Homework I

1. Suppose that $Z=\left[\begin{array}{ll}T & U\end{array}\right] \in \mathbf{R}^{n \times n}$ is non-singular where $T \in \mathbf{R}^{n \times r}, U \in \mathbf{R}^{n \times(n-r)}$. Let the inverse matrix of Z be given by

$$
Z^{-1}=\left[\begin{array}{c}
L \\
V
\end{array}\right], \quad L \in \mathbf{R}^{r \times n}, V \in \mathbf{R}^{(n-r) \times n} .
$$

Then, it follows that $T L+U V=I_{n}$ and

$$
\left[\begin{array}{c}
L \\
V
\end{array}\right]\left[\begin{array}{ll}
T & U
\end{array}\right]=\left[\begin{array}{cc}
L T & L U \\
V T & V U
\end{array}\right]=\left[\begin{array}{cc}
I_{r} & 0 \\
0 & I_{n-r}
\end{array}\right] .
$$

Show that $P=T L$ is the oblique projection onto $\operatorname{Im}(T)$ along $\operatorname{Ker}(L)$ and that $Q=U V$ is the oblique projection onto $\operatorname{Ker}(L)[=\operatorname{Im}(U)]$ along $\operatorname{Im}(T)[=\operatorname{Ker}(V)]$.
2. In the above problem, define

$$
T=\left[\begin{array}{c}
I_{r} \\
0
\end{array}\right], \quad U=\left[\begin{array}{c}
-X \\
I_{n-r}
\end{array}\right]
$$

Compute the projection $P=T L$ by means of L and V. Show that $P^{2}=P$ is satisfied if P has the following representation

$$
P=\left[\begin{array}{cc}
I_{r} & X \\
0 & 0
\end{array}\right], \quad X \in \mathbf{R}^{r \times n}
$$

3. Suppose that $A \in \mathbf{R}^{p \times N}, B \in \mathbf{R}^{q \times N}$ where $p, q<N$. Let the orthogonal projection of the row vectors of A onto the space spanned by the row vectors of B be defined by $\hat{E}[A \mid B]$. Prove the following

$$
\hat{E}[A \mid B]=A B^{T}\left(B B^{T}\right)^{\dagger} B
$$

If B has full row rank, the pseudo-inverse is replaced by the inverse.
4. Let A and B be defined as in Problem 3. Consider the LQ decomposition:

$$
\left[\begin{array}{c}
B \\
A
\end{array}\right]=\left[\begin{array}{cc}
L_{11} & 0 \\
L_{21} & L_{22}
\end{array}\right]\left[\begin{array}{c}
Q_{1}^{T} \\
Q_{2}^{T}
\end{array}\right]
$$

Suppose that B has full row rank. Show that the orthogonal projection is given by

$$
E[A \mid B]=L_{21} Q_{1}^{T}=L_{21} L_{11}^{-1} B=A\left(Q_{1} Q_{1}^{T}\right)
$$

Let B^{\perp} be the orthogonal complement of the space spanned by the row vectors of B. Then, the orthogonal projection of the row vectors of A onto B^{\perp} is expressed as

$$
E\left[A \mid B^{\perp}\right]=L_{22} Q_{2}^{T}=A\left(Q_{2} Q_{2}^{T}\right)
$$

