvalues equal taV + 1)+ and one zero eigenvalue. Since
including isotropic or anisotropic media. It is worth men#T" = N(N + 1)~, the solution is optimal. A
tioning, however, that some symmetry in the topology can Example 4: Now consider a similar problem. Givew, find
generate very interesting properties of solutions bifurcated Viaand a structure of regular network such thgtk, V) is max-

a Poincaré—Andronov—Hopf bifurcation which leads to oscilmal possible for alk. A solution isk = 2/V. Take two clusters
lations in coupled systems [6]. Moreover, in some particulaonsisting of/V cells and connect each cell from the first cluster
cases, e.g., for cyclic one-dimensional arrays, for rosette-liteeach cell from the second cluster. The mditrir this case has
structures, the matriX’ has a special structure (it turns oubne zero eigenvalue, one eigenvalue equaiey and2(N —1)

to be acyclic matriX) for which all eigenvalues can be foundeigenvalues equal t&y~. According to Gerschgorin’s theorem
analytically [9]. [22], 2N~ is the maximal possible eigenvalue for regular net-

The numbersg: (i.e., number of cells) an&/ (i.e., maximal works of densityV for arbitrary k. Therefore, the solution is
number of connections at each cell) in no way define the comptimal. JAN
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Next we will investigate the asymptotic behavionefk, V) the same time, if one allows the number of interconnections to
whenk — oo. We are able to establish the following fact foigrow quadratically with respect to the number of cells in regular

regular networks. networks (this is the case for example in “all to all” structures),
Theorem 3: For regular networks, the following relation isthen the smallest nonzero eigenvalue grows Wwieind the cou-
valid: pling gain~y which ensures synchronization decayg:as (see
[15, Proposition 1]).
klim vo(k, N)=0. We illustrate Theorem 3 with the following example.

Example 5: Consider a network with thie x £ coupling ma-
Proof: For simplicity, takey = 1. Consider the vector rix given by

z1 € R*
2 -1 0 -~ 0 -1
T -1 2 -1 .- 0 0
2= (1/\/k—1, 1/\/k—1, 1/\/k—1,/0) .
r—| o -1 2 -1 . o0
Clearly, |z| = 1. Moreover, it follows that, T'z; = N(k — e
1)~! (the sum oft — N — 1 rows is zero, while the sum of the -0 0 =12

other rows is 1). Consider the vectay € R This coupling matrix corresponds to a ring structure of a diffu-

sive network consisting df cells when each cell is connected

7y = <1 /\/E .1 /\/E 1 /\/E)T _ with its two neighbors. The matrik in this case isyclic and
its eigenvalues can be calculated analytically (see, e.g., [9]):

As before,|z;] = 1. Moreoverz, is the eigenvector corre-
sponding to the zero eigenvalue bf i.e., z; I'zo = 0. Ac- v =2 (1= cos 2mj =1,k
cording to Fischer's Theorem (see Appendix) ’ k ’ o

B . ey It is clear that zero is an accumulation point in the spectrum of
RE s S oo B I" ask tends to infinity. A
The situation with the largest eigenvalue of the mafrix

Let » be alinear combination af , 2, suchthatz| = 1. Denote which is “responsible” for generation of oscillations in diffusive

by D a vector space spanned by, z-. Clearly, networks is different. Indeed, the trace of the mairigrows
linearly with respect td: and therefore the largest eigenvalue
v < max 27Tz v(k, N) is separated from zero. In other words,Nf and

