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Cooperative Oscillatory Behavior of Mutually
Coupled Dynamical Systems

Alexander Pogromsky and Henk Nijmeijer, Fellow, IEEE

Abstract—In this paper, we make a qualitative study of the dy-
namics of a network of diffusively coupled identical systems. In
particular, we derive conditions on the systems and on the cou-
pling strength between the systems that guarantee the global syn-
chronization of the systems. It is shown that the notion of “min-
imum phaseness” of the individual systems involved is essential in
ensuring synchronous behavior in the network when the coupling
exceeds a certain computable threshold. On the other hand, it is
shown that oscillatory behavior may arise in a network of identical
globally asymptotically stable systems in case the isolated systems
are nonminimum phase. In addition, we analyze the synchroniza-
tion or nonsynchronization of the network in terms of its topology;
that is, what happens if either the number of couplings and/or sys-
tems increases? The results are illustrated by computer simulations
of coupled chaotic systems like the Rössler system and the Lorenz
system.

Index Terms—Cellular neural networks, oscillatory behavior,
passivity, synchronization.

I. INTRODUCTION

RECENTLY, an increasing interest has been devoted to the
study of cellular neural networks (CNNs) [4], [20], [23],

[24] (see also [19]). A CNN consists of mutually coupled dy-
namical systems and, due to the interactions, it can exhibit com-
plex behavior even in cases when each cell itself is described
by fairly simple differential equations. Among the possible ap-
plications of CNNs, we mention the very interesting fields of
telecommunication [12] and mathematical biology [9].

Even CNNs consisting of simple cells form, after coupling,
high dimensional nonlinear systems, and therefore such CNN’s
are difficult to study analytically. However, recently, some
progress in the qualitative study of CNNs has been made.
A thorough analysis of CNNs consisting of cells described
by first-order differential equations coupled in linear one-di-
mensional (1-D) arrays can be found in [20] and [24]. It was
shown that, even in such a simple setting, it is possible to
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observe nontrivial phenomena called local diffusion and global
propagation.

In this paper, we are interested in oscillatory behavior in net-
works composed of identical dynamical systems and coupled
in arbitrary arrays viadiffusive coupling, that is, the systems
are mutually coupled through a linear output coupling. In other
words, we assume that with the given elementary dynamical
system a specific output (read-out map) is given and the cou-
pling between various systems in the network is defined through
weighted differences of the form , with some posi-
tive number and indicating the outputs of theth and th
systems.

It turns out that, in a network of diffusively coupled identical
systems, two structural phenomena can be encountered and ana-
lyzed. Namely, on the one hand, we will study the synchroniza-
tion of all systems in the network, implying that the dynamics
of all individual cells will asymptotically match with each other.
Of course, it does not imply that the dynamics of each separate
system “dies out,” but, in contrast, what can happen is that some
oscillatory motion in a separate dynamical system will be en-
forced through the coupling in an identical way in all systems.
As an illustration, this happens for instance when a network of
identical Lorenz systems is built and the couplings between the
separate systems are strong enough.

On the other hand, we will treat the occurrence of asyn-
chronous oscillatory behavior in a diffusively coupled network.
In this case, the basic observation is that, through the coupling
of the systems, oscillatory motion in each of the systems can
be enforced, even if the individual system will stabilize if no
coupling exists. Conditions for the presence of oscillatory be-
havior in a network of diffusively coupled systems are derived
in an earlier paper by the authors [16] and are contrasted with
the conditions for synchronization.

Given the possible occurrence of one of the two scenarios, a
very interesting case arises if the number of cells in the network
and/or the number of nonzero interconnections is changed. In
particular, we will address the interesting question whether syn-
chronization or diffusion driven instability would be changed
when increasing the number of cells and/or interconnections.
Some earlier work in this direction can be found in [1] and [27].
In particular, we show that, if the number of cells in the net-
work becomes infinitely large while the coupling strengths are
bounded and the number of interconnections between cells does
not grow more than linearly with respect to the number of cells,
the systems eventually will lose the synchronization property.
However, the synchronization can be retained if one allows for
a quadratic growth of the number of interconnections.

