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Abstract— This paper proposes a new general approach to
the global analysis of observability and detectability for nonlin-
ear systems. Based on the definition of indistinguishability it is
possible to derive the dynamics of the non-observable part of the
system and thus to study its stability properties using methods
of nonlinear systems theory. The method is first introduced in
general and then applied to a class of nonlinear models for
biological processes as e.g. in waste water treatment. Finally
detectability conditions for the reactor model are deduced.

Index Terms— Bad Inputs, Bioreactors, Observability Analy-
sis, Detectability, Indistinguishability.

I. INTRODUCTION

This paper concerns nonlinear systems of the following
general form:

ẋ =f(x, u), x(0) = x0 (1)

y =h(x),

where x : R+ �→ D ⊆ R
n, u : R+ �→ Ω ⊆ R

m and
y : R+ �→ H ⊆ R

p with D open and connected. Due to the
lack of knowledge of all system states, e.g for implementing
a specific control law many control strategies require the
design of an observer. Observability analysis is an important
part of this design as all observer design methods assume
some observability condition.

Most of the known methods to check the observability
properties of (1) make use of the observability map [9] Φ =
[h(x), . . . , Ln−1

f h(x)]T which is in general a vector-valued
function depending on the system state x(t) as well as on
the output h(x) and its first n−1 (or more) time derivatives,
expressed as Lie derivatives along the vector-field f(x,u).
The most common way is checking the rank of its Jacobian
and making use of the inverse function theorem for local
observability statements (for global assertions one can use
the theorem of Palais e.g. [7]). From this approach it is hard
to yield a global statement of observability. The only way to
say that the observability map can distinguish all states is to
check its injectivity. But for systems with higher dimensional
coupled dynamics it is in general not possible to make a
clear statement on the injectivity of this map. Therefore for
such systems an analysis based on the observability map
only serves for local observability results. Furthermore, if
the map is not injective, it is difficult to determine if the

system is detectable since the observability map is static and
detectability includes the dynamics of the system.

The objective of this paper is to propose an alternative ap-
proach to analyze the (global) observability and detectability
properties of a nonlinear system. This method is based on
fundamental and well known definitions of these properties,
and their relationships with the indistinguishability concept.
In the following the solution of (1) will be denoted in its
functional dependence, i.e. x(t) = x(t;x0,u(t)) only if
necessary.

II. GLOBAL OBSERVABILITY AND DETECTABILITY

ANALYSIS

The following fundamental definitions of indistinguisha-
bility, observability and detectability will be used.

Definion 1: (Indistinguishability)
Two initial states x1

0,x
2
0 are said to be indistinguish-

able if ∃u(t) ∈ Ω such that y(t;x1
0,u(t)) =

y(t;x2
0,u(t)), ∀t ≥ 0 and we write x1

0Ix2
0. Equivalently

two trajectories x1(t),x2(t) are said to be indistinguishable
if h(x1(t;x1

0,u(t))) = h(x2(t;x2
0,u(t))), ∀t ≥ 0 and we

write x1(t)Ix2(t).
Effectively the indistinguishability of trajectories is caused
by that of their initial states. Based on this definition ob-
servability of system (1) is defined.

Definition 2: (Observability)
System (1) is said to be globally observable if for all (initial)
states x1,x2 ∈ D with x1Ix2 it follows x1 = x2.
This means that system (1) is observable if and only if it does
not have any indistinguishable trajectories nor states. Similar
to this definition the following definition of detectability is
given in correspondence to the linear case:

Definition 3: (Detectability)
System (1) is said to be detectable if for all trajectories
x1(t),x2(t) with x1(t)Ix2(t), ∀t ≥ 0 it follows that
lim

t→∞{||x1(t) − x2(t)||} = 0.

Note that for detectability indistinguishable trajectories are
possible, but they have to be convergent. It is easy to see that
observability implies detectability. Note, that the definitions
for nonlinear observability are manifold and thus we gave
here the definitions in a form which is adequately for the
given system analysis.



Now assume two identical plants with the same input, i.e.

Σ :
{

ẋ = f(x, u), ξ̇ = f(ξ, u)
y = h(x), γ = h(ξ)

,

were x(t), ξ(t) ∈ D with initial states x(0) = x0, ξ(0) =
ξ0, respectively. Note that the second plant is an exact copy
of the first one, driven with the same input signal. Now define
the difference between the two states according to distinct
initial conditions ε := x− ξ and the difference between the
corresponding outputs δ := y − γ. With these definitions
one can formulate the difference or error dynamics

Σ∗ :




ẋ = f(x,u)
ε̇ = f(x,u) − f(x − ε,u)
δ = h(x) − h(x − ε).

(2)

For indistingushable trajectories of system (1) the output δ ≡
0 of (2) vanishes, and so the Differential-Algebraic-System
(DA-system)

Σ̃ :




ẋ = f(x,u)
ε̇ = f(x,u) − f(x − ε,u)
0 = h(x) − h(x − ε).

(3)

represents the zero-dynamics of Σ∗ and describes exactly all
indistinguishable trajectories of (1), i.e. its indistinguishable
dynamics. Therefore the observability and detectability of the
plant can be studied analyzing Σ̃, as stated in the following
proposition, which proof is directly derived from Definitions.

Proposition 1: System (1) is observable in the sense of
Definition 2 if ∀x0, ε0,u(t) the only solution of Σ̃ is ε ≡ 0.
It is detectable in the sense of Definition 3 if ∀x0, ε0,u(t)
in Σ̃ it follows that limt→∞ ε(t) = 0.

Note that detectability doesn’t imply that there exists an
ε(t) 	= 0 such that δ ≡ 0 and therefore observability of
(1) implies its detectability as mentioned above. As it is
well known, DA-systems can have strange behavior and
thus it may be difficult to analyze Σ̃. Nevertheless, the here
proposed method is the only known that allows to study the
dynamical properties of the indistinguishable dynamics in a
direct manner. Sometimes it is possible to reduce the DA-
System to an explicit differential system.

III. APPLICATION TO A BIOREACTOