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1 Introduction

A control system is a dynamical system on which one can act by using suitable controls. In this
article, the dynamical model is modeled by partial differential equations of the following type

ẏ = f(y, u). (1.1)

The variable y is the state and belongs to some space Y. The variable u is the control and belongs
to some space U . In this article, the space Y is of infinite dimension and the differential equation
(1.1) is a partial differential equation.

There are a lot of problems that appear when studying a control system. But the most common
one is the controllability problem, which is, roughly speaking, the following one. Let us give two
states. Is it possible to steer the control system from the first one to the second one? In the
framework of (1.1), this means that, given the state a ∈ Y and the state b ∈ Y, does there exits
a map u : [0, T ] → U such that the solution of the Cauchy problem ẏ = f(y, u(t)), y(0) = a,
satisfies y(T ) = b. If the answer is yes whatever are the given states, the control system is said
to be controllable. If T > 0 can be arbitrary small one speaks of small-time controllability. If
the two given states and the control are restricted to be close to an equilibrium one speaks of
local controllability at this equilibrium. (An equilibrium of the control system is a point (ye, ue) ∈
Y × U such that f(ye, ue) = 0). If, moreover, the time T is small, one speaks of small-time local
controllability.

2 Examples of control systems modeled by PDE’s

Let us give some examples on control systems modeled by PDE’s.

2.1 A transport equation

This is this the simplest control system modeled by PDE’s. It is the following one

yt + yx = 0, x ∈ (0, L), (2.1)
y(t, 0) = u(t), (2.2)

where, at time t ∈ (0, T ), the control is u(t) ∈ R, the state is y(t, ·) : (0, L) → R and L is a given
positive real number.
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2.2 A Korteweg-de Vries equation

Let L > 0 be given. Our Korteweg-de Vries control system is

yt + yx + yxxx + yyx = 0, t ∈ (0, T ), x ∈ (0, L), (2.3)
y(t, 0) = y(t, L) = 0, yx(t, L) = u(t), t ∈ (0, T ), (2.4)

where, at time t ∈ [0, T ], the control is u(t) ∈ R and the state is y(t, ·) : (0, L) 7→ R. Equation (2.3)
is a Korteweg-de Vries equation, which serves to model various physical phenomena, for example,
the propagation of small amplitude long water waves in a uniform channel (see, e.g., [45, Section
4.4, pages 155–157] or [133, Section 13.11]). Let us recall that Jerry Bona and Ragnar Winther
pointed out in [24] that the term yx in (2.3) has to be added to model the water waves when x
denotes the spatial coordinate in a fixed frame. It is also interesting to consider the linearized
control system around the trajectory (ȳ, ū) := (0, 0), i.e. the following linear control system:

yt + yx + yxxx = 0, x ∈ (0, L), (2.5)
y(t, 0) = y(t, L) = 0, yx(t, L) = u(t), (2.6)

where, at time t, the control is u(t) ∈ R and the state is y(t, ·) : (0, L) 7→ R.

2.3 A heat equation

Let Ω be a nonempty bounded open set of Rl and let ω be a nonempty open subset of Ω. We
consider the following linear control system:

yt −∆y = u(t, x), x ∈ Ω,
y = 0 on (0, T )× ∂Ω,

where, at time t, the state is y(t, ·) : Ω → R and the control is u(t, ·) : Ω → R. We require that

u(·, x) = 0, x ∈ Ω \ ω.

Hence we consider the case of “internal control” (in contrast with the above examples where the
control was on the boundary of the domain).

2.4 A water-tank control system

We consider a 1-D tank containing an inviscid incompressible irrotational fluid. The tank is subject
to one-dimensional horizontal moves. We assume that the horizontal acceleration of the tank is
small compared to the gravity constant and that the height of the fluid is small compared to the
length of the tank. These physical considerations motivate the use of the Saint-Venant equations
[123] (also called shallow water equations) to describe the motion of the fluid; see e.g. [45, Sec.
4.2]. Hence the considered dynamics equations are (see the paper [46] by François Dubois, Nicolas
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Petit and Pierre Rouchon)

Ht (t, x) + (Hv)x (t, x) = 0, x ∈ [0, L], (2.7)

vt (t, x) +
(
gH +

v2

2

)
x

(t, x) = −u (t) , x ∈ [0, L], (2.8)

v(t, 0) = v(t, L) = 0, (2.9)
ds
dt

(t) = u (t) , (2.10)

dD
dt

(t) = s (t) , (2.11)

where (see Figure 1),

• L is the length of the 1-D tank,

• H (t, x) is the height of the fluid at time t and at the position x ∈ [0, L],

• v (t, x) is the horizontal water velocity of the fluid in a referential attached to the tank at
time t and at the position x ∈ [0, L] (in the shallow water model, all the points on the same
vertical have the same horizontal velocity),

• u (t) is the horizontal acceleration of the tank in the absolute referential,

• g is the gravity constant,

• s is the horizontal velocity of the tank,

• D is the horizontal displacement of the tank.

Local controllability of a 1-D tank containing a�uid modeled by the shallow-water equationJean-Michel CoronUniversité Paris-SudDépartement de Mathématique91405 Orsay, FranceJean-Michel.Coron@math.u-psud.fr26 April 2001
H D x vL

1
Figure 1: Fluid in the 1-D tank.

This is a control system where, at time t,
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• the state is Y (t) = (H(t, ·), v(t, ·), s(t), D(t)),

• the control is u(t) ∈ R.

2.5 A Schrödinger equation

Let I = (−1, 1) and let T > 0. We consider the Schrödinger control system

ψt = iψxx + iu(t)xψ, (t, x) ∈ (0, T )× I, (2.12)
ψ(t,−1) = ψ(t, 1) = 0, t ∈ (0, T ), (2.13)

Ṡ(t) = u(t), Ḋ(t) = S(t), t ∈ (0, T ). (2.14)

This is a control system, where, at time t ∈ [0, T ],

• the state is (ψ(t, ·), S(t), D(t)) ∈ L2(I; C)× R× R with
∫
I |ψ(t, x)|2dx = 1,

• the control is u(t) ∈ R.

This system has been introduced by Pierre Rouchon in [118]. It models a nonrelativistic charged
particle in a 1-D moving infinite square potential well. At time t, ψ(t, ·) is the wave function of the
particle in a frame attached to the potential well, S(t) is the speed of the potential well and D(t)
is the displacement of the potential well. The control u(t) is the acceleration of the potential well
at time t. (For other related control models in quantum chemistry, let us mention the paper [96]
by Claude Le Bris and the references therein.)

2.6 Euler equations of incompressible fluids

Let us introduce some notations. Let l ∈ {2, 3} and let Ω be a bounded nonempty connected open
subset of Rl of class C∞. Let Γ0 be a nonempty open subset of Γ := ∂Ω. The set Γ0 is the part
of the boundary Γ on which the control acts. The fluid that we consider is incompressible, so that
the velocity field y satisfies

div y = 0.

On the part of the boundary Γ\Γ0 where there is no control, the fluid does not cross the boundary:
it satisfies

y · n = 0 on Γ \ Γ0, (2.15)

where n denotes the outward unit normal vector field on Γ. The control system of inviscid incom-
pressible fluids is

∂y

∂t
+ (y · ∇)y +∇p = 0 in (0, T )× Ω, (2.16)

div y = 0 in (0, T )× Ω, (2.17)
y(t, x) · n(x) = 0, ∀(t, x) ∈ (0, T )× (Γ \ Γ0). (2.18)

In (2.16) and throughout the whole article, for A : Ω → Rl and B : Ω → Rl, (A · ∇)B : Ω → Rl is
defined by

((A · ∇)B)k :=
l∑

j=1

Aj
∂Bk

∂xj
, ∀k ∈ {1, . . . , l}.

In the control system (2.16)-(2.17)-(2.18) the state at time t ∈ [0, T ] is y(t, ·).
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Remark 1 In this formulation of the control system associated to the Euler equations, the control
does not appear explicitly. One can take, for example, y · n on Γ with

∫
Γ y · nds = 0 and

1. If l = 2, curl y on Γ for the incoming flow (i.e. at the points (t, x) ∈ [0, T ] × Γ such that
y(t, ·) · n(x) < 0)

2. If l = 3, the tangential component of curl y on Γ for the incoming flow.

2.7 Navier-Stokes of incompressible fluids

In this section the incompressible is now viscous. Equation (2.16) is replaced by

∂y

∂t
− ν∆y + (y · ∇)y +∇p = 0 in (0, T )× Ω, (2.19)

where ν > 0 is the viscosity of the fluid (a positive real number independent of y: it depends only on
the considered incompressible fluid). Since (2.19) contains a spatial second order partial differential
term (namely the Laplacian ∆y of y), the boundary condition (2.18) is no longer sufficient. One
add a “wall law”. Two wall laws are classical

• The Stokes noslip boundary condition:

y = 0 on (0, T )× (Γ \ Γ0), (2.20)

which implies (2.18).

• The Navier slip boundary condition: Besides (2.18), one also requires

σy · τ + (1− σ)
i=l,j=l∑
i=1,j=1

ni
(
∂yi

∂xj
+
∂yj

∂xi

)
τ j = 0 on (0, T )× (Γ \ Γ0), ∀τ ∈ T Γ, (2.21)

where σ is a constant in [0, 1). In (2.21), n = (n1, . . . , nl), τ = (τ1, . . . , τ l) and T Γ is the set
of tangent vector fields on the boundary Γ. Note that the Stokes boundary condition (2.20)
corresponds to the case σ = 1

For the control, one can simply take u(t, x) :== y(t, x) for (t, x) ∈ (0, T )× (Γ \Γ0). Of course, due
to the smoothing effects of the Navier-Stokes equations, one cannot expect to move from a given
state y0 to another given state y1 unless severe restrictions on the smoothness of y1, restrictions
which are moreover not very explicit. In that case the good notion of controllability is the following:
Given a state y0 and a solution (ŷ, p̂) : [0, T ]×Ω → Rl ×R of the control system, does there exists
a control u : [0, T ]×Γ0 → R such that the solution (y, p) : [0, T ]×Ω → Rl×R of the Navier-Stokes
control system such that y(0, ·) = y0 satisfies y(T, ·) = ŷ(T, ·)?

3 A general framework for control systems modeled by linear
PDE’s

3.1 The framework

For two normed linear spaces H1 and H2, we denote by L(H1;H2) the set of continuous linear maps
from H1 into H2 and denote by ‖ · ‖L(H1;H2) the usual norm in this space.
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Let H and U be two Hilbert spaces. Just to simplify the notations, these Hilbert spaces are
assumed, in this section, to be real Hilbert spaces (the case of complex Hilbert spaces follows
directly from the case of real Hilbert spaces). The space H is the state space and the space U is
the control space. We denote by (·, ·)H the scalar product in H, by (·, ·)U the scalar product in U ,
by ‖ · ‖H the norm in H and by ‖ · ‖U the norm in U .

Let S(t), t ∈ [0,+∞), be a strongly continuous semigroup of continuous linear operators on
H. Let A be the infinitesimal generator of the semigroup S(t), t ∈ [0,+∞). As usual, we denote
by S(t)∗ the adjoint of S(t). Then S(t)∗, t ∈ [0,+∞), is a strongly continuous semigroup of
continuous linear operators and the infinitesimal generator of this semigroup is the adjoint A∗ of
A. The domain D(A∗) is equipped with the usual graph norm ‖ · ‖D(A∗) of the unbounded operator
A∗:

‖z‖D(A∗) := ‖z‖H + ‖A∗z‖H , ∀z ∈ D(A∗).

This norm is associated to the scalar product in D(A∗) defined by

(z1, z2)D(A∗) := (z1, z2)H + (A∗z1, A∗z2)H , ∀(z1, z2) ∈ D(A∗)2.

With this scalar product, D(A∗) is a Hilbert space. Let D(A∗)′ be the dual of D(A∗) with the
pivot space H. In particular,

D(A∗) ⊂ H ⊂ D(A∗)′.

Let

B ∈ L(U,D(A∗)′). (3.1)

In other words, B is a linear map from U into the set of linear functions from D(A∗) into R such
that, for some C > 0,

|(Bu)z| 6 C‖u‖U‖z‖D(A∗), ∀u ∈ U, ∀z ∈ D(A∗).

We also assume the following regularity property (also called admissibility condition):

∀T > 0,∃CT > 0 such that
∫ T

0
‖B∗S(t)∗z‖2

Udt 6 CT ‖z‖2
H , ∀z ∈ D(A∗). (3.2)

In (3.2) and in the following, B∗ ∈ L(D(A∗);U) is the adjoint of B. It follows from (3.2) that the
operators (

z ∈ D(A∗)
)
7→

(
(t 7→ B∗S(t)∗z) ∈ C0([0, T ];U)

)
,(

z ∈ D(A∗)
)
7→

(
(t 7→ B∗S(T − t)∗z) ∈ C0([0, T ];U)

)
can be extended in a unique way as continuous linear maps from H into L2((0, T );U). We use the
same symbols to denote these extensions.

Note that, using the fact that S(t)∗, t ∈ [0,+∞), is a strongly continuous semigroup of contin-
uous linear operators on H, it is not hard to check that (3.2) is equivalent to

∃T > 0,∃CT > 0 such that
∫ T

0
‖B∗S(t)∗z‖2

Udt 6 CT ‖z‖2
H , ∀z ∈ D(A∗).

The control system we consider here is

ẏ = Ay +Bu, t ∈ (0, T ), (3.3)
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where, at time t, the control is u(t) ∈ U and the state is y(t) ∈ H.
Let T > 0, y0 ∈ H and u ∈ L2((0, T );U). We are interested in the Cauchy problem

ẏ = Ay +Bu(t), t ∈ (0, T ), (3.4)

y(0) = y0. (3.5)

We first give the definition of a solution to (3.4)-(3.5). Let us first motivate our definition Let
τ ∈ [0, T ] and ϕ : [0, τ ] → H. We take the scalar product in H of (3.4) with ϕ and integrate on
[0, τ ]. At least formally, we get, using an integration by parts together with (3.5),

(y(τ), ϕ(τ))H − (y0, ϕ(0))H −
∫ τ

0
(y(t), ϕ̇(t) +A∗ϕ(t))Hdt =

∫ τ

0
(u(t), B∗ϕ(t))Udt.

Taking ϕ(t) = S(τ − t)∗zτ , for every given zτ ∈ H, we have formally ϕ̇(t)+A∗φ(t) = 0, which leads
to the following definition.

Definition 2 Let T > 0, y0 ∈ H and u ∈ L2((0, T );U). A solution of the Cauchy problem (3.4)-
(3.5) is a function y ∈ C0([0, T ];H) such that

(y(τ), zτ )H − (y0, S(τ)∗zτ )H =
∫ τ

0
(u(t), B∗S(τ − t)∗zτ )Udt, ∀τ ∈ [0, T ], ∀zτ ∈ H. (3.6)

Note that, by the regularity property (3.2), the right hand side of (3.6) is well defined (see page 7).
With this definition one has the following theorem.

Theorem 3 Let T > 0. Then, for every y0 ∈ H and for every u ∈ L2((0, T );U), the Cauchy
problem (3.4)-(3.5) has a unique solution y. Moreover, there exists C = C(T ) > 0, independent of
y0 ∈ H and u ∈ L2((0, T );U), such that

‖y(τ)‖H 6 C(‖y0‖H + ‖u‖L2((0,T );U)), ∀τ ∈ [0, T ]. (3.7)

For a proof of this theorem, see, for example [38, pages 53–54].

3.2 Examples

In this section, we show how to put the linear control systems of Section 2 in the above general
framework.

3.2.1 A transport equation

We return to the control system (2.1)-(2.2). Let L > 0. The linear control system we study is

yt + yx = 0, t ∈ (0, T ), x ∈ (0, L), (3.8)
y(t, 0) = u(t), t ∈ (0, T ), (3.9)

where, at time t, the control is u(t) ∈ R and the state is y(t, ·) : (0, L) → R.
For the Hilbert space H, we take H := L2(0, L). For the operator A : D(A) → H we take

D(A) := {f ∈ H1(0, L); f(0) = 0},
Af := −fx, ∀f ∈ D(A).
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Then D(A) is dense in L2(0, L), A is closed. Moreover

(Af, f)L2(0,L) = −1
2
fx(L)2, ∀f ∈ D(A),

showing that A is dissipative. The adjoint A∗ of A is defined by

D(A∗) := {f ∈ H1(0, L); f(L) = 0},
A∗f := fx, ∀f ∈ D(A∗).

As the operator A, the operator A∗ is also dissipative. Hence, by the Lumer-Phillips theorem, the
operator A is the infinitesimal generator of a strongly continuous semigroup S(t), t ∈ [0,+∞), of
continuous linear operators on H.

For the Hilbert space U , we take U := R. The operator B : R → D(A∗)′ is defined by

(Bu)z = uz(0), ∀u ∈ R,∀z ∈ D(A∗). (3.10)

Note that B∗ : D(A∗) → R is defined by

B∗z = z(0), ∀z ∈ D(A∗).

Let us deal with the regularity property (3.2). Let z0 ∈ D(A∗). Let

z ∈ C0([0, T ];D(A∗)) ∩ C1([0, T ];L2(0, L))

be defined by z(t, ·) = S(t)∗z0. Inequality (3.2) is equivalent to∫ T

0
z(t, 0)2dt 6 CT

∫ L

0
z0(x)2dx. (3.11)

Let us prove this inequality for CT := 1. We have

zt = zx, t ∈ (0, T ), x ∈ (0, L), (3.12)
z(t, L) = 0, t ∈ (0, T ), (3.13)

z(0, x) = z0(x), x ∈ (0, L). (3.14)

We multiply (3.12) by z and integrate on [0, T ] × [0, L]. Using (3.13), (3.14) and integrations by
parts, we get ∫ T

0
z(t, 0)2dt =

∫ L

0
z0(x)2dx−

∫ L

0
z(T, x)2dx 6

∫ L

0
z0(x)2dx, (3.15)

which shows that (3.11) holds for CT := 1.
In fact, as one can easily check, the solution to the following Cauchy problem (in the senses of

Definition 2)

yt + yx = 0, t ∈ (0, T ), x ∈ (0, L), (3.16)
y(t, 0) = u(t), t ∈ (0, T ), (3.17)

y(0, x) = y0(x), x ∈ (0, L), (3.18)

where T > 0, y0 ∈ L2(0, L) and u ∈ L2(0, T ) are given data, is

y(t, x) = y0(x− t), ∀(t, x) ∈ [0, T ]× (0, L) such that t 6 x, (3.19)
y(t, x) = u(t− x), ∀(t, x) ∈ [0, T ]× (0, L) such that t > x. (3.20)
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3.2.2 A linear Korteweg-de Vries equation

We return to the linear Korteweg-de Vries equation already mentioned in Section 2. Let L > 0.
The linear control system we study is

yt + yx + yxxx = 0, t ∈ (0, T ), x ∈ (0, L), (3.21)
y(t, 0) = y(t, L) = 0, yx(t, L) = u(t), t ∈ (0, T ), (3.22)

where, at time t, the control is u(t) ∈ R and the state is y(t, ·) : (0, L) → R.
For the Hilbert space H, we take H = L2(0, L). For the operator A : D(A) → H, we take

D(A) := {f ∈ H3(0, L); f(0) = f(L) = fx(L) = 0},
Af := −fx − fxxx, ∀f ∈ D(A).

Then D(A) is dense in L2(0, L), A is closed. Simple integrations by parts give

(Af, f)L2(0,L) = −1
2
fx(0)2, ∀f ∈ L2(0, L),

which shows that A is dissipative. The adjoint A∗ of A is defined by

D(A∗) := {f ∈ H3(0, L); f(0) = f(L) = fx(0) = 0},
A∗f := fx + fxxx, ∀f ∈ D(A∗).

As A, the operator A∗ is also dissipative. Hence, by the Lumer-Phillips theorem, the operator A
is the infinitesimal generator of a strongly continuous semigroup S(t), t ∈ [0,+∞), of continuous
linear operators on L2(0, L).

For the Hilbert space U , we take U := R. The operator B : R → D(A∗)′ is defined by

(Bu)z = uzx(L), ∀u ∈ R,∀z ∈ D(A∗). (3.23)

Note that B∗ : D(A∗) → R is defined by

B∗z = zx(L), ∀z ∈ D(A∗).

Let us check the regularity property (3.2). Let z0 ∈ D(A∗). Let

z ∈ C0([0,+∞);D(A∗)) ∩ C1([0,+∞);L2(0, L))

be defined by

z(t, ·) = S(t)∗z0. (3.24)

The regularity property (3.2) is equivalent to∫ T

0
|zx(t, L)|2dt 6 CT

∫ L

0
|z0(x)|2dx. (3.25)

From (3.24), one has

zt − zx − zxxx = 0 in C0([0,+∞);L2(0, L)), (3.26)
z(t, 0) = zx(t, 0) = z(t, L) = 0, t ∈ [0,+∞), (3.27)

z(0, x) = z0(x), x ∈ [0, L]. (3.28)

We multiply (3.26) by z and integrate on (0, T )×(0, L). Using (3.27), (3.28) and simple integrations
by parts one gets∫ T

0
|zx(t, L)|2dt =

∫ L

0
|z0(x)|2dx−

∫ L

0
|z(T, x)|2dx 6

∫ L

0
|z0(x)|2dx, (3.29)

which shows that (3.25) holds with CT := 1.
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3.2.3 A heat equation

We return to the linear heat equation already considered in Section 2. Let Ω be a non empty open
subset of Rl and let ω be a non empty open subset of Ω. The linear heat equation considered in
this section is

yt −∆y = u(t, x), t ∈ (0, T ), x ∈ Ω, (3.30)
y = 0 on (0, T )× ∂Ω, (3.31)

where, at time t ∈ [0, T ], the state is y(t, ·) ∈ L2(Ω) and the control is u(t, ·) ∈ L2(Ω). We require
that

u(·, x) = 0, x ∈ Ω \ ω. (3.32)

One can put this linear control system in the general framework detailed in Section 3 in the following
way. One chooses

H := L2(Ω),

equipped with the usual scalar product. Let A : D(A) ⊂ H → H be the linear operator defined by

D(A) :=
{
y ∈ H1

0 (Ω); ∆y ∈ L2(Ω)
}
,

Ay := ∆y ∈ H.

Note that, if Ω is smooth enough (for example of class C2), then

D(A) = H1
0 (Ω) ∩H2(Ω). (3.33)

However, without any regularity assumption on Ω, (3.33) is wrong in general (see in particular [66,
Theorem 2.4.3, page 57] by Pierre Grisvard). One easily checks that

D(A) is dense in L2(Ω), (3.34)
A is closed. (3.35)

Moreover,

(Ay, y)H = −
∫

Ω
|∇y|2dx, ∀y ∈ D(A). (3.36)

Let A∗ be the adjoint of A. One easily checks that

A∗ = A. (3.37)

From the Lumer-Phillips theorem, (3.34), (3.35), (3.36) and (3.37), A is the infinitesimal generator
of a strongly continuous semigroup of linear contractions S(t), t ∈ [0,+∞), on H. For the Hilbert
space U we take L2(ω). The linear map B ∈ L(U ;D(A∗)′) is the map which is defined by

(Bu)ϕ =
∫
ω
uϕdx.

Note that B ∈ L(U ;H). Hence the regularity property (3.2) is automatically satisfied.

11



4 Controllability of linear control systems

4.1 Different types of controllability

In this section we are interested in the controllability of the control system (3.3). In contrast to
the case of linear finite-dimensional control systems, many types of controllability are possible and
interesting. We define here three types of controllability.

Definition 4 Let T > 0. The control system (3.3) is exactly controllable in time T if, for every
y0 ∈ H and for every y1 ∈ H, there exists u ∈ L2((0, T );U) such that the solution y of the Cauchy
problem

ẏ = Ay +Bu(t), y(0) = y0, (4.1)

satisfies y(T ) = y1.

Definition 5 Let T > 0. The control system (3.3) is null controllable in time T if, for every
y0 ∈ H and for every ỹ0 ∈ H, there exists u ∈ L2((0, T );U) such that the solution of the Cauchy
problem (4.1) satisfies y(T ) = S(T )ỹ0.

Let us point out that, by linearity, we get an equivalent definition of “null controllable in time T” if,
in Definition 5, one assumes that ỹ0 = 0. This explains the usual terminology “null controllability”.

Definition 6 Let T > 0. The control system (3.3) is approximately controllable in time T if, for
every y0 ∈ H, for every y1 ∈ H, and for every ε > 0, there exists u ∈ L2((0, T );U) such that the
solution y of the Cauchy problem (4.1) satisfies ‖y(T )− y1‖H 6 ε.

Clearly

(exact controllability) ⇒ (null controllability and approximate controllability).

The converse is false in general (see, for example, the control system (3.30)-(3.31) below). However,
the converse holds if S is a strongly continuous group of linear operators. More precisely, one has
the following theorem.

Theorem 7 Assume that S(t), t ∈ R, is a strongly continuous group of linear operators. Let
T > 0. Assume that the control system (3.3) is null controllable in time T . Then the control
system (3.3) is exactly controllable in time T .

Proof of Theorem 7. Let y0 ∈ H and y1 ∈ H. From the null controllability assumption applied
to the initial data y0 − S(−T )y1, there exists u ∈ L2((0, T );U) such that the solution ỹ of the
Cauchy problem

˙̃y = Aỹ +Bu(t), ỹ(0) = y0 − S(−T )y1,

satisfies

ỹ(T ) = 0. (4.2)

One easily sees that the solution y of the Cauchy problem

ẏ = Ay +Bu(t), y(0) = y0,
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is given by

y(t) = ỹ(t) + S(t− T )y1, ∀t ∈ [0, T ]. (4.3)

In particular, from (4.2) and (4.3),
y(T ) = y1.

This concludes the proof of Theorem 7.

4.2 Methods to study controllability

Rouhgly speaking there are essentially two types of methods to study the controllability of linear
PDE, namely direct methods and duality methods.

4.2.1 Direct methods

Among these methods, let us mention in particular

• The extension method. See, for example, [121] and [122, Proof of Theorem 5.3, pages 688–690]
by David Russell, [105] by Walter Littman and [38, Section 2.1.2.2, pages 30-34].

• Moment theory. See, for example, [89] by Werner Krabs, [88] by Vilmos Komornik and Paola
Loreti, [7] by Sergei Avdonin and Sergei Ivanov, and [38, Section 2.6, pages 95-99]. We give
an example of an application of the moment theory for a Schrödinger equation in Section
4.3.2.

• Flatness. This approach has been initiated in the framework of control theory in finite
dimension by Michel Fliess, Jean Lévine, Pierre Rouchon and Philippe Martin in [56]. For
applications of this method for the control of linear PDE, see, in particular, [108] by Hugues
Mounier, Joachim Rudolph, Michel Fliess and Pierre Rouchon,, [91] by Béatrice Laroche,
Philippe Martin and Pierre Rouchon, [110] by Nicolas Petit and Pierre Rouchon, as well as
the article by Pierre Rouchon in Scholarpedia.

4.2.2 Duality methods

Let us now introduce some “optimal control maps”. Let us first deal with the case where the control
system (3.3) is exactly controllable in time T . Then, for every y1, the set UT (y1) of u ∈ L2((0, T );U)
such that

(ẏ = Ay +Bu(t), y(0) = 0) ⇒ (y(T ) = y1)

is nonempty. Clearly the set UT (y1) is a closed affine subspace of L2((0, T );U). Let us denote by
UT (y1) the projection of 0 on this closed affine subspace, i.e., the element of UT (y1) of the smallest
L2((0, T );U)-norm. Then it is not hard to see that the map

UT : H → L2((0, T );U)
y1 7→ UT (y1)

is a linear map. Moreover, using the closed graph theorem (see, for example, [119, Theorem 2.15,
page 50]) one readily checks that this linear map is continuous.
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Let us now deal with the case where the control system (3.3) is null controllable in time T .
Then, for every y0, the set UT (y0) of u ∈ L2((0, T );U) such that

(ẏ = Ay +Bu(t), y(0) = y0) ⇒ (y(T ) = 0)

is nonempty. Clearly the set UT (y0) is a closed affine subspace of L2((0, T );U). Let us denote by
UT (y0) the projection of 0 on this closed affine subspace, i.e., the element of UT (y0) of the smallest
L2((0, T );U)-norm. Then, again, it is not hard to see that the map

UT : H → L2((0, T );U)
y0 7→ UT (y0)

is a continuous linear map.
The main results of this section are the following ones.

Theorem 8 Let T > 0. The control system (3.3) is exactly controllable in time T if and only if
there exists c > 0 such that ∫ T

0
‖B∗S(t)∗z‖2

Udt > c‖z‖2
H , ∀z ∈ D(A∗). (4.4)

Moreover, if such a c > 0 exists and if cT is the maximum of the set of c > 0 such that (4.4) holds,
one has ∥∥UT∥∥

L(H;L2((0,T );U))
=

1√
cT
. (4.5)

Theorem 9 The control system (3.3) is approximately controllable in time T if and only if, for
every z ∈ H,

(B∗S(·)∗z = 0 in L2((0, T );U)) ⇒ (z = 0). (4.6)

Theorem 10 Let T > 0. The control system (3.3) is null controllable in time T if and only if
there exists c > 0 such that∫ T

0
‖B∗S(t)∗z‖2

Udt > c‖S(T )∗z‖2
H , ∀z ∈ D(A∗). (4.7)

Moreover, if such a c > 0 exists and if cT is the maximum of the set of c > 0 such that (4.7) holds,
then

‖UT ‖L(H;L2((0,T );U)) =
1√
cT
. (4.8)

Theorem 11 Assume that, for every T > 0, the control system (3.3) is null controllable in time
T . Then, for every T > 0, the control system (3.3) is approximately controllable in time T .

For a proof of these theorems, see, for example [38, Section 2.3.2]. Inequalities (4.4) and (4.7) are
usually called observability inequalities for the abstract linear control system ẏ = Ay + Bu. The
difficulty is to prove them! For this purpose, there are many methods available (but still many
open problems). Among these methods, let us mention in particular
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• Multiplier methods. See in particular, [103] by Jacques-Louis Lions, [86] by Vilmos Komornik,
[139] by Enrique Zuazua. For a simple example of this method, see Section 4.3.1.

• Microlocal analysis. See in particular [12] by Claude Bardos, Gilles Lebeau and Jeffrey Rauch
and the appendix 2 of the book [103].

Remark 12 In contrast to Theorem 11, note that, for a given T > 0, the null controllability in
time T does not imply the approximate controllability in time T . For example, let L > 0 and let us
take H := L2(0, L) and U := {0}. We consider the linear control system

yt + yx = 0, t ∈ (0, T ), x ∈ (0, L), (4.9)
y(t, 0) = u(t) = 0, t ∈ (0, T ). (4.10)

In Section 4.3.1, we shall see how to put this control system in the abstract framework ẏ = Ay+Bu.
It follows from (3.20), that, whatever y0 ∈ L2(0, L) is, the solution to the Cauchy problem (see
Definition 2)

yt + yx = 0, t ∈ (0, T ), x ∈ (0, L),
y(t, 0) = u(t) = 0, t ∈ (0, T ),

y(0, x) = y0(x), x ∈ (0, L),

satisfies
y(T, ·) = 0, if T > L.

In particular, if T > L, the linear control system (4.9)-(4.10) is null controllable but is not approx-
imately controllable.

4.3 Examples

4.3.1 A transport equation

We return to the transport control system (3.8)-(3.9). This example is pedagogically interesting
since one can give explicitly the solution to the Cauchy problem (3.16)-(3.17)-(3.18) where T > 0,
y0 ∈ L2(0, L) and u ∈ L2(0, T ) are given. This solution is given by (3.19)-(3.20). From this explicit
solution one readily gets

Proposition 13 The control system (3.8)-(3.9) is

• exactly controllable in time T if and only if T > L,

• null controllable in time T if and only if T > L,

• approximately controllable in time T if and only if T > L.

Let us show how to use the multiplier method in order to prove that if

T > L (4.11)

then the control system (3.8)-(3.9) is exactly controllable. By Theorem 8, the exact controllability
in time T is equivalent to the existence of c > 0 such that∫ T

0
z(t, 0)2dt > c

∫ L

0
z0(x)2dx, (4.12)
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where z : [0, T ]× [0, L] → R is the solution of the Cauchy problem

zt − zx = 0, (4.13)
z(t, L) = 0, t ∈ (0, T ), (4.14)

z(0, ·) = z0. (4.15)

Let us prove prove (4.12). With simple density arguments, we may assume that z is of class C1. Let
us multiply (4.13) by the mutiplier z and integrate the obtained equality on [0, L]. Using (4.14),
one gets

d
dt

(∫ L

0
|z(t, x)|2dx

)
= −|z(t, 0)|2. (4.16)

Let us now multiply (4.13) by the mutiplier xz and integrate the obtained equality on [0, L]. Using
(4.14), one gets

d
dt

(∫ L

0
x|z(t, x)|2dx

)
= −

∫ L

0
|z(t, x)|2dx. (4.17)

For t ∈ [0, T ], let e(t) :=
∫ L
0 |z(t, x)|2dx. From (4.17), we have∫ T

0
e(t)dt = −

∫ L

0
x|z(T, x)|2dx+

∫ L

0
x|z(0, x)|2dx

6 L

∫ L

0
|z(0, x)|2dx = Le(0). (4.18)

From (4.16), we get

e(t) = e(0)−
∫ t

0
|z(τ, 0)|2dτ > e(0)−

∫ T

0
|z(τ, 0)|2dτ. (4.19)

From (4.15), (4.18) and (4.19), we get

(T − L)‖z0‖2
L2(0,L) 6 T

∫ T

0
|z(τ, 0)|2dτ, (4.20)

which proves the observability inequality (4.12) with c given by

c :=

√
T − L

T
. (4.21)

4.3.2 A linear Schrödinger equation

We return to the nonlinear Schrödinger control system consider in Section 2.5. For simplicity, we
forget the variables S and D: the control system is simply (2.12)-(2.13). In this section how the
moment methods can be used in order to prove the controllability of linearized control system
around important trajectories of the control system (2.12)-(2.13).

Let I be the open interval (−1, 1). For γ ∈ R, let Aγ : D(Aγ) ⊂ L2(I; C) → L2(I; C) be the
operator defined on

D(Aγ) := H2(I; C) ∩H1
0 (I; C) (4.22)
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by

Aγϕ := −ϕxx − γxϕ. (4.23)

In (4.22), as usual,
H1

0 (I; C) := {ϕ ∈ H1((0, L); C); ϕ(0) = ϕ(L) = 0}.

We denote by 〈·, ·〉 the usual Hermitian scalar product in the Hilbert space L2(I; C):

〈ϕ,ψ〉 :=
∫
I
ϕ(x)ψ(x)dx, (4.24)

where z denotes the complex conjugate of the complex number z. Note that

D(Aγ) is dense in L2(I; C), (4.25)
Aγ is closed, (4.26)

A∗γ = Aγ , (i.e., Aγ is self-adjoint), (4.27)

Aγ has compact resolvent. (4.28)

Let us recall that (4.28) means that there exists a real α in the resolvent set of Aγ such that the
operator (αId− Aγ)−1 is compact from L2(I; C) into L2(I; C), where Id denotes the identity map
on H (see, for example, [84, pages 36 and 187]). Then (see, for example, [84, page 277]), the Hilbert
space L2(I; C) has a complete orthonormal system (ϕk,γ)k∈N\{0} of eigenfunctions for the operator
Aγ :

Aγϕk,γ = λk,γϕk,γ ,

where (λk,γ)k∈N\{0} is an increasing sequence of positive real numbers. Let S be the unit sphere of
L2(I; C):

S := {φ ∈ L2(I; C);
∫
I
|φ(x)|2dx = 1} (4.29)

and, for φ ∈ S, let TSφ be the tangent space to S at φ:

TSφ := {Φ ∈ L2(I; C); <〈Φ, φ〉 = 0}, (4.30)

where, as usual, <z denotes the real part of the complex number z. Let

ψ1,γ(t, x) := e−iλ1,γtϕ1,γ(x), (t, x) ∈ (0, T )× I. (4.31)

Note that

ψ1,γt = iψ1,γxx + iγxψ1,γ , t ∈ (0, T ), x ∈ I,
ψ1,γ(t,−1) = ψ1,γ(t, 1) = 0, t ∈ (0, T ),∫

I
|ψ1,γ(t, x)|2dx = 1, t ∈ (0, T ).

Hence (ψ, u) = (ψ1,γ , γ) is a trajectory of the control system (2.12)-(2.13). The linearized control
system around this trajectory is the following linear control system:

Ψt = iΨxx + iγxΨ + iuxψ1,γ , (t, x) ∈ (0, T )× I, (4.32)
Ψ(t,−1) = Ψ(t, 1) = 0, t ∈ (0, T ). (4.33)

This is a control system where, at time t ∈ [0, T ],
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• The state is Ψ(t, ·) ∈ L2(I; C) with Ψ(t, ·) ∈ TS(ψ1,γ(t, ·)).

• The control is u(t) ∈ R.

Let us first deal with the Cauchy problem

Ψt = iΨxx + iγxΨ + iuxψ1,γ , (t, x) ∈ (0, T )× I, (4.34)
Ψ(t,−1) = Ψ(t, 1) = 0, t ∈ (0, T ), (4.35)

Ψ(0, x) = Ψ0(x), (4.36)

where T > 0, u ∈ L1(0, T ) and Ψ0 ∈ L2(I; C) are given. By (4.27),

(−iAγ)∗ = −(−iAγ).

Therefore, by the Lumer-Phillips theorem −iAγ is the infinitesimal generator of a strongly contin-
uous group of linear isometries on L2(I; C). We denote by Sγ(t), t ∈ R, this group.

Note that, since ψ1,γ depends on time, Section 3.1 cannot be applied. Our notion of solution to
the Cauchy problem (4.34)-(4.35)-(4.36) is given in the following definition.

Definition 14 Let T > 0, u ∈ L1(0, T ) and Ψ0 ∈ L2(I; C). A solution Ψ : [0, T ] × I → C to the
Cauchy problem (4.34)-(4.35)-(4.36) is the function Ψ ∈ C0([0, T ];L2(I; C)) defined by

Ψ(t) = Sγ(t)Ψ0 +
∫ t

0
Sγ(t− τ)iu(τ)xψ1,γ(τ, ·)dτ. (4.37)

With this definition and standard arguments, one can show that the Cauchy problem (4.34)-(4.35)-
(4.36) is well posed (see e.g. [38, Theorem A.7, page 375]).

Let us now study the controllability of the linear Schrödinger control system (4.32)-(4.33). Let

H3
(0)(I; C) := {ψ ∈ H3(I; C); ψ(−1) = ψxx(−1) = ψ(1) = ψxx(1) = 0}. (4.38)

The goal of this section is to prove the following controllability result due to Karine Beauchard [13,
Theorem 5, page 862].

Theorem 15 There exists γ0 > 0 such that, for every T > 0, for every γ ∈ (0, γ0], for every
Ψ0 ∈ TSψ1,γ(0, ·)∩H3

(0)(I; C) and for every Ψ1 ∈ TSψ1,γ(T, ·)∩H3
(0)(I; C), there exists u ∈ L2(0, T )

such that the solution of the Cauchy problem

Ψt = iΨxx + iγxΨ + iu(t)xψ1,γ , t ∈ (0, T ), x ∈ I, (4.39)
Ψ(t,−1) = Ψ(t, 1) = 0, t ∈ (0, T ), (4.40)

Ψ(0, x) = Ψ0(x), x ∈ I, (4.41)

satisfies

Ψ(T, x) = Ψ1(x), x ∈ I. (4.42)

We are also going to see that the conclusion of Theorem 15 does not hold for γ = 0 (as already
noted by Pierre Rouchon in [118]).

Proof of Theorem 15. Let T > 0,

Ψ0 ∈ TS(ψ1,γ(0, ·)) and Ψ1 ∈ TS(ψ1,γ(T, ·)).
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Let u ∈ L2(0, T ). Let Ψ be the solution of the Cauchy problem (4.39)-(4.40)-(4.41). Let us decom-
pose Ψ(t, ·) in the complete orthonormal system (ϕk,γ)k∈N\{0} of eigenfunctions for the operator
Aγ :

Ψ(t, ·) =
∞∑
k=1

yk(t)ϕk,γ .

Taking the Hermitian product of (4.39) with ϕk,γ , one readily gets, using (4.40) and integrations
by parts,

ẏk = −iλk,γyk + ibk,γu(t)e−iλ1,γt, (4.43)

with

bk,γ := 〈ϕk,γ , xϕ1,γ〉 ∈ R. (4.44)

Note that (4.41) is equivalent to

yk(0) = 〈Ψ0, ϕk,γ〉, ∀k ∈ N \ {0}. (4.45)

From (4.44) and (4.45) one gets

yk(T ) = e−iλk,γT (〈Ψ0, ϕk,γ〉+ ibk,γ

∫ T

0
u(t)ei(λk,γ−λ1,γ)tdt). (4.46)

By (4.46), (4.42) is equivalent to the following so-called moment problem on u:

bk,γ

∫ T

0
u(t)ei(λk,γ−λ1,γ)tdt = i

(
〈Ψ0, ϕk,γ〉 − 〈Ψ1, ϕk,γ〉eiλk,γT

)
,∀k ∈ N \ {0}. (4.47)

Let us now explain why for γ = 0 the conclusion of Theorem 15 does not hold. Indeed, one has

ϕn,0(x) := sin(nπx/2), n ∈ N \ {0}, if n is even, (4.48)
ϕn,0(x) := cos(nπx/2), n ∈ N \ {0}, if n is odd. (4.49)

In particular, xϕ1,0ϕk,0 is an odd function if k is odd. Therefore

bk,0 = 0 if k is odd.

Hence, by (4.47), if there exists k odd such that

〈Ψ0, ϕk,0〉 − 〈Ψ1, ϕk,0〉eiλk,0T 6= 0,

there is no control u ∈ L2(0, T ) such that the solution of the Cauchy problem (4.39)-(4.40)-(4.41)
(with γ = 0) satisfies (4.42).

Let us now turn to the case where γ is small but not 0. Since Ψ0 is in TS(ψ1,γ(0, ·)),

<〈Ψ0, ϕ1,γ〉 = 0. (4.50)

Similarly, the fact that Ψ1 is in TS(ψ1,γ(T, ·)) tells us that

<(〈Ψ1, ϕ1,γ〉eiλ1,γT ) = 0. (4.51)

The key ingredient to prove Theorem 15 is the following theorem.
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Theorem 16 Let (µi)i∈N\{0} be a sequence of real numbers such that

µ1 = 0, (4.52)
there exists ρ > 0 such that µi+1 − µi > ρ, ∀i ∈ N \ {0}. (4.53)

Let T > 0 be such that

lim
x→+∞

N(x)
x

<
T

2π
, (4.54)

where, for every x > 0, N(x) is the largest number of µj’s contained in an interval of length x.
Then there exists C > 0 such that, for every sequence (ck)k∈N\{0} of complex numbers such that

c1 ∈ R, (4.55)
∞∑
k=1

|ck|2 <∞, (4.56)

there exists a (real-valued) function u ∈ L2(0, T ) such that∫ T

0
u(t)eiµktdt = ck, ∀k ∈ N \ {0}, (4.57)∫ T

0
u(t)2dt 6 C

∞∑
k=1

|ck|2. (4.58)

Remark 17 Theorem 16 is due do Jean-Pierre Kahane [83, Theorem III.6.1, page 114]; see also
[20, pages 341–365] by Arne Beurling. See also, in the context of control theory, [120, Section 3]
by David Russell who uses prior works [77] by Albert Ingham, [115] by Ray Redheffer and [124]
by Laurent Schwartz. For a proof of Theorem 16, see, for example, [89, Section 1.2.2] by Werner
Krabs, [88, Chapter 9] by Vilmos Komornik and Paola Loreti or [7, Chapter II, Section 4] by Sergei
Avdonin and Sergei Ivanov. Improvements of Theorem 16 have been obtained by Stéphane Jaffard,
Marius Tucsnak and Enrique Zuazua in [81, 82], by Stéphane Jaffard and Sorin Micu in [80], by
Claudio Baiocchi, Vilmos Komornik and Paola Loreti in [8] and by Vilmos Komornik and Paola
Loreti in [87] and in [88, Theorem 9.4, page 177].

Note that, by (4.50) and (4.51),

i(〈Ψ0, ϕ1,γ〉 − 〈Ψ1, ϕ1,γ〉eiλ1,γT ) ∈ R. (4.59)

Hence, in order to apply Theorem 15 to our moment problem, it remains to estimate λk,γ and bk,γ .
This is done in the following propositions, due to Karine Beauchard.

Proposition 18 ([13, Proposition 41, pages 937–938]) There exist γ0 > 0 and C0 > 0 such
that, for every γ ∈ [−γ0, γ0] and for every k ∈ N \ {0},∣∣∣∣λk,γ − π2k2

4

∣∣∣∣ 6 C0
γ2

k
.
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Proposition 19 ([13, Proposition 1, page 860]) There exist γ1 > 0 and C > 0 such that, for
every γ ∈ (0, γ1] and for every even integer k > 2,∣∣∣∣∣bk,γ − (−1)

k
2
+18k

π2(k2 − 1)2

∣∣∣∣∣ < Cγ

k3
,

and for every odd integer k > 3,∣∣∣∣∣bk,γ − γ
2(−1)

k−1
2 (k2 + 1)

π4k(k2 − 1)2

∣∣∣∣∣ < Cγ2

k3
.

It is a classical result that

ϕ :=
+∞∑
k=1

dkϕk,γ ∈ H3
(0)(I; C)

if and only if
+∞∑
k=1

k6|dk|2 < +∞.

Hence, Theorem 15 readily follows from Theorem 16 applied to the moment problem (4.47) with
the help of Proposition 18 and Proposition 19.

Remark 20 The moment method does not work well for the Schrödinger in dimension larger than
1 (see, however, [79] by Stéphane Jaffard in dimension 2). For these dimensions controllability
results have been obtained by means of other methods. Let us mention, in particular,

• The use of the multipliers method. See, in particular, [93] by Irena Lasiecka and Roberto
Triggiani, [48] by Caroline Fabre, [106] by Elaine Machtyngier, [107] by Elaine Machtyngier
and Enrique Zuazua.

• The use of microlocal analysis. See, in particular, [97] by Gilles Lebeau and [111] by Kim-
Dang Phung, which rely use of the exact controllability result [12] by Claude Bardos, Gilles
Lebeau and Jeffrey Rauch for the wave equation. See also [25] by Nicolas Burq.

For a survey on these results, see, in particular, [136] by Enrique Zuazua.

4.3.3 A linear Korteweg-de Vries equation

We go back to the linear Korteweg-de Vries equation control system (3.21)-(3.22) already considered
in Section 3.2.2. Let

N :=

{
2π

√
j2 + l2 + jl

3
; j, l ∈ N \ {0}

}
. (4.60)

Then one has the following theorem, due to Lionel Rosier [116],

Theorem 21 Let T > 0. The control system (3.21)-(3.22) is exactly controllable in time T if and
only if L 6∈ N . Moreover, if L ∈ N , then the control system (3.21)-(3.22) is neither approximately
controllable nor null controllable in time T .
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For a proof of Theorem 21, see [116] or [38, Section 2.2.2, pages 42-48]. Let us only point out that
2π ∈ N (take j = l = 1 in (4.60) and that for L = 2π and for every T > 0 the control system
(3.21)-(3.22) is neither approximately controllable nor null controllable in time T . This readily
follows from the following observation. Let T > 0, let y0 ∈ L2(0, L), and let u ∈ L2(0, L). Let
y ∈ C0([0, T ];L2(0, L)) be the solution to the Cauchy problem (see Definition 2)

yt + yx + yxxx = 0, t ∈ (0, T ), x ∈ (0, 2π), (4.61)
y(t, 0) = y(t, L) = 0, yx(t, L) = u(t), t ∈ (0, T ), (4.62)

y(0, x) = y0(x), x ∈ (0, 2π). (4.63)

We multiply (4.61) by (1−cos(x)) and integrate on (0, 2π). Using (4.62) together with integrations
by parts, one gets (first when y is smooth enough and by density for the general case)

d

dt

∫ 2π

0
(1− cos(x))ydx = 0,

which shows that the control system (3.21)-(3.22) is neither approximately controllable nor null
controllable in time T .

4.3.4 A heat equation

We go back to the control system (3.30)-(3.31)-(3.32) and show how Carleman allows to prove the
following theorem, due to Hector Fattorini and David Russell [53, Theorem 3.3] if n = 1, to Oleg
Imanuvilov [73, 74] (see also the book [59] by Andrei Fursikov and Oleg Imanuvilov) and to Gilles
Lebeau and Luc Robbiano [98] for n > 1.

Theorem 22 Let us assume that Ω is of class C2 and connected. Then, for every T > 0 the control
system (3.30)-(3.31)-(3.32) is null controllable and approximately controllable in time T .

Sketch of the proof of Theorem 22. Let T > 0. With the notations of Section 3.2.3, for
y0 ∈ L2(Ω),

(B∗S∗(t)y0)(x) = y(t, x), t ∈ (0, T ), x ∈ ω, (4.64)

where y : (0,+∞)× Ω → R is defined by

yt −∆y = 0, (t, x) ∈ (0, T )× Ω, (4.65)
y = 0 on (0, T )× ∂Ω, (4.66)

y(0, x) = y0(x), x ∈ Ω, (4.67)

The first step is the following lemma, due to Oleg Imanuvilov [74, Lemma 1.2] (see also [59,
Lemma 1.1 page 4] and [38, Lemma 2.68 page 80]) and whose proof is omitted.

Lemma 23 There exists ψ ∈ C2(Ω) such that

ψ > 0 in Ω, ψ = 0 on ∂Ω, (4.68)

|∇ψ(x)| > 0, ∀x ∈ Ω \ ω0. (4.69)

Remark 24 In the case n = 1, Ω = (a, b) for some real numbers a < b. Let us take c ∈ ω. Then
ψ : Ω̄ → R defined by

ψ(x) := (b− c)3 − (x− c)3, if x ∈ [c, b], ψ(x) := (c− a)3 − (c− x)3, if x ∈ [a, c],

satisfies (4.68)-(4.69).
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Let us fix ψ as in Lemma 23. Let α : (0, T ) × Ω → (0,+∞) and φ : (0, T ) × Ω → (0,+∞) be
defined by

α(t, x) =
e
2λ‖ψ‖C0(Ω) − eλψ(x)

t(T − t)
, ∀(t, x) ∈ (0, T )× Ω, (4.70)

φ(t, x) =
eλψ(x)

t(T − t)
, ∀(t, x) ∈ (0, T )× Ω, (4.71)

where λ ∈ [1,+∞) will be chosen later on. Let z : [0, T ]× Ω → R be defined by

z(t, x) := e−sα(t,x)y(t, x), (t, x) ∈ (0, T )× Ω, (4.72)

z(0, x) = z(T, x) = 0, x ∈ Ω, (4.73)

where s ∈ [1,+∞) will be chosen later on. From (4.65), (4.70), (4.71) and (4.72), we have

P1 + P2 = P3 (4.74)

with

P1 := −∆z − s2λ2φ2|∇ψ|2z + sαtz, (4.75)

P2 := zt + 2sλφ∇ψ∇z + 2sλ2φ|∇ψ|2z, (4.76)

P3 := −sλφ(∆ψ)z + sλ2φ|∇ψ|2z. (4.77)

Let Q := (0, T )× Ω. From (4.74), we have

2
∫ ∫

Q
P1P2dxdt 6

∫ ∫
Q
P 2

3 dxdt. (4.78)

Let n denote the outward unit normal vector field on ∂Ω. Note that z vanishes on [0, T ] × ∂Ω
(see (4.66) and (4.72)) and on {0, T} × Ω (see (4.73)). Then straightforward computations using
integrations by parts lead to

2
∫ ∫

Q
P1P2dxdt = I1 + I2 (4.79)

with

I1 :=
∫ ∫

Q
(2s3λ4φ3|∇ψ|4|z|2 + 4sλ2φ|∇ψ|2|∇z|2)dxdt−

∫ T

0

∫
∂Ω

2sλφ
∂ψ

∂n

(
∂z

∂n

)2

dσdt, (4.80)

I2 :=
∫ ∫

Q

(
4sλ(φψi)jzizj − 2sλ(φψi)i|∇z|2

+ 2s3λ3φ3(|∇ψ|2ψi)iz2 − 2sλ2(φ|∇ψ|2)iiz2

− sαttz
2 − 2s2λ(φψiαt)iz2 + 4s2λ2φαt|∇ψ|2z2 + 2s2λ2φφt|∇ψ|2z2

)
dxdt. (4.81)

In (4.81) and until the end of the proof of Theorem 22, we use the usual repeated-index sum
convention. By (4.69) and (4.71), there exists Λ such that, for every λ > Λ, we have, on (0, T ) ×
(Ω \ ω0),

−4λ2φ|∇ψ|2|a|2 6 4λ(φψi)jaiaj − 2λ(φψi)i|a|2, ∀a = (a1, . . . , al)tr ∈ Rl, (4.82)

−λ4φ3|∇ψ|4 6 2λ3φ3(|∇ψ|2ψi)i. (4.83)
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We take λ := Λ. Note that, by (4.68),

∂ψ

∂n
6 0 on ∂Ω. (4.84)

Moreover, using (4.70) and (4.71), one gets, the existence of C > 0, such that, for every (t, x) ∈
(0, T )× Ω,

|αtt|+ |(φψiαt)i|+ |φαt|∇ψ|2|+ |φφt|∇ψ|2|+ |φ3(|∇ψ|2ψi)i|+ |φ3|∇ψ|4| 6 C

t3(T − t)3
, (4.85)

|φ(∆ψ)|+ |φ|∇ψ|2|+ |(φψi)i|+ |(φψi)i|+ |(φ|∇ψ|2)ii| 6
C

t(T − t)
, (4.86)

|(φψi)j | 6
C

t(T − t)
, ∀(i, j) ∈ {1, . . . , l}2. (4.87)

From (4.69) and (4.71), one gets the existence of C > 0 such that

1
t3(T − t)3

6 Cφ3|∇ψ|4(t, x), ∀(t, x) ∈ (0, T )× (Ω \ ω0). (4.88)

Using (4.78) to (4.88), we get the existence of C > 0 such that, for every s > 1 and for every y0,

s3
∫

(0,T )

∫
Ω\ω0

|z|2

t3(T − t)3
dxdt 6 Cs2

∫ ∫
Q

|z|2

t3(T − t)3
dxdt+ Cs3

∫
(0,T )

∫
ω0

|∇z|2 + |z|2

t3(T − t)3
dxdt.

(4.89)

Taking for s > 1 large enough in (4.89), one gets

s3
∫

(0,T )

∫
Ω\ω0

|z|2

t3(T − t)3
dxdt 6 Cs3

∫
(0,T )

∫
ω0

|∇z|2 + |z|2

t3(T − t)3
dxdt. (4.90)

From Theorem 9, (4.72), and (4.90), one gets the approximate controllability in time T (with
H := L2(Ω) and U := L2(ω); see Definition 6) of the control system (3.30)-(3.31)-(3.32).

Let us now deal with the null controllability. Taking s > 1 large enough in (4.89), one gets the
existence of c0 > 0 independent of y0 such that∫ 2T/3

T/3

∫
Ω
|z|2dxdt 6 c0

∫ T

0

∫
ω0

|∇z|2 + |z|2

t3(T − t)3
dxdt. (4.91)

We choose such an s and such a c0. Coming back to y using (4.70) and (4.72), we deduce from
(4.91) the existence of c1 > 0 independent of y0 such that∫ 2T/3

T/3

∫
Ω
|y|2dxdt 6 c1

∫ T

0

∫
ω0

t(T − t)(|∇y|2 + |y|2)dxdt. (4.92)

Let ρ ∈ C∞(Ω) be such that

ρ = 1 in ω0,

ρ = 0 in Ω \ ω.
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We multiply (4.65) by t(T − t)ρy and integrate on Q. Using (4.66) and integrations by parts, we
get the existence of c2 > 0 independent of y0 such that∫ T

0

∫
ω0

t(T − t)(|∇y|2 + |y|2)dxdt 6 c2

∫ T

0

∫
ω
|y|2dxdt. (4.93)

From (4.92) and (4.93), we get∫ 2T/3

T/3

∫
Ω
|y|2dxdt 6 c1c2

∫ T

0

∫
ω
|y|2dxdt. (4.94)

Let us now multiply (4.65) by y and integrate on Ω. Using integrations by parts together with
(4.66), we get

d
dt

∫
Ω
|y(t, x)|2dx 6 0. (4.95)

From (4.94) and (4.95), one gets that (4.7) holds with

M :=
T

3c1c2
.

With Theorem 10 and Theorem 11, this concludes the proof of Theorem 22.

4.4 Numerical methods

Again, there are two possibilities to study numerically the controllability of a linear control systems:
direct methods, duality methods. The most popular ones use duality methods and in particular
the Hilbert Uniqueness Method (HUM) due to Jacques Louis Lions [103, 104]. For the numerical
approximation, one uses often discretization by finite difference methods. However a new problem
appear: the control for the discretized model does not necessarily lead to a good approximation
to the control for the original continuous problem. In particular, the classical convergence require-
ments, namely stability and consistency, of the numerical scheme used does not suffice to guarantee
good approximations to the controls that one wants to compute. Observability/controllability may
be lost under numerical discretization as the mesh size tends to zero. To overcome this problem,
several remedies have been used, in particular, filtering, Tychonoff regularization, multigrid meth-
ods, and mixed finite element methods. For precise informations and references, we refer to the
survey papers [137, 138] by Enrique Zuazua.

4.5 Complements and further references

In this section on the controllability of linear PDE, we have already given references to books
and papers. But there are of course many other references which must also be mentioned. If one
restricts to books or surveys we would like to add in particular (but this is a very incomplete list):

• The survey [5] by Fatiha Alabau-Boussouira and Piermarco Cannarsa. It deals, in particular,
with abstract evolution equations, wave equations, heat equations and quadratic optimal
control for linear PDE.

• The book [17] by Alain Bensoussan on stochastic control.
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• The books [18, 19] by Alain Bensoussan, Giuseppe Da Prato, Michel Delfour and Sanjoy
Mitter, which deal, in particular, with differential control systems with delays and partial
differential control systems with specific emphasis on controllability, stabilizability and the
Riccati equations.

• The book [43] by Ruth Curtain and Hans Zwart which deals with general infinite-dimensional
linear control systems theory. It includes the usual classical topics in linear control theory
such as controllability, observability, stabilizability, and the linear-quadratic optimal problem.
For a more advanced level on this general approach, one can look at the book [127] by Olof
Staffans.

• The book [44] by René Dáger and Enrique Zuazua on partial differential equations on planar
graphs modeling networked flexible mechanical structures (with extensions to the heat, beam
and Schrödinger equations on planar graphs).

• The book [47] by Abdelhaq El Jäı and Anthony Pritchard on the input-output map and the
importance of the location of the actuators/sensors for a better controllability/observability.

• The books [51, 52] by Hector Fattorini on optimal control for infinite-dimensional control
problems (linear or nonlinear, including partial differential equations).

• The book [57] by Andrei Fursikov on study of optimal control problems for infinite-dimensional
control systems with many examples coming from physical systems governed by partial dif-
ferential equations (including the Navier-Stokes equations).

• The book [88] by Vilmos Komornik and Paola Loreti on harmonic (and nonharmonic) analysis
methods with many applications to the controllability of various time-reversible systems.

• The book [90] by John Lagnese and Günter Leugering on optimal control on networked do-
mains for elliptic and hyperbolic equations, with a special emphasis on domain decomposition
methods.

• The books [94, 95] by Irena Lasiecka and Roberto Triggiani which deal with finite horizon
quadratic regulator problems and related differential Riccati equations for general parabolic
and hyperbolic equations with numerous important specific examples.

• The survey [122] by David Russell, which deals with the hyperbolic and parabolic equations,
quadratic optimal control for linear PDE, moments and duality methods, controllability and
stabilizability.

• The book [131] by Marius Tucsnak and George Weiss on passive and conservative linear
systems, with a detailed chapter on the controllability of these systems.

• The survey [139] by Enrique Zuazua on recent results on the controllability of linear partial
differential equations. It includes the study of the controllability of wave equations, heat
equations, in particular with low regularity coefficients, which is important to treat semi-
linear equations, fluid-structure interaction models.
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5 Controllability of nonlinear control systems

In this section, we consider the controllability of nonlinear control system modeled by nonlinear
PDE’s. There are no general methods to deal with this difficult problem. It is natural to first
consider the problem of the controllability around an equilibrium of a nonlinear partial differential
equation. Then the natural next step is to look if the linearized control system around this equi-
librium is controllable. This is what we call the linear test in the following. We give an example of
application below and mention methods and tools to deal with the cases where there is a problem
of loss of derivatives.

Of course when the linearized control system is not controllable, one cannot say that the same
noncontrollabilty holds for the nonlinear system. Various methods can be used to deal with this
case. Let us mention , in particular,

• Iterated Lie brackets. This is the most popular and powerful method for finite dimensional
control system (see e.g. [38, Section 3.2], [78, Chapters 1 and 2], [109, Section 3.1] as well as
the papers [1, 2, 21, 23, 22, 69, 70, 85, 128, 129, 130]. It is also useful for control of PDE; see in
particular the papers on incompressible fluids [3, 4] by Andrei Agrachev and Andrei Sarychev,
[125] by Armen Shirikyan. However, for many control PDE the iterated Lie brackets are not
well defined; see, e.g. [38, Chapter 5].

• The return method: See Section 5.3.

• Quasi-static deformations: See Section 5.4.

• Power series expansion: See Section 5.5.

5.1 The linear test: the regular case

When the linearized control systems around an equilibrium in controllable, one can try to use the
inverse mapping theorem to get a local controllability result for the nonlinear control system. We
illustrate this method on the Korteweg-de Vries nonlinear control system (2.3)-(2.4). (Of course
this is just an example: this method can be applied too many nonlinear PDE). The linearized
control system around (y, u) = (0, 0) is the control system

yt + yx + yxxx = 0, x ∈ (0, L), t ∈ (0, T ), (5.1)
y(t, 0) = y(t, L) = 0, yx(t, L) = u(t), t ∈ (0, T ), (5.2)

where, at time t, the control is u(t) ∈ R and the state is y(t, ·) : (0, L) → R. We have previously
seen (see Theorem 21) that if

L 6∈ N :=

{
2π

√
j2 + l2 + jl

3
; j, l ∈ N \ {0}

}
, (5.3)

then, for every time T > 0, the control system (5.1)-(5.2) is controllable in time T . Hence one may
expect that the nonlinear control system (2.3)-(2.4) is at least locally controllable if (5.3) holds.
The goal of this section is to prove that this is indeed true, a result due to Lionel Rosier [116,
Theorem 1.3].
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5.1.1 Well-posedness of the Cauchy problem

Let us first define the notion of solutions for the Cauchy problem associated to (2.3)-(2.4). Multi-
plying (2.3) by φ : [0, τ ]× [0, L] → R, using (2.4) and performing integrations by parts lead to the
following definition.

Definition 25 Let T > 0, y0 ∈ L2(0, L) and u ∈ L2(0, T ) be given. A solution of the Cauchy
problem

yt + yx + yxxx + yyx = 0, x ∈ [0, L], t ∈ [0, T ], (5.4)
y(t, 0) = y(t, L) = 0, yx(t, L) = u(t), t ∈ [0, T ], (5.5)

y(0, x) = y0(x), x ∈ [0, L], (5.6)

is a function y ∈ C0([0, T ];L2(0, L)) ∩ L2((0, T );H1(0, L)) such that, for every τ ∈ [0, T ] and for
every φ ∈ C3([0, τ ]× [0, L]) such that

φ(t, 0) = φ(t, L) = φx(t, 0) = 0, ∀t ∈ [0, τ ], (5.7)

one has

−
∫ τ

0

∫ L

0
(φt+φx+φxxx)ydxdt−

∫ τ

0
u(t)φx(t, L)dt+

∫ L

0
y(τ, x)φ(τ, x)dx−

∫ L

0
y0(x)φ(0, x)dx = 0.

(5.8)

Then one has the following theorem which is proved in [39, Appendix A].

Theorem 26 Let T > 0. Then there exists ε > 0 such that, for every y0 ∈ L2(0, L) and u ∈
L2(0, T ) satisfying

‖y0‖L2(0,L) + ‖u‖L2(0,T ) 6 ε,

the Cauchy problem (5.4)-(5.5)-(5.6) has a unique solution.

The proof is rather lengthy and technical. We omit it.

5.1.2 Local controllability

The goal of this section is to prove the following local controllability result due to Lionel Rosier
[116, Theorem 1.3].

Theorem 27 Let T > 0, and let us assume that

L /∈ N , (5.9)

with

N :=

{
2π

√
j2 + l2 + jl

3
; j, l ∈ N \ {0}

}
. (5.10)

Then there exist C > 0 and r0 > 0 such that for every y0, y1 ∈ L2(0, L), with ‖y0‖L2(0,L) < r0 and
‖y1‖L2(0,L) < r0, there exist

y ∈ C0([0, T ], L2(0, L)) ∩ L2((0, T );H1(0, L))
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and u ∈ L2(0, T ) satisfying (2.3)-(2.4) such that

y(0, ·) = y0, (5.11)

y(T, ·) = y1, (5.12)

‖u‖L2(0,T ) 6 C(‖y0‖L2(0,L) + ‖y1‖L2(0,L)). (5.13)

Proof of Theorem 27. Let F : L2(0, L) × L2(0, T ) → L2(0, L)2, (y0, u) 7→ (y0, y(T, ·)) where
y ∈ C0([0, T ];L2(0, L)) is the solution to the Cauchy problem (5.4)-(5.5)-(5.6). It follows from 26
that F is well defined on a neighborhood of (0, 0) ∈ L2(0, L) × L2(0, T ). With some lengthy bur
straightforward estimates (see in particular [39, Appendix A]), one can check that F is of class
C1 on a neighborhood of (0, 0) ∈ L2(0, L) × L2(0, T ) and that, as expected F ′(0, 0) : L2(0, L) ×
L2(0, T ) → L2(0, L)2, associates to (y0, u) ∈ L2(0, L) × L2(0, T ) (y0, y(T, ·)) ∈ L2(0, L)2 where
y ∈ C0([0, T ];L2(0, L)) is the solution to the Cauchy problem

yt + yx + yxxx = 0, t ∈ (0, T ), x ∈ (0, L),
y(t, 0) = y(t, L) = 0, yx(t, L) = u(t), t ∈ (0, T ),

y(0, x) = y0(x), x ∈ (0, L).

From Theorem 21, one gets that F ′(0, 0) is onto, which the inverse mapping theorem implies
Theorem 27.

5.2 The linear test: the problem of loss of derivatives

In fact, in many situations one cannot applied directly the usual inverse mapping theorem to deduce
from the controllability of the linearized control system at an equilibrium the local controllability
of the nonlinear system at this equilibrium. This is due to some problem of loss of derivatives. Let
us give a simple example where this problem appear. We consider the following simple nonlinear
transport equation:

yt + a(y)yx = 0, x ∈ [0, L], t ∈ [0, T ], (5.14)
y(t, 0) = u(t), t ∈ [0, T ], (5.15)

where a ∈ C2(R) satisfies

a(0) > 0. (5.16)

For this control system, at time t ∈ [0, T ], the state is y(t, ·) ∈ C1([0, L]) and the control is
u(t) ∈ R. If one wants to have a Hilbert space as a state space, one can also work with suitable
Sobolev spaces (for example y(t, ·) ∈ H2(0, L) is a suitable space). We are interested in the local
controllability of the control system (5.14)-(5.15) at the equilibrium (ȳ, ū) = (0, 0). Hence we first
look at the linearized control system at the equilibrium (ȳ, ū) = (0, 0). This linear control system
is the following one:

yt + a(0)yx = 0, t ∈ [0, T ], x ∈ [0, L], (5.17)
y(t, 0) = u(t), t ∈ [0, T ]. (5.18)

For this linear control system, at time t ∈ [0, T ], the state is y(t, ·) ∈ C1([0, L]) and the control is
u(t) ∈ R. Concerning the well-posedness of the Cauchy problem of this linear control system, one
easily get the following proposition.
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Proposition 28 Let T > 0. Let y0 ∈ C1([0, L]) and u ∈ C1([0, T ]) be such that the following
compatibility conditions hold

u(0) = y0(0), (5.19)

u̇(0) + a(0)y0
x(0) = 0. (5.20)

Then the Cauchy problem

yt + a(0)yx = 0, t ∈ [0, T ], x ∈ [0, L], (5.21)
y(t, 0) = u(t), t ∈ [0, T ], (5.22)

y(0, x) = y0(x), x ∈ [0, L], (5.23)

has a unique solution y ∈ C1([0, T ]× [0, L]).

Of course (5.19) is a consequence of (5.22) and (5.23): it is a necessary condition for the existence
of a solution y ∈ C0([0, T ]× [0, L]) to the Cauchy problem (5.21)-(5.22)-(5.23). Similarly (5.20) is
a direct consequence of (5.21), (5.22) and (5.23): it is a necessary condition for the existence of a
solution y ∈ C1([0, T ]× [0, L]) to the Cauchy problem (5.21)-(5.22)-(5.23).

One has the following (easy) proposition.

Proposition 29 Let T > L/a(0). The linear control system (5.17)-(5.18) is controllable in time T .
In other words, for every y0 ∈ C1([0, L]) and for every y1 ∈ C1([0, L]), there exists u ∈ C1([0, T ])
such that the solution y of the Cauchy problem (5.21)-(5.22)-(5.23) satisfies

y(T, x) = y1(x), x ∈ [0, L]. (5.24)

In fact one can give an explicit example of such a u. Let u ∈ C1([0, T ]) be such that

u(t) = y1(a(0)(T − t)), for every t ∈ [T − (L/a(0)), T ], (5.25)

u(0) = y0(0), (5.26)

u̇(0) = −a(0)y0
x(0). (5.27)

Such a u exists since T > L/a(0). Then the solution y of the Cauchy problem (5.21)-(5.22)-(5.23)
is given by

y(t, x) = y0(x− a(0)t), ∀(t, x) ∈ [0, T ]× [0, L] such that a(0)t 6 x, (5.28)
y(t, x) = u(t− (x/a(0))), ∀(t, x) ∈ [0, T ]× [0, L] such that a(0)t > x. (5.29)

(The fact that such a y is in C1([0, T ]× [0, L]) follows from the fact that y and u are of class C1 and
from the compatibility conditions (5.26)-(5.27).) From (5.28), one has (5.23). From T > L/a(0),
(5.25) and (5.28), one gets (5.24). With this method, one can easily construct a continuous linear
map

Γ : C1([0, L])× C1([0, L]) → C1([0, T ])
(y0, y1) 7→ u

such that

• The compatibility conditions u(0) = y0(0) and u̇(0) + a(y0(0))y0
x(0) = 0 hold.
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• The solution y ∈ C1([0, T ]× [0, L]) of the Cauchy problem

yt + a(0)yx = 0, (t, x) ∈ [0, T ]× [0, L],
y(t, 0) = u(t), t ∈ [0, T ],

y(0, x) = y0(x), x ∈ [0, L],

satisfies
y(T, x) = y1(x), x ∈ [0, L].

In order to prove the local controllability of the control system (5.14)-(5.15) at the equilibrium
(ȳ, ū) = (0, 0), let us try to mimic what we have done for the nonlinear Korteweg-de Vries equation
(2.3)-(2.4). Now the map F is the following one. Let

F := {(y0, u) ∈ C1([0, L])× C1([0, T ]); u(0) = y0(0), u̇(0) + a(y0(0))y0
x(0) = 0},

G := C1([0, L])2.

F : F → G
(y0, u) 7→ (y0, y(T, ·))

where y ∈ C1([0, T ]× [0, L])) is the solution to the Cauchy problem

yt + a(y)yx = 0, x ∈ [0, L], t ∈ [0, T ], (5.30)
y(t, 0) = u(t), t ∈ [0, T ], (5.31)

y(0, x) = y0(x),∀x ∈ [0, L]. (5.32)

One can prove that this map F is well defined and continuous in a neighborhood of (0, 0) (see [101]
for much more general result). Note that, formally, the linearized control system at (y, u) := (0, 0)
is the control system (5.17)-(5.18), which by Proposition 29 is controllable (at least if T > L/a(0)).
Unfortunately the map F is not of class C1. One could thing to avoid this problem by replacing
G by G := C1([0, L])× C0([0, T ]). Then the map F is now of class C1, but F ′(0, 0) : F → G is no
longer onto: there are controls u ∈ C0([0, T ]) allowing to go from y0 ∈ C1([0, L] to y1 ∈ C0([0, L])
but these controls are not of class C1 if y0 is not of class C1. We have lost one derivative.

There is a general tool, namely the Nash-Moser method, which allows us to deal with this
problem of loss of derivatives. There are many forms of this method. Let us mention, in particular,
the ones given by Mikhael Gromov in [67, Section 2.3.2], Lars Hörmander in [71], Richard Hamilton
in [68]; see also the book by Serge Alinhac and Patrick Gérard [6]. This approach can also be used
in the context of the control system (5.14)-(5.15). See the papers [13, 14, 15] by Karine Beauchard,
and [16], which show the power and the flexibility of the Nash-Moser method in the context of
control theory. However the Nash-Moser method has two major drawbacks

1. It does not give the optimal functional spaces for the state and the control.

2. It is more complicated to apply than the method we want to present here.

There is a more standard fixed point method which works for many control systems, in partic-
ular the control system (5.17)-(5.18) which allows to prove for this control system the following
controllability result.
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Theorem 30 Let us assume that

T >
L

a(0)
. (5.33)

Then there exist ε > 0 and C > 0 such that, for every y0 ∈ C1([0, L]) and for every y1 ∈ C1([0, L])
such that

‖y0‖C1([0,L]) 6 ε and ‖y1‖C1([0,L]) 6 ε,

there exists u ∈ C1([0, T ]) such that

‖u‖C1([0,T ]) 6 C(‖y0‖C1([0,L]) + ‖y1‖C1([0,L])) (5.34)

and such that the solution of the Cauchy problem (5.30)-(5.31)-(5.32) exists, is of class C1 on
[0, T ]× [0, L] and satisfies

y(T, x) = y1(x), x ∈ [0, L].

The fixed point method is the following one. Let z ∈ C1([0, L]× [0, L]. One consider the following
linear control system

yt + a(z)yx = 0, y(t, 0) = u(t), t ∈ [0, T ], x ∈ [0, L]. (5.35)

If the C1-norm of z is small enough this system is controllable in time T > L/a(0) and there exist
u ∈ C1([0, T ]) such that the Cauchy problem

yt + a(z)yx = 0, y(t, 0) = u(t), y(0, x) = y0(x), t ∈ [0, T ], x ∈ [0, L],

has a (unique) solution y ∈ C1([0, T ]× [0, L]) and this solution satisfies y(T, x) = y1(x), ∀x ∈ [0, L].
Of course this u is not unique. However, if one chooses it well on can prove, using the Brouwer
fixed point theorem, that, at least if the C1-norm of y0 and y1 are small enough, the map z 7→ y
has a fixed point, which shows that the control u := y(·, 0) steer the control system (5.14)-(5.15)
from y0 to y1. See [38, Section 4.2] for more details.

Remark 31 One can find similar controllability results for much more general hyperbolic systems
and with a different proof in the papers [30] by Marco Cirinà, [102] by Ta Tsien Li and Bing-Yu
Zhang, and [100] by Ta Tsien Li and Bo-Peng Rao. See also [38, Section 4.2.1] as well as the book
[99] by Ta-tsien Li.

Remark 32 As for the Nash-Moser method, the controllability of the linearized control system
(5.21)-(5.22)-(5.23) at the equilibrium (y, u) := (0, 0) is not sufficient for our proof of Theorem 30:
one needs a controllability result for linear control systems which are close to the linear control
system (5.21)-(5.22)-(5.23).

Remark 33 Sometimes these fixed point methods used with careful estimates can lead to global
controllability results if the nonlinearity is not too strong at infinity. See in particular

• For semilinear heat equations: [50] by Caroline Fabre, Jean-Pierre Puel and Enrique Zuazua,
[59, Chapter I, Section 3] by Andrei Fursikov and Oleg Imanuvilov, and [55] by Enrique
Fernández-Cara and Enrique Zuazua.

• For wave equations: [134, 135] by Enrique Zuazua, [92] by Irena Lasiecka and Roberto Trig-
giani.

• For a truncated Navier-Stokes equation: [49] by Caroline Fabre.
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5.3 The return method

In order to explain this method, let us first consider the problem of local controllability of the
following control system in finite dimension

ẏ = f(y, u),

where y ∈ Rn is the state and u ∈ Rm is the control; we assume that f is of class C∞ and satisfies

f(0, 0) = 0.

The return method consists in reducing the local controllability of a nonlinear control system to
the existence of suitable trajectories and to the controllability of linear systems. The idea is the
following one: Assume that, for every positive real number T and every positive real number ε,
there exists a measurable bounded function ū : [0, T ] → Rm with ‖ū‖L∞(0,T ) 6 ε such that, if we
denote by ȳ the solution of ˙̄y = f(ȳ, ū(t)), ȳ(0) = 0, then

ȳ(T ) = 0, (5.36)
the linearized control system around (ȳ, ū) is controllable on [0, T ]. (5.37)

Then, from the inverse function theorem, one gets the existence of η > 0 such that, for every
y0 ∈ Rn and for every y1 ∈ Rn satisfying

|y0| < η, |y1| < η,

there exists u ∈ L∞((0, T ); Rm) such that

|u(t)− ū(t)| 6 ε, t ∈ [0, T ],

and such that, if y : [0, T ] → Rn is the solution of the Cauchy problem

ẏ = f(y, u(t)), y(0) = y0,

then
y(T ) = y1.

Since T > 0 and ε > 0 are arbitrary, one gets that ẏ = f(y, u) is small-time locally controllable at
the equilibrium (0, 0) ∈ Rn × Rm.

Example 34 Let us consider the nonholonomic integrator, i.e. the following control system

ẏ1 = u1, ẏ2 = u2, ẏ3 = y1u2 − y2u1, (5.38)

where the state is y = (y1, y2, y3)tr ∈ R3 and the control is u = (u1, u2)tr ∈ R2 Let us recall that
this system is small-time locally controllable at (0, 0) ∈ R3×R2. The classical proof of this property
relies on Lie brackets and on the the Rashevski-Chow theorem [112, 29]. Let us show how the return
method also gives this controllability property. Take any T > 0 and any ū : [0, T ] → R2 such that
ū(t− t) = −ū(t). Let ȳ : [0, T ] → R3 be the solution of the Cauchy problem

˙̄y = f(ȳ, ū(t)), ȳ(0) = 0.

One easily checks that ȳ(T ) = 0 and that the linearized control system around (ȳ, ū) is controllable
if (and only if) ū 6≡ 0. Hence we recover small-time locally controllable at (0, 0) ∈ R3 × R2. Let us
point out that this new proof does not use Lie bracket and uses only controllability of linear control
systems. This is exactly what we want in order to deal with nonlinear control system modeled by
partial differential equations: For these systems Lie brackets often do not work and one knows a lot
of tools to study the controllability of linear control system modeled by partial differential equations.
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With this return method one has got in [32, 34, 61, 62] the following global controllability result
of the Euler equations of incompressible fluids (where, for simplicity we do not specify the regularity
of the functions and of the domain Ω):

Theorem 35 Let l ∈ {2, 3}. Let Ω be a nonempty bounded open subset of Rl. Let Γ0 be a nonempty
open subset of the boundary Γ := ∂Ω of Ω. We assume that Γ0 meets every connected components
of Γ Let y0 : Ω → R2 and y1 : Ω → R2 be such that

div y0 = div y1 = 0, y0(x) · n(x) = y1(x) · n(x) = 0,∀x ∈ Γ\Γ0,

where n : ∂Ω → R2 denotes the outward normal. Then, for every T > 0, there exist (y, p) :
Ω× [0, T ] → R2 such that

yt + (y · ∇)y +∇p = 0 in [0, T ]× Ω,

div y = 0 in [0, T ]× Ω,
y(t, ·) · n(x) = 0, ∀t ∈ [0, T ], ∀x ∈ Γ \ Γ0,

y(0, ·) = y0, y(T, ·) = 0.

Main ingredients for the proof of Theorem 35. Note that the linearized control system of
the Euler control system is far from being controllable (for this linear system the vorticity cannot
be modified). The proof relies on the return method. In order to use this method, one needs to
construct a (good) trajectory ȳ going from 0 to 0. Such trajectory is constructed using a potential
flow (i.e. a flow of the form ȳ(t, x) = ∇ϕ(t, x)). If the potential flow is well chosen the linearized
control system around this trajectory is controllable. Using this controllability and a suitable
fixed point argument one gets the local controllability of the Euler control system. The global
controllability follows from this local result by a suitable scaling argument.

Remark 36 The return method has been introduced in [31] for a stabilization problem. It has been
used for the first time in [32, 34] for the controllability of a partial differential equation, namely the
Euler equations of incompressible fluids. The return method has been used to study the controllability
of the following partial differential equations.

1. Navier-Stokes equations of incompressible fluids in [33] (with the Navier boundary condition:
see Section 2.7), in [40] for Γ0 = Γ, and by Andrei Fursikov et Oleg Imanuvilov in [60].

2. Boussinesq equations, by Andrei Fursikov and Oleg Imanuvilov in [60],

3. Burgers equation, by Thierry Horsin in [72] and Marianne Chapouly in [28].

4. Shallow water equations in [36], a paper motivated by the prior paper [46] by François Dubois,
Nicolas Petit and Pierre Rouchon (see also Section 5.4).

5. Vlasov-Poisson equations, by Olivier Glass in [63].

6. 1-D Euler isentropic equations by Olivier Glass in [65].

7. Schrödinger equations, by Karine Beauchard in [13], and in [16]. (These two papers are
motivated by the prior paper [117] by Pierre Rouchon).
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Remark 37 In fact, as already mentioned in Section 5.2, for many nonlinear partial differential
equations, the fact that the linearized control system along the trajectory (ȳ, ū) is controllable is
not sufficient to get the local controllability along (ȳ, ū). This is due to some loss of derivatives
problems. To take care of this problem, one use some suitable fixed point methods. Note that these
fixed point methods rely often on the controllability of some (and many) linear control systems which
are not the linearized control system along the trajectory (ȳ, ū). (It can also rely on some specific
methods which do not use the controllability of any linear control system. This last case appears in
the papers [72] by Thierry Horsin and [65] by Olivier Glass.)

Remark 38 For the Navier-Stokes control system, the linearized control system around of 0 is
controllable (this result is due to Oleg Imanuvilov [75, 76]). (See also [54] by Enrique Ferńandez-
Cara, Sergio Guerrero, Oleg Imanuvilov and Jean-Pierre Puel.) However it is not clear how to
deduce from this controllability a global controllability result for the Navier-Stokes control system.
Roughly speaking, the global controllability results for the Navier-Stokes equations in [33, 40] are
deduced from the controllability of the Euler equations. This is possible because the Euler equations
are quadratic and the Navier-Stokes equations are the Euler equations plus a linear “perturbation”
(of course some technical problems appear due to the fact that this linear perturbation involves more
derivatives than the Euler equations: One faces a problem of singular perturbations).

5.4 Quasi-static deformations

Let us explain how this method can be used on a specific example. We consider the water-tank
control system (2.7)-(2.8)-(2.9)-(2.10)-(2.11) (see Figure 1). The state space is

This is a control system, denoted Σ, where, at time t ∈ [0, T ],

• the state is Y (t) = (H(t, ·), v(t, ·), s(t), D(t)),

• the control is u(t) ∈ R.

Of course, the total mass of the fluid is conserved so that, for every solution of (2.7) to (2.9),

d
dt

∫ L

0
H (t, x) dx = 0. (5.39)

(One gets (5.39) by integrating (2.7) on [0, L] and by using (2.9) together with an integration by
parts.) Moreover, if H and v are of class C1, it follows from (2.8) and (2.9) that

Hx(t, 0) = Hx(t, L), (5.40)

which is also −u (t) /g. Therefore we introduce the vector space E of functions Y = (H, v, s,D) ∈
C1([0, L])× C1([0, L])× R× R such that

Hx(0) = Hx(L), (5.41)
v(0) = v(L) = 0, (5.42)

and we consider the affine subspace Y ⊂ E consisting of elements Y = (H, v, s,D) ∈ E satisfying∫ L

0
H(x)dx = LHe. (5.43)
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The vector space E is equipped with the natural norm

|Y | := ‖H‖C1([0,L]) + ‖v‖C1([0,L]) + |s|+ |D|.

One has the following local controllability theorem, proved in [36].

Theorem 39 There exist T > 0, C > 0 and η > 0 such that, for every Y 0 =
(
H0, v0, s0, D0

)
∈ Y,

and for every Y 1 =
(
H1, v1, s1, D1

)
∈ Y such that∥∥H0 −He

∥∥
C1([0,L])

+
∥∥v0

∥∥
C1([0,L])

< η,
∥∥H1 −He

∥∥
C1([0,L])

+
∥∥v1

∥∥
C1([0,L])

< η,∣∣s1 − s0
∣∣ +

∣∣D1 − s0T −D0
∣∣ < η,

there exists u ∈ C0([0, T ]) satisfying the compatibility condition u(0) = gHx(0) = gHx(L) such that
the solution (H, v, s,D) ∈ C1([0, T ] × [0, L]) × C1([0, T ] × [0, L]) × C1([0, T ]) × C1([0, T ]) to the
Cauchy problem (2.7) to (2.11) with the initial condition

(H(0, ·), v(0, ·), s(0), D(0)) = (H0, v0, s0, D0),

satisfies
(H(T, ·), v(T, ·), s(T ), D(T )) = (H1, v1, s1, D1)

and, for every t ∈ [0, T ],

‖H (t)−He‖C1([0,L]) + ‖v (t)‖C1([0,L]) + |u (t)| 6

C
(√

‖H0 −He‖C1([0,L]) + ‖v0‖C1([0,L]) + ‖H1 −He‖C1([0,L]) + ‖v1‖C1([0,L])

)
+ C

(∣∣s1 − s0
∣∣ +

∣∣D1 − s0T −D0
∣∣) . (5.44)

As a corollary of this theorem, any steady state Y 1 = (He, 0, 0, D1) can be reached from any other
steady state Y 0 = (He, 0, 0, D0).

Main ideas of the proof of Theorem 39. For simplicity, let us forget around the variables
s and D. Without loss of generality, we may assume that He = g = L = 1. Again the linearized
control system around (H, v, u) := (1, 0, 0) is not controllable. Indeed, this linearized control system
is

Σlin ht + vx = 0, vt + hx = −u (t) , v(t, 0) = v(t, 1) = 0,

and, if we let

vo(t, x) :=
1
2
(v(t, x)− v(t, 1− x)), he(t, x) :=

1
2
(h(t, x) + h(t, 1− x)),

one gets
het + vox = 0, vot + hex = 0, vo(t, 0) = vo(t, 1) = 0.

Hence the control has no effect on (he, vo), which shows that Σlin is far from being controllable (it
misses an infinite dimensional space).

Again, one tries to use the return method (see Section 5.3). For this method one needs to find
trajectories such that the the linearized control system around this trajectory is controllable. One
can check that this is the case for the trajectory given by the following equilibrium point

Hγ(x) := 1 + γ(1/2− x), vγ(x) := 0, uγ := γ.
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where γ ∈ R is small but not 0. However this trajectory does not go from 0 to 0: from the control-
lability of the linearized control system around (Hγ , vγ , uγ) one gets only the local controllability
around (Hγ , vγ), i.e., there exists an open neighborhood N of (Hγ , vγ) such that, given two states
in N , there exists a trajectory of the control system Σ going from the first state to the secund one.
This does not imply the local controllability around (1, 0). However, let us assume that

(i) There exists a trajectory of the control system Σ going from (1, 0) to N ,

(ii) There exists a trajectory of the control system Σ going from some point in N to (1, 0).

Then it is not hard to then prove the desired local controllability around (1, 0). In order to get the
trajectory mentioned in (i) and (ii), one uses quasi-static deformations: For example, for (i), one
fixes some functions g : [0, 1] → R such that g(0) = 0, g(1) = 1 and consider for ε ∈ (0,+∞) the
control uε : [0, 1/ε] → R defined by

uε(t) := g(εt).

Let us now start from (1, 0) and uses the control uε. Then one can check that, uniformly in
t ∈ [0, 1/ε],

H(t, ·)−Hg(εt) → 0 and v(t, ·) → 0 as ε→ 0.

In particular (H(1/ε, ·), v(t, ·) in N for ε ∈ (0,+∞) small enough. This proves (i). The proof of
(ii) is similar.

Remark 40 There is in fact a problem of loss of derivatives (see Section 5.2) and it is not easy to
deduce the local controllability around (Hγ , vγ , uγ) from the controllability of the linearized control
system around (Hγ , vγ , uγ). To avoid the Nash-Moser method, a suitable fixed point method is
used. This method requires the controllability “many” (essentially a family of codimension 4))
linear control systems which are close to the linear control system Σlin.

Remark 41 The quasi-static deformations works easily here since (Hγ , vγ , uγ) are stable equilib-
riums. When the equilibriums are not stable, one can first stabilize them by using suitable feedback
laws (see, in particular, [41] for semilinear heat equations and in [42] for semilinear wave equations.