1057–7122/01$10.00 © 2001 IEEE
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The paper is organized as follows. In Section II, we present
necessary background material. Section III deals with the syn-
chronization phenomena occurring via diffusion. In Section IV,
we briefly discuss the conditions resulting in generation of os-
cillations via diffusion. Some useful properties of diffusive net-
works are discussed in Section V. Section VI contains some con-
cluding remarks.

II. PRELIMINARIES

The Euclidean norm in is denoted simply as ,
, where defines transposition. The notation

stands for the column vector composed of
the elements . This notation will also be used in the
case where the componentsare vectors again. We will study
notions relative to nonempty subsets, of , ; for such
a set , denotes the
distance from to .

A function defined on a subset of ,
is positive definiteif for all and
. It is radially unbounded(if ) or properif

as . A nonnegative function is said to be
positive definite with respect to the setif for all

and for all . It is proper with respect
to if boundedness of implies boundedness of .

If a quadratic form with a symmetric matrix
is positive definite, then the matrix is called positive definite.
For positive definite matrices, we use the notation ; more-
over, means that the matrix is positive definite.

A matrix for which all eigenvalues have negative real parts
is called Hurwitz or stable.

An invariant set for the dynamics is said
to be noncritically stableif it is Lyapunov stable, that is, all
solutions starting close enough toremain close to for all

and additionally for sufficiently
small with positive .

The system is calledLagrange stableif all its
solutions are bounded. If all solutions eventually end up within
a bounded domain which can be chosen independently of the
initial conditions, then all solutions are referred to asultimately
bounded.

Given a system of autonomous differential equations

(1)

where . We will say that the system (1) is oscillatory in
the sense of Yakubovich, orY-oscillatoryif any solution of (1) is
bounded and for almost all initial conditions the corresponding
solution does not tend to a constant (see, e.g., [25]).

For matrices and , the notation (the Kronecker
product) stands for the matrix composed of submatrices ,
i.e.,

...
...

. . .
...

(2)

where , , stands for the th entry of the
matrix .

Consider the nonlinear time-invariant affine system

(3)

where is the state, is the input which is assumed
to be any continuous and (essentially) bounded function of time:

, is the output; ,
, are smooth enough to ensure existence of

solutions in any reasonable sense, e.g., in the sense of Filippov,
at least on a finite time interval ; is
the output mapping.

Suppose there exists a nonnegative differentiable1 storage
function and nonnegative continuous
function such that for all admissible
inputs and initial conditions and for all time in-
stants the following dissipation inequalityis
valid:

(4)

Then the system (3) is called apassive system, see, e.g., [3] and
[10]. If, additionally, is positive definite, then the system (3)
is calledstrictly passive.

From the definition of passive systems, one can draw two im-
portant conclusions. First, if the strictly passive system (3) pos-
sesses some inherent dynamics consistent with the constraint

(which in control theory is referred to as thezero dy-
namics) and is positive definite, then the origin is an asymp-
totically stable equilibrium of the zero dynamics. Secondly, if

is positive definite, then the origin is a stable equilibrium of
the free system ( ) (in case of strict passivity the origin is
asymptotically stable).

The theory of passive systems plays an important role in
modern control theory [3], [14], [26]. In a natural way it extends
the notion of positive real linear systems to nonlinear systems.

In this paper we need some weakened version of passivity
because we focus our attention on systems exhibiting oscillatory
behavior for .

Next we define asemipassive system. This notion was intro-
duced in [15]; in [17], an equivalent notion was calledquasipas-
sivity. Roughly speaking, a semipassive system behaves like a
passive system for sufficiently large . More precisely, assume
that there exists a nonnegative function such that
for all admissible inputs, for all initial conditions and for all
for which the corresponding solution of (3) exists, we have

(5)

where the function is nonnegative outside some
ball:

(6)

1In fact, the functionV needs not necessarily be differentiable. In this case,
we will assume thatV is locally Lipschitz continuous, i.e., it satisfies a Lip-
schitz condition on any compact set. Indeed, ifx(t) is a bounded solution in
the sense of Filippov, then it is an absolutely continuous function of time and
thereforeV (x(t)) is also an absolutely continuous function of time, that is, its
time-derivative exists almost everywhere.
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for some continuous nonnegative functiondefined for .
If the function is positive outside some ball, i.e., (6) holds for
some continuous positive function, then the system (3) is said
to bestrictly semipassive.

The concept of semipassivity allows one to find simple con-
ditions which ensure boundedness of the solutions of intercon-
nected systems. Consider(possibly different) systems of the
form (3) as

(7)

where .
Define the symmetric matrix as

...
...

.. .
...

(8)

where and all row sums are zero. The ma-
trix is symmetric and therefore all its eigenvalues are real.
Moreover, applying Gerschgorin’s theorem about localization
of eigenvalues (see, e.g., [22]), one can see that all eigenvalues
of are nonnegative, that is, the matrixis positive semidefi-
nite.

The following result gives conditions under which the solu-
tions of the interconnected systems (7) are bounded.

Lemma 1: [16]: Suppose that the systems (7) are semipas-
sive with radially unbounded storage functions .
Then all solutions of the systems (7) in closed loop with the
feedback

(9)

with exist for all and are bounded,
that is, the system (7), (9) is Lagrange stable. Moreover, if the
systems (7) are strictly semipassive with radially unbounded
storage functions then all solutions of the
coupled system (7), (9) exist for all and are ultimately
bounded.

Next we give a definition of diffusive coupling of identical
systems. This definition was introduced in [16] and was inspired
by the paper of Smale on interaction between two cells [21].
We will understand a diffusive medium as a dynamical system
consisting of a number of interconnected identical dynamical
systems. Each separate system has inputs and outputs of the
same dimension. The diffusive coupling is described by a static
relation between inputs and outputs. Notice that our approach
to describe the diffusion is different from that proposed in [24].

Definition 1: Given the smooth systems

(10)

where , is the state of theth system,
is the input, is the output of the th

system, , and are constant matrices of appro-
priate dimension. We say that the systems (10) arediffusively
coupledif the matrix is similar to a positive definite matrix
and the systems (10) are interconnected by the following feed-
back:

(11)

where are constants such that for
all .

Note that if we define the coupling matrix as ,
, then the feedback (11) can be written in a

matrix notation as

An observation that the use of the Kronecker product makes the
study of CNN more convenient is made in [28].

III. SYNCHRONIZATION OF DIFFUSIVELY COUPLEDSYSTEMS

These days, synchronization of dynamical systems is a very
popular topic. It attracts the attention of researchers from dif-
ferent fields (see, e.g., the November 1997 special issue of IEEE
TRANSACTIONS ONCIRCUITS AND SYSTEMS—I: FUNDAMENTAL

THEORY AND APPLICATIONS). Various definitions of this phe-
nomenon exist and below we define synchronization following
[2].

Consider a dynamical system described by theintercon-
nectedsystems of ordinary differential equations:

(12)

where . A general coordi-
nate-free definition of the problem of controlled synchroniza-
tion involves a coordinate-free definition of dynamical systems
and can be found in [2]. Associated with the systems (12) con-
sider the following function :

(13)

We say that solutions of the systemsare synchronized if the
value of the function is identically zero for the solutions of
(12).

Definition 2: The solutions of the systems
with initial conditions are called

synchronizedif

(14)

for all .
The solutions of the systems

with initial conditions are asymptotically
synchronized, if

(15)

Asymptotic synchronization can be interpreted as the conver-
gence to the “diagonal” set
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, . If this is the case for all initial conditions
in some open neighborhood of, then the synchronization is
equivalent to the attractivity of . For practical reasons, it is
convenient to consider a stronger version where the setis
not only attractive but also Lyapunov stable. This case is called
strong synchronization[8].

Remark 1: Note that attractivity of does not necessarily
imply Lyapunov stability of . Indeed, even if is a singleton,
e.g., , then even if any solution of the system

, , starting close to the origin
satisfies as it does not mean that the origin is
asymptotically stable, see [7, Section 40].

The case when attracts solutions starting from a set of pos-
itive Lebesgue measures butis not Lyapunov stable is called
weak synchronization[8]. Although the case of weak synchro-
nization is of some theoretical interest, for practical purposes
it is not so important because small disturbances affecting the
system can destroy the synchronization. In the sequel, we will
study strong synchronization, namely we will present sufficient
conditions when has a compact asymptotically stable subset.

In what follows, we are interested in the case of identical syn-
chronization of identical systems forming a diffusive network.

In this case, we rewrite the systems (10) in a form which can
be obtained from (10) via a linear change of coordinates due to
the nonsingularity of (see, e.g., [16]):

(16)

where , ,
.

Let the eigenvalues of the matrixbe ordered as:
.

Theorem 1: Consider the smooth diffusively coupled sys-
tems (10) and (11), which, because of the nonsingularity of,
are rewritten as (16) and (11). Assume the following.

A1. The system

(17)

is strictly semipassive with respect to the inputand
output with a radially unbounded storage function

.
A2. There exists a -smooth positive definite function

and a positive number such that
the following inequality is satisfied

for all .
Then, for all positive semidefinite matrices as in (8),
all solutions of the closed-loop system (16), (11) are ul-
timately bounded and there exists a positivesuch that
for all positive semidefinite matrices with eigenvalues

for which there
exists a globally asymptotically stable compact subset
of the diagonal set

.

Proof: The existence and uniqueness of solutions of the
closed loop system, at least on a finite time interval, follows
from the smoothness of the right-hand side of the closed system.
By Lemma 1, all solutions are ultimately bounded and hence
exist for all :

(18)

Moreover, from the proof in [15] and [16], one can see that the
bounds , do not depend on the coupling matrix.

Let ,
, . Introduce a new set of

variables: . In matrix
notation, this change of coordinates can be written as ,
where is the nonsingular matrix with

with and
Notice that

where the matrix has eigenvalues
.

Denote and ,
where ,
and so on. Assumption A2 implies the existence of a positive
definite function such that

with .
Since , one can conclude that there exists

a nonsingular matrix such that
. Introduce new coordinates

and . Since stability is
invariant under a change of coordinates, there exists a positive
definite function , such
that

for some .
Now consider the following Lyapunov function candidate:

(19)

Notice that, due to the ultimate boundedness of all solutions
and the -smoothness of the function , we have for

for some , and, hence, due to smoothness of the
right-hand side of the closed-loop system, it follows that
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and

for and for some nonnegative
with being the smallest eigenvalue of the matrix .

Hence

In other words, for sufficiently large , where

we have for some

(20)

Integrating this inequality over yields

which proves the Lyapunov stability of the set .
Next we prove that this set contains a compact attractive subset
which attracts all solutions.

Integrating (20) over [0, ) (recall that we have proved that
all solutions are bounded and therefore exist on the infinite time
interval) yields

The left-hand side of this inequality is bounded and the in-
tegrand is nonnegative, therefore the integral exists and is fi-
nite. Consequently, all solutions of the closed-loop system are
bounded, and the right-hand side of the closed-loop system is
locally Lipschitz continuous, therefore the right-hand side of
the closed-loop system is bounded for any solution, or, equiva-
lently, are bounded. Hence are uni-
formly continuous in and therefore is uni-
formly continuous in as well. So, we have proved that there
exists a finite integral (from zero up to infinity) of the uni-
formly continuous function . According to
Barbalat’s lemma [18], [19], this function tends to zero, that is

as . Combining this with (18),
we obtain the result.

Remark 2: Since Assumption A1 implies ultimate bounded-
ness of all solutions, it is sufficient to require that Assumption
A2 is valid only on the compact set .

Let us explain the result of Theorem 1. It claims that under
the conditions imposed the diagonal set

contains a bounded closed invariant globally
attractive set , that is, the distance between any solution

and this set vanishes with time. Additionally, it claims that
this set is Lyapunov stable: the maximum of the distance be-
tween and depends continuously on the initial distance
between and .

The result of Theorem 1 can be considered as a generalization
of the result presented in [15] to the case of an arbitrary topology
in the network.

At this point, it is useful to make some comments. Consider
the systems (16). It can be seen that these systems have inherent
dynamics consistent with the external constraints

governed by the following equations:

... (21)

(22)

Moreover, Assumption A2 can be interpreted as follows. The
dynamics (21) driven by an admissible has a noncritically
stable set . Therefore, Assumption A2 is
a natural generalization of the notion of noncritical minimum
phaseness to the case of stabilization of sets. For the most gen-
eral characterization of asymptotic stability and robust stability
of invariant sets in terms of Lyapunov functions, see [11].

Recall that noncritical minimum phaseness of each sub-
system means that the system

has a noncritically stable zero solution. As one can notice, As-
sumption A2 is a sufficient condition for noncritical minimum
phaseness. A possible characterization of Assumption A2 can
be given by the use of concept of convergent systems.

Consider the following system:

(23)

where , , is some compact subset of ,
the function is assumed to be continuous and the
vector field is locally Lipschitz continuous in

and continuous in .
Following Demidovich [5], we give the following definition:
Definition 3: The system (23) is said to beconvergentif

i) all solutions are well defined for all
and all initial conditions .

ii) there exists a unique globally asymptotically stable solu-
tion bounded for all , i.e., for any
solution it follows that

Moreover, if for all initial conditions from the arbitrary-ball
centered at there are and independent of ,
such that it follows , we will
say that the system (23) isnoncritically convergent.

If, additionally, the system (23) is convergent for all contin-
uous functions from the given class ,
the system (23) is referred to asconvergent in .

According to [5], there exists a simple sufficient condition
which guarantees that the system (23) is convergent (see [5, p.
286]; we give a slightly more general result which can be derived
from [5] via a linear coordinate change):
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Theorem 2: Assume that there exists a positive definite ma-
trix such that all eigenvalues of the symmetric
matrix

are negative and separated from zero for all and .
Then the system (23) is noncritically convergent in the class
.
The proof of this theorem is based on the calculation

of the time derivative of the quadratic Lyapunov function
. This quadratic function can be

used to check Assumption A2.
Example 1: The following example illustrates Theorem 1 for

a network of Lorenz systems.
Consider the following systems:

(24)

with and

We will show that if the eigenvalue of the matrix is
large enough then the systems asymptotically synchronize
according to

as .
First we check that the system

(25)

is strictly semipassive with respect to the inputand output .
To this end, consider the smooth function

(26)

Its time derivative with respect to the uncontrolled system
( ) satisfies

It is seen that determines an ellipsoid outside of which
the derivative of is negative. If satisfies

then this ellipsoid lies inside the ball

(27)

which means that all solutions of the uncontrolled system ap-
proach within some finite time the set defined by (27). Calcu-
lating the time derivative of along solutions of the system (25)
yields

Therefore, the function is a storage function which proves
strict semipassivity of the system (25) from the inputto the
output .

Secondly, we find thezero dynamicsby imposing the external
constraints :

...
(28)

Now we show that the system

is noncritically convergent for any bounded . Indeed, the
symmetrized Jacobi matrix for this system has two eigenvalues

and and, therefore, according to Theorem 2, there exists
a quadratic function which satisfies Assumption A2 of Theorem
1.

Thus, all the conditions of Theorem 1 are satisfied and so
there exists a number such that for sufficiently large

the system of diffusively coupled Lorenz systems has an
asymptotically stable compact subset of the set

, , .
To confirm the theoretical results, we carried out some com-

puter simulations. First consider the case of two Lorenz systems
( with “standard parameters” , , )
coupled by the following coupling matrix

This matrix has eigenvalues (0, 6) and, as is seen from Fig. 1, it
ensures synchronization of two coupled systems [initial condi-
tions are taken as follows: , ,

, , ]. Fig. 1 shows that the
quantity decays as a function of time.

Next, a simulation was performed for the case of three Lorenz
systems with the coupling matrix defined as follows,
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Fig. 1. Synchronization of two Lorenz systems.

has as eigenvalues (0, 6, 14) and, according to the theoretical
results, it guarantees synchronization since its smallest nonzero
eigenvalue is the same as in the previous case. This fact can be
observed from Fig. 2. During the simulation, the initial condi-
tions are taken as follows: , , ,

, , , , ,
.

IV. ON DIFFUSION-DRIVEN INSTABILITY

In the previous section, we considered a phenomenon which
can be observed in a network of diffusively coupled minimum
phase systems. Even in the case when each separate free system
oscillates irregularly, coupled together they may exhibit some
kind of synchronization. In this case, synchronization can be
considered as a sign of cooperation via diffusion. However, as
a result of cooperation via diffusion, arrays of coupled systems
may also exhibit asynchronous oscillatory behavior. Namely, as-
sume that each free system in the array of diffusively coupled
systems is globally asymptotically stable. A common under-
standing of diffusion is a smoothening or trivializing process;
however, a network of diffusively coupled globally asymptoti-
cally stable systems may demonstrate oscillatory behavior.

In [16], an explicit construction of diffusively coupled
globally asymptotically stable systems being oscillatory when
interconnected is given. One of the possible motivations of this
problem lies in the field of mathematical biology (see [21]).
In some sense, the problem is opposite to the synchronization
problem. Namely, a network of diffusively coupled globally
asymptotically stable systems will be oscillatory if all trajecto-
ries are bounded and the whole system has a unique hyperbolic
equilibrium. Therefore, to prove oscillatory behavior in the
diffusive network, we need to prove instability of the unique
equilibrium. This is contrary to the proof of stability in the case
of synchronization. The boundedness of trajectories can be
established via the semipassivity property. To ensure that the
origin becomes unstable for all greater than some threshold
value ( is the largest eigenvalue of the coupling matrix),
it is sufficient to require that the dynamics consistent with the

Fig. 2. Synchronization of three Lorenz systems.

constraint are locally asymptotically noncritically
unstable, or each system in the diffusive network is hyperbol-
ically nonminimum phase. Additional conditions should be
checked to prove that the origin is a unique equilibrium for all
(or admissible) coupling matrices(for details, see [16]).

We illustrate a possibility of diffusion-driven instability by
an example of diffusively coupled systems of third order. This
is the minimal order of systems which can become oscillatory
via diffusion [16].

Example 2: Consider the following diffusively coupled
systems

...

where , ,

and

It is easy to see that each free system ( ) is globally asymp-
totically stable (it follows from the fact that the matrixis Hur-
witz).

Let be the coupling matrix with
eigenvalues . Then, with sufficiently large,
the coupled system becomes Y-oscillatory. The key idea behind
this example is (see [16]) that the individual systems arenot
minimum phase.
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We can demonstrate this example by computer simulation.
Consider three systems coupled by the following coupling ma-
trix:

It is seen from Fig. 3 that this coupling ensures oscillatory be-
havior of the network despite the fact that each free system is
globally asymptotically stable. Initial conditions are taken as

, .
The above results allow for a better understanding of different

oscillatory phenomena occurring as a result of cooperation via
diffusion. Loosely speaking, in an array of diffusively coupled
minimum phase systems, one can expect the existence of syn-
chronous properties while, in contrast, an array of diffusively
coupled nonminimum phase systems may exhibit oscillatory be-
havior even when each free system is globally asymptotically
stable.

V. THE TOPOLOGY OFDIFFUSIVE NETWORKS

In the previous sections, we discussed some oscillatory phe-
nomena occurring as a result of diffusive interaction between
identical subsystems. We presented results which are essentially
based on some properties of the matrixwhich describes the
topology of the interconnections. In this section, we will discuss
the synchronization or nonsynchronizing oscillatory behavior of
the diffusively coupled systems in relation to the topology of the
coupling. Clearly, a crucial role in this regard is played by the
coupling matrix , and more specifically, by the eigenvalues
(in case of minimum phase systems, see Section III) and(in
the case of nonminimum phase systems, see Section IV).

Definition 4: A system consisting of diffusively coupled
systems is said to be acellular diffusive networkif it cannot be
decomposed into two or more disconnected subsystems.

Definition 5: The maximal number of cells connected to
one cell in a diffusively coupled array of systems is called the
densityof the cellular network.

Definition 6: A cellular diffusive network is said to bereg-
ular if

1) All coupling constants are equal: for all
2) Each cell is connected to other cells.
Notice that we did not impose other restrictions on the

topology of the interconnections, for example symmetry of
the interconnections (e.g., cyclic or rosette-like structures).
Note that regular networks can model very complex structures
including isotropic or anisotropic media. It is worth men-
tioning, however, that some symmetry in the topology can
generate very interesting properties of solutions bifurcated via
a Poincaré–Andronov–Hopf bifurcation which leads to oscil-
lations in coupled systems [6]. Moreover, in some particular
cases, e.g., for cyclic one-dimensional arrays, for rosette-like
structures, the matrix has a special structure (it turns out
to be acyclic matrix) for which all eigenvalues can be found
analytically [9].

The numbers (i.e., number of cells) and (i.e., maximal
number of connections at each cell) in no way define the com-

Fig. 3. Oscillatory behavior in the network of nonminimum phase systems.

plete topology of the network. Many different structures of the
network correspond to the sameand . As before, denote the
eigenvalues of the matrix as . For
any given and , the largest possible subject to different
topologies will be denoted as while the smallest pos-
sible will be denoted as .

As we have seen in the previous sections, stability analysis
in diffusive networks essentially depends on the eigenvalues
and of the matrix which describes the topology of the in-
terconnections. Therefore, in the design of diffusive networks,
the following discrete optimization problems are of interest.

Given and , find the structure of a (regular) network
which maximizes [maximizes ] under the
constraint that all nonzero are bounded from below
and above by given constants.

In general, an analytic solution to these problems is unknown.
However, using methods of discrete programming, one can find
solutions based on numerical computation. Clearly, the compu-
tational complexity increases significantly with large. In what
follows, we will present a solution for particular cases and then
we will focus attention to the asymptotic behavior of
and when tends to infinity.

Example 3: Consider the following problem. Given the
density , find and a structure for a regular network such
that is maximal possible for all . A solution to
this problem is trivial: . It corresponds to the “all
to all” structure. In this case, the matrix has
eigenvalues equal to and one zero eigenvalue. Since

, the solution is optimal.
Example 4: Now consider a similar problem. Given, find
and a structure of regular network such that is max-

imal possible for all . A solution is . Take two clusters
consisting of cells and connect each cell from the first cluster
to each cell from the second cluster. The matrixin this case has
one zero eigenvalue, one eigenvalue equal to and
eigenvalues equal to . According to Gerschgorin’s theorem
[22], is the maximal possible eigenvalue for regular net-
works of density for arbitrary . Therefore, the solution is
optimal.
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Next we will investigate the asymptotic behavior of
when . We are able to establish the following fact for
regular networks.

Theorem 3: For regular networks, the following relation is
valid:

Proof: For simplicity, take . Consider the vector

Clearly, . Moreover, it follows that
(the sum of rows is zero, while the sum of the

other rows is 1). Consider the vector

As before, . Moreover is the eigenvector corre-
sponding to the zero eigenvalue of, i.e., . Ac-
cording to Fischer’s Theorem (see Appendix)

Let be a linear combination of such that . Denote
by a vector space spanned by . Clearly,

Since and , it follows that
as .

Remark 3: The theorem remains true for arbitrary cellular
networks if we assume that its density and maximal value of the
coupling constants are bounded for .

The theorem claims that if the network density is constant and
the number of cells is increasing, then the second eigenvalue of
the topology matrix tends to zero regardless of the topology of
the network.

In other words, if the total number of interconnections in the
network grows at mostlinearly with respect to the number of
cells (preserving the fact that each cell is connected with no
more than cells and as well as diffusive factors do not
depend on ), then the eigenvalue of the matrix which is
“responsible” for synchronization decays asgoes to infinity.
This fact significantly restricts possible synchronous modes in
large diffusive networks. For example, if the regular network
consisting of Lorenz systems studied in Example 1 grows, then
for any given and there exist a such that there is no syn-
chronization as soon as . This fact explains the computer
simulations carried out in [12].

Moreover, using the same technique as in the proof of the
previous theorem, it is possible to show that zero is an accumu-
lation point in the spectrum of the matrixwhen increases. At

the same time, if one allows the number of interconnections to
grow quadratically with respect to the number of cells in regular
networks (this is the case for example in “all to all” structures),
then the smallest nonzero eigenvalue grows withand the cou-
pling gain which ensures synchronization decays as (see
[15, Proposition 1]).

We illustrate Theorem 3 with the following example.
Example 5: Consider a network with the coupling ma-

trix given by

...
...

.. .
. . .

. . .

This coupling matrix corresponds to a ring structure of a diffu-
sive network consisting of cells when each cell is connected
with its two neighbors. The matrix in this case iscyclic and
its eigenvalues can be calculated analytically (see, e.g., [9]):

It is clear that zero is an accumulation point in the spectrum of
as tends to infinity.
The situation with the largest eigenvalue of the matrix

which is “responsible” for generation of oscillations in diffusive
networks is different. Indeed, the trace of the matrixgrows
linearly with respect to and therefore the largest eigenvalue

is separated from zero. In other words, if and
the diffusive factors between cells do not depend onthen
diffusion driven oscillations may occur in arbitrarily large
networks.

Example 6: The last conclusion allows us to establish that
the statement conjectured by Wu and Chua [29] is wrong. Given
two diffusive networks with coupling matrices and with
equal smallest nonzero eigenvalues . The Wu–Chua
conjecture claims that the conditions of global (identical) syn-
chronization for the first network are equivalent to the condi-
tions of global synchronization in the second network. The-
orem 1 gives sufficient conditions under which this statement is
true: we derived conditions ensuring synchronization which de-
pend only on smallest nonzero eigenvalues of the coupling ma-
trix. Particularly, condition A3 is close to a necessary condition
under which the Wu–Chua conjecture is true. Indeed, in [16] it
is shown that if is locally hyperbolically unstable
(and hence A3 is not satisfied), then if the largest eigenvalue of
the coupling matrix exceeds some threshold value then for some

does not tend to zero. However, minimum
phaseness is not a necessary condition for synchronization if
one allows forall eigenvalues of the coupling matrix to lie in
some region. Since it is possible to design a system consisting
of two diffusively coupled subsystems which are synchronized
only if the coupling strength lies in some region (e.g., when each
system is hyperbolically nonminimum phase), and according to
the Wu–Chua conjecture, the largest eigenvalues ofand
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Fig. 4. Synchronization for the first type of coupling [see (30)].

are admitted to be different, in the general case the Wu–Chua
conjecture is not true.

Let us demonstrate this idea by computer simulation. Con-
sider a diffusive network consisting of three identical systems:

(29)

where and are positive parameters. Note that
the coordinate change transforms each system into
the Rössler system (this coordinate transformation is very useful
in the design of observer-based synchronization schemes [13]).
The coupling is supposed to be determined by the following
relation:

with and . Consider two
coupling matrices

(30)

and

(31)

The matrix has eigenvalues (0, 2, 2) and the matrixhas
eigenvalues (0, 2, 322/3). Computer simulations show that al-
though the matrices and have equal smallest nonzero
eigenvalues the first coupling ensures synchronization (at least
for some initial data) while the second coupling cannot pro-
vide synchronization with the same initial data. Fig. 4 shows the
decay of the value

versus time with , , for the
first type of coupling (30). Fig. 5 illustrates that there is no syn-
chronization for the second type of coupling [see (31)]. Initial
conditions were taken in both cases as , ,

Fig. 5. Absence of synchronization for the second type of coupling [see (31)].

, , , , ,
, .

VI. CONCLUSIONS

In this paper, we presented analytical tools for the study of
oscillatory behavior in arrays of diffusively coupled systems
with an arbitrary topology of interconnections. The dynamics
of the network are essentially based on the stability property
with respect to sets of the constrained dynamics usually referred
to as the zero dynamics. In the case that this dynamics has a
noncritically asymptotically stable compact set consistent with

, the whole system has a tendency to syn-
chronization. Instability of the zero dynamics, in turn, leads to
the generation of oscillations in diffusive networks.

We also have shown that in growing networks the growth rate
of the number of interconnection is essential for synchronization
but not so important for the generation of oscillations via diffu-
sion in large networks.

APPENDIX

FISCHER’STHEOREM

Theorem 4 [22]: Let an Hermitian matrix have
eigenvalues . Then

and

where stands for the Hermitian transpose of.
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