Homework I: Solutions

1. Since $L T=I_{r}$, we get $P^{2}=T L T L=T L=P$. Also, T and L are of full rank, so that $\operatorname{Im}(P)=\operatorname{Im}(T L)=\operatorname{Im}(T)$ and $\operatorname{Ker}(P)=\operatorname{Ker}(T L)=\operatorname{Ker}(L)$. This implies that P is the oblique projection onto $\operatorname{Im}(T)$ along $\operatorname{Ker}(L)$. Similarly, we can prove that Q is a projection.
2. Define $L=\left[\begin{array}{ll}L_{1} & L_{2}\end{array}\right]$ and $V=\left[\begin{array}{ll}V_{1} & V_{2}\end{array}\right]$. Since $\left[\begin{array}{c}L \\ V\end{array}\right]\left[\begin{array}{ll}T & U\end{array}\right]=\left[\begin{array}{cc}I_{r} & 0 \\ 0 & I_{n-r}\end{array}\right]$, we have

$$
\left[\begin{array}{cc}
L_{1} & L_{2} \\
V_{1} & V_{2}
\end{array}\right]\left[\begin{array}{cc}
I_{r} & -X \\
0 & I_{n-r}
\end{array}\right]=\left[\begin{array}{cc}
I_{r} & 0 \\
0 & I_{n-r}
\end{array}\right] .
$$

This implies that $L_{1}=I_{r}, L_{2}=X, V_{1}=0, V_{2}=I_{n-r}$, and hence

$$
P=\left[\begin{array}{cc}
I_{r} & X \\
0 & 0
\end{array}\right] .
$$

3. Since the orthogonal projection is expressed as $\hat{E}\{A \mid B\}=K B, K \in \mathbf{R}^{p \times q}$, the optimality condition is reduced to $A-K B \perp B$. Hence, we have

$$
(A-K B) B^{T}=0 \Rightarrow K=\left(A B^{T}\right)\left(B B^{T}\right)^{\dagger}
$$

showing that $\hat{E}\{A \mid B\}=\left(A B^{T}\right)\left(B B^{T}\right)^{\dagger} B$.
4. Since $Q_{1}^{T} Q_{2}=0$, two terms in the right-hand side of $A=L_{21} Q_{1}^{T}+L_{22} Q_{2}^{T}$ are orthogonal. From $B=L_{11} Q_{1}^{T}$ with B full row rank, we see that L_{11} is nonsingular and Q_{1}^{T} forms a basis of the space spanned by the row vectors of B. It therefore follows that $\hat{E}\{A \mid B\}=$ $L_{21} Q_{1}^{T}=L_{21} Q_{1}^{T}=L_{21} L_{11}^{-1} B$. Also, from $A Q_{1}=L_{21}$, we get $\hat{E}\{A \mid B\}=A\left(Q_{1} Q_{1}^{T}\right)$. since $L_{22} Q_{2}^{T}$ is orthogonal to the row space of B, it follows that $\hat{E}\left\{A \mid B^{\perp}\right\}=L_{22} Q_{2}^{T}$.

