Homework II

1. Let $a>0$. Using the Riesz map

$$
f(s)=\frac{1}{2 \pi j} \int_{-\infty}^{\infty} \frac{f(j \omega)}{s-j \omega} d \omega, \quad s \in \Pi
$$

show that the Laguerre functions

$$
B_{n}(s)=\frac{\sqrt{2 a}}{s+a}\left(\frac{s-a}{s+a}\right)^{n-1}, \quad n=1,2, \cdots
$$

are complete in $\mathcal{H}_{2}(\Pi)$.
2. Consider the following continuous-time interpolation problem:

Given: noise-free samples of $f(s)$ and its derivatives at L distinct points s_{k} in the open right-half plane

$$
f^{(j)}\left(s_{k}\right)=w_{k j}, \quad j=0, \cdots, N_{k} ; \quad l=1, \cdots, L
$$

Find: a quadruplet $(\hat{A}, \hat{B}, \hat{C}, \hat{D})$ that is a minimizal realization of $f(s)$ assuming that f is analytic on the closed right-half plane and has McMillan degree n.
Explain how a continuous-time subspace-based interpolation algorithm can be developed by utilizing the bilinear map

$$
s=\lambda \frac{z-1}{z+1} \quad(\lambda>0)
$$

and the discrete-time subspace-based interpolation algorithm.
3. Suppose (C, A) is observable and A is stable. Let $L(z)=\left(C\left(z I_{n}-A\right)^{-1} I_{m}\right)$. Consider the following optimization problem:

$$
\min _{Q, S, R} \sum_{k=0}^{2 N-1}\left\|S_{k}-L\left(e^{j 2 \pi k / 2 N}\right)\left(\begin{array}{cc}
Q & S \\
S^{T} & R
\end{array}\right) L^{H}\left(e^{j 2 \pi k / 2 N}\right)\right\|_{F}^{2}
$$

constrained to

$$
\left(\begin{array}{cc}
Q & S \\
S^{T} & R
\end{array}\right) \geq 0
$$

Let

$$
P=A P A^{T}+Q, \quad G=A P C^{T}+S, \quad \Lambda_{0}=C P C^{T}+R .
$$

Then, show that a spectral factor can be computed from A, G, C, and Λ_{0}.
4. Let \mathcal{H} be a Hilbert space whose elements are real or complex valued functions defined on a set S. We shall call \mathcal{H} a functional Hilbert space if for every $x \in S$, the point evaluation functional $f \rightarrow f(x)$ on \mathcal{H} is bounded. This means that there is a constant M_{x} such that for all $f \in \mathcal{H}$, we have $|f(x)| \leq M_{x}\|f\|$. By the Riesz representation
theorem, every bounded linear functional on \mathcal{H} arises from an inner product, and so if $x \in S$ there is an element $k_{x} \in \mathcal{H}$ such that

$$
f(x)=\left(f, K_{x}\right), \quad \text { for every } f
$$

The function K on $S \times S$ defined by

$$
K(x, y)=\left(K_{y}, K_{x}\right)=K_{y}(x)
$$

is called the kernel function or the reproducing kernel of \mathcal{H}.
(a) Let S be the set of the natural numbers and $\mathcal{H}=\ell_{2}$. Let $\left\{e_{n}\right\}$ denote the natural basis for ℓ_{2}. Show that K is given by

$$
K(m, n)=\left(e_{m}, e_{n}\right)=\delta_{m n} .
$$

(b) Let \mathcal{H}^{2} be the space of complex functions which are analytic inside the unit circle and have square-integrable boundary values. Show that the reproducing kernel for \mathcal{H}^{2} is given by

$$
K(z, w)=\sum_{n=0}^{\infty} z^{n} w^{-n}=\frac{1}{1-z \bar{w}} .
$$

K is called the Szegö kernel. (Hint: for $|\beta|<1$, note that $g(z)=\sum_{n=0}^{\infty} \bar{\beta}^{n} z^{n} \in \mathcal{H}^{2}$ and $f(\beta)=(f, g)$ for every $f \in \mathcal{H}^{2}$.)