z€D, |z|=1 ) the diffusive factors between cells do not dependkothen
diffusion driven oscillations may occur in arbitrarily large
Sincez, 'z = 0 and~'I'» = N(k — 1)1, it follows that networks.
~vo(k, N) — 0ask — oc. | Example 6: The last conclusion allows us to establish that
Remark 3: The theorem remains true for arbitrary cellulathe statement conjectured by Wu and Chua [29] is wrong. Given
networks if we assume that its density and maximal value of theo diffusive networks with coupling matricd® andI™” with
coupling constants;;, ¢ # j are bounded fok — co. A equal smallest nonzero eigenvalugs = ~4. The Wu—Chua
The theorem claims that if the network density is constant asdnjecture claims that the conditions of global (identical) syn-
the number of cells is increasing, then the second eigenvaluehfonization for the first network are equivalent to the condi-
the topology matrix tends to zero regardless of the topology tiéns of global synchronization in the second network. The-
the network. orem 1 gives sufficient conditions under which this statement is
In other words, if the total number of interconnections in thigue: we derived conditions ensuring synchronization which de-
network grows at modtnearly with respect to the number of pend only on smallest nonzero eigenvalues of the coupling ma-
cells (preserving the fact that each cell is connected with mdx. Particularly, condition A3 is close to a necessary condition
more thanV cells andV as well as diffusive factors;; do not under which the Wu—Chua conjecture is true. Indeed, in [16] it
depend or¥), then the eigenvalue; of the matrixI’ which is is shown that if? = ¢(z, 0) is locally hyperbolically unstable
“responsible” for synchronization decays/agoes to infinity. (and hence A3 is not satisfied), then if the largest eigenvalue of
This fact significantly restricts possible synchronous modes the coupling matrix exceeds some threshold value then for some
large diffusive networks. For example, if the regular network j |z;(¢) — x;(t)| does not tend to zero. However, minimum
consisting of Lorenz systems studied in Example 1 grows, thphaseness is not a necessary condition for synchronization if
for any giveny and N there exist & such that there is no syn-one allows forall eigenvalues of the coupling matrix to lie in
chronization as soon &s> k. This fact explains the computersome region. Since it is possible to design a system consisting
simulations carried out in [12]. of two diffusively coupled subsystems which are synchronized
Moreover, using the same technique as in the proof of tialy if the coupling strength lies in some region (e.g., when each
previous theorem, it is possible to show that zero is an accunsystem is hyperbolically nonminimum phase), and according to
lation point in the spectrum of the matidixwhenk increases. At the Wu—Chua conjecture, the largest eigenvaluds’ @ndI™”
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Fig. 4. Synchronization for the first type of coupling [see (30)]. Fig. 5. Absence of synchronization for the second type of coupling [see (31)].
are admitted to be different, in the general case the Wu—-Chug0) = 0.3, 41(0) = 0, 12(0) = 0.1, y3(0) = 0, z.(0) = 3
conjecture is not true. z2(0) = 3.1, z3(0) = 1. A
Let us demonstrate this idea by computer simulation. Con-
sider a diffusive network consisting of three identical systems: VI. CONCLUSIONS
T; = —y; — €% In this paper, we presented analytical tools for the study of
{Uz =x; +ay; + (29) oscillatory behavior in arrays of diffusively coupled systems
Zi=ce P4z —0b with an arbitrary topology of interconnections. The dynamics

herei — 1. 2. 3 anda. b i N Note that of the network are essentially based on the stability property
where: = 1, z, > anda, 6, care posiive parameters. Note aWlth respect to sets of the constrained dynamics usually referred

:Ee ;90rc|imate tChant?]Q d tr?nfforn}s eacth system into Ias the zero dynamics. In the case that this dynamics has a
?h 053 er sys]: erbn (this cct;or |ga € r?]ns ormta lon |ivery usle ncrltlcally asymptotlcally stable compact set consistent with
in the design of observer-based synchronization schemes [ — ... = z,, the whole system has a tendency to syn-

The coupling is supposed to be determined by the followi romzatlon Instablllty of the zero dynamics, in turn, leads to

relation: the generation of oscillations in diffusive networks.
We also have shown that in growing networks the growth rate
of the number of interconnection is essential for synchronization
T Consider two Put not so important for the generation of oscillations via diffu-

u=—Iy

with © = (uy, u2, us) " andy = (v, ¥2, ¥3)

coupling matrices sion in large networks.
2 -1 -1 APPENDIX
r=21-1 2 -1 (30) FISCHER'S THEOREM
q -1tz Theorem 4 [22]: Let an Hermitiann x n matrix H have
an eigenvalues\; < --- < A,. Then
9 8 -1 —-80
"o
I 3 -1 2 -1 (31) A; = min max a7 Hz
—-80 -—1 &1 dim X=tzcX, zHz=1
- ) and

The matrixI” has eigenvalues (0, 2, 2) and the matfrik has A = max min 2" Ha

eigenvalues (0, 2, 322/3). Computer simulations show that al- dim X=n—i+1 zeX,z"a=1
though the matrice¥” andI'” have equal smallest nonzero

eigenvalues the first coupling ensures synchronization (at leagterez* stands for the Hermitian transposezof
for some initial data) while the second coupling cannot pro-

vide synchronization with the same initial data. Fig. 4 shows the REFERENCES
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