Remark 42 Note that, due to the finite speed of propagation, it is natural that only large-time
local controllability hods. However, for a Schrödinger analog of control system Σ, it is proved in
[37] (see also [38, Remark 9.20, pages 269-270] that the small-time local controllability also does
not hold, even if the Schrödinger equation has an infinite speed of propagation. (The proof of the
large-time local controllability for this Schrödinger control system is due to Karine Beauchard [13];
see also [16] if one deals also with the variables S and D.)

5.5 Power series expansion

Again, we present this method on an example. Let L > 0. Let us consider the following Korteweg-de
Vries control system

yt + yx + yxxx + yyx = 0, t ∈ (0, T ), x ∈ (0, L), (5.45)
y(t, 0) = y(t, L) = 0, yx(t, L) = u(t), t ∈ (0, T ), (5.46)

where, at time t ∈ [0, T ], the control is u(t) ∈ R and the state is y(t, ·) : (0, L) → R.
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We are interested in the local controllability of the control system (5.45)-(5.46) around the
equilibrium (ye, ue) := (0, 0). Lionel Rosier has proved in [116] that this local controllability holds
if

L /∈ N :=

{
2π

√
j2 + l2 + jl

3
; j ∈ N \ {0}, l ∈ N \ {0}

}
. (5.47)

Lionel Rosier has got his result by first proving that, if L 6∈ N , then the linearized control system
around (ye, ue) := (0, 0) is controllable. Note that 2π ∈ N (take j = l = 1) and, as shown also
by Lionel Rosier, if L ∈ N , then the linearized control system around (ye, ue) := (0, 0) is not
controllable. However the nonlinear yyx helps to recover the local controllability: One has the
following theorem

Theorem 43 ([39, Theorem 2]) Let T > 0 and let L = 2π. (Thus, in particular, L ∈ N .)
Then there exist C > 0 and r1 > 0 such that for any y0, y1 ∈ L2(0, L), with ‖y0‖L2(0,L) < r1 and
‖y1‖L2(0,L) < r1, there exist

y ∈ C0([0, T ];L2(0, L)) ∩ L2((0, T );H1(0, L))

and u ∈ L2(0, T ) satisfying (5.45)-(5.46), such that

y(0, ·) = y0, (5.48)

y(T, ·) = y1, (5.49)

‖u‖L2(0,T ) 6 C(‖y0‖L2(0,L) + ‖y1‖L2(0,L))
1/3. (5.50)

Main ideas of the proof of Theorem 43. The proof relies on some kind of power series
expansion. Let us just explain the method on the control system of finite dimension

ẏ = f(y, u), (5.51)

where the state is y ∈ Rn and the control is u ∈ Rm. Here f is a function of class C∞ on a
neighborhood of (0, 0) ∈ Rn × Rm and we assume that (0, 0) ∈ Rn × Rm is an equilibrium of the
control system (5.51), i.e f(0, 0) = 0. Let

H := Span {AiBu; u ∈ Rm, i ∈ {0, . . . , n− 1}}

with
A :=

∂f

∂y
(0, 0), B :=

∂f

∂u
(0, 0).

If H = Rn, the linearized control system around (0, 0) is controllable and therefore the nonlinear
control system (5.51) is small-time locally controllable at (0, 0) ∈ Rn×Rm. Let us look at the case
where the dimension of H is n − 1. Let us make a (formal) power series expansion of the control
system (5.51) in (y, u) around the constant trajectory t 7→ (0, 0) ∈ Rn × Rm. We write

y = y1 + y2 + . . . , u = u1 + u2 + . . . .

The order 1 is given by (y1, u1); the order 2 is given by (y2, u2) and so on. The dynamics of these
different orders are given by

ẏ1 =
∂f

∂y
(0, 0)y1 +

∂f

∂u
(0, 0)u1, (5.52)
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ẏ2 =
∂f

∂y
(0, 0)y2 +

∂f

∂u
(0, 0)u2 +

1
2
∂2f

∂y2
(0, 0)(y1, y1)

+
∂2f

∂y∂u
(0, 0)(y1, u1) +

1
2
∂2f

∂u2
(0, 0)(u1, u1), (5.53)

and so on. Let e1 ∈ H⊥. Let T > 0. Let us assume that there are controls u1
± and u2

±, both in
L∞((0, T ); Rm), such that, if y1

± and y2
± are solutions of

ẏ1
± =

∂f

∂y
(0, 0)y1

± +
∂f

∂u
(0, 0)u1

±,

y1
±(0) = 0,

ẏ2
± =

∂f

∂y
(0, 0)y2

± +
∂f

∂u
(0, 0)u2

± +
1
2
∂2f

∂y2
(0, 0)(y1

±, y
1
±)

+
∂2f

∂y∂u
(0, 0)(y1

±, u
1
±) +

1
2
∂2f

∂u2
(0, 0)(u1

±, u
1
±),

y2
±(0) = 0,

then

y1
±(T ) = 0,

y2
±(T ) = ±e1.

Let (ei)i∈{2,...n} be a basis of H. By the definition of H and a classical result about the controllable
part of a linear system (see e.g. [126, Section 3.3]), there are (ui)i=2,...,n, all in L∞(0, T )m, such
that, if (yi)i=2,...,n are the solutions of

ẏi =
∂f

∂y
(0, 0)yi +

∂f

∂u
(0, 0)ui,

yi(0) = 0,

then, for every i ∈ {2, . . . , n},

yi(T ) = ei.

Now let

b =
n∑
i=1

biei

be a point in Rn. Let u1 ∈ L∞((0, T ); Rm) be defined by the following

• If b1 > 0, then u1 := u1
+ and u2 := u2

+.

• If b1 < 0, then u1 := u1
− and u2 := u2

−.
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Then let u : (0, T ) → Rm be defined by

u(t) := |b1|1/2u1(t) + |b1|u2(t) +
n∑
i=2

biui(t).

Let y : [0, T ] → Rn be the solution of

ẏ = f(y, u(t)), y(0) = 0.

Then one has, as b→ 0,

y(T ) = b+ o(b). (5.54)

Hence, using the Brouwer fixed-point theorem and standard estimates on ordinary differential
equations, one gets the local controllability of ẏ = f(y, u) (around (0, 0) ∈ Rn × Rm) in time T ,
that is, for every ε > 0, there exists η > 0 such that, for every (a, b) ∈ Rn × Rn with |a| < η and
|b| < η, there exists a trajectory (y, u) : [0, T ] → Rn × Rm of the control system (5.51) such that

y(0) = a, y(T ) = b,

|u(t)| 6 ε, t ∈ (0, T ).

We use this power series expansion method to get Theorem 43. In fact, for this theorem, an
expansion to order 2 is not sufficient: we obtain the local controllability by means of an expansion
up to order 3 (which makes the computations very lengthy).

Remark 44 The power series expansion method has been used in the context of partial differential
equations for the first time in [39]. It has then been used

• For the above Korteweg-de Vries control system and for the other values of L ∈ N by Eduardo
Cerpa in [26] and by Eduardo Cerpa and Emmanuelle Crépeau in [27].

• For a Schrödinger equation in [16].

6 Complements and further references

There are many importants problems which are not discussed in this paper. Perhaps the more
fundamental ones are optimal control theory and the stabilization problem. For the optimal control
theory, see references already given in Section 4.5. The stabilization problem is the following one.
We have an equilibrium which is unstable (or not enough stable) without the use of the control.
Let us give a concrete example. One has a stick that is placed vertically on one of his fingers. In
principle, if the stick is exactly vertical with a speed exactly equal to 0, it should remain vertical.
But, due to various small errors (the stick is not exactly vertical, for example), in practice, the stick
falls down. In order to avoid this, one moves the finger in a suitable way, depending on the position
and speed of the stick; one uses a “feedback law” (or “closed-loop control”) which stabilizes the
equilibrium. The problem of the stabilization is the existence and construction of such stabilizing
feedback laws for a given control system. More precisely, let us consider the control system (1.1)
and let us assume that f(0, 0) = 0. The stabilization problem is to find a feedback law y → u(y)
such that 0 is asymptotically stable for the closed loop system ẏ = f(y, u(y)).

Again, as for the controllability, the first step to study the stabilization problem is to look at the
linearized control system at the equilibrium. Roughly speaking one expects that a linear feedback
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which stabilizes (exponentially) the linearized control systems stabilizes (locally) the nonlinear
control system. This is indeed the case in many important situations. For example, for the Navier
control system mentioned in Section, see in particular [9] by Viorel Barbu, [11] by Viorel Barbu
and Roberto Triggiani, [10] by Viorel Barbu, Irena Lasiecka and Roberto Triggiani, [58] by Andrei
Fursikov, [113, 114] by Jean-Pierre Raymond, and [132].

When the linearized control system cannot be stabilized it still may happen that the nonlinearity
helps. This for example the case for the Euler control system (2.16-(2.17)-(2.17): see [35], and [64]
by Olivier Glass.

The most popular approach to construct stabilizing feedbacks relies on Lyapunov functions. See
[38, Chapter 12] for various methods to design Lyapunov functions.
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Birkhäuser Boston Inc., Boston, MA, 1989. Harmonic analysis, Edited by L. Carleson, P.
Malliavin, J. Neuberger and J. Wermer.

[21] Rosa Maria Bianchini. High order necessary optimality conditions. Rend. Sem. Mat. Univ.
Politec. Torino, 56(4):41–51 (2001), 1998. Control theory and its applications (Grado, 1998).

[22] Rosa Maria Bianchini and Gianna Stefani. Sufficient conditions for local controllability. Proc.
25th IEEE Conf. Decision and Control, Athens, pages 967–970, 1986.

[23] Rosa Maria Bianchini and Gianna Stefani. Controllability along a trajectory: a variational
approach. SIAM J. Control Optim., 31(4):900–927, 1993.

[24] Jerry Bona and Ragnar Winther. The Korteweg-de Vries equation, posed in a quarter-plane.
SIAM J. Math. Anal., 14(6):1056–1106, 1983.

[25] Nicolas Burq. Contrôle de l’équation des plaques en présence d’obstacles strictement convexes.
Mém. Soc. Math. France (N.S.), (55):126, 1993.

[26] Eduardo Cerpa. Exact controllability of a nonlinear Korteweg-de Vries equation on a critical
spatial domain. SIAM J. Control Optim., 46(3):877–899 (electronic), 2007.

[27] Eduardo Cerpa and Emmanuelle Crépeau. Boundary controllability for the nonlinear
Korteweg-de Vries equation on any critical domain. Ann. Inst. H. Poincaré Anal. Non
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[42] Jean-Michel Coron and Emmanuel Trélat. Global steady-state stabilization and controllability
of 1D semilinear wave equations. Commun. Contemp. Math., 8(4):535–567, 2006.

[43] Ruth F. Curtain and Hans Zwart. An introduction to infinite-dimensional linear systems
theory, volume 21 of Texts in Applied Mathematics. Springer-Verlag, New York, 1995.

43
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ble multi-structures, volume 50 of Mathématiques & Applications (Berlin) [Mathematics &
Applications]. Springer-Verlag, Berlin, 2006.

[45] Lokenath Debnath. Nonlinear water waves. Academic Press Inc., Boston, MA, 1994.

[46] François Dubois, Nicolas Petit, and Pierre Rouchon. Motion planning and nonlinear simu-
lations for a tank containing a fluid. In European Control Conference (Karlruhe, Germany,
September 1999), 1999.
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[48] Caroline Fabre. Résultats de contrôlabilité exacte interne pour l’équation de Schrödinger et
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des systèmes gouvernés par des équations aux dérivées partielles (Nancy, 1999), volume 8 of
ESAIM Proc., pages 77–94 (electronic). Soc. Math. Appl. Indust., Paris, 2000.

[97] Gilles Lebeau. Contrôle de l’équation de Schrödinger. J. Math. Pures Appl. (9), 71(3):267–
291, 1992.

[98] Gilles Lebeau and Luc Robbiano. Contrôle exact de l’équation de la chaleur. Comm. Partial
Differential Equations, 20(1-2):335–356, 1995.

[99] Ta Tsien Li. Controllability and Observability for Quasilinear Hyperbolic Systems, volume 2 of
AIMS Series on Applied Mathematics. American Institute of Mathematical Sciences (AIMS),
Springfield, MO, 2008.

[100] Ta Tsien Li and Bo-Peng Rao. Exact boundary controllability for quasi-linear hyperbolic
systems. SIAM J. Control Optim., 41(6):1748–1755 (electronic), 2003.

[101] Ta Tsien Li and Wen Ci Yu. Boundary value problems for quasilinear hyperbolic systems.
Duke University Mathematics Series, V. Duke University Mathematics Department, Durham,
NC, 1985.

[102] Ta Tsien Li and Bing-Yu Zhang. Global exact controllability of a class of quasilinear hyper-
bolic systems. J. Math. Anal. Appl., 225(1):289–311, 1998.
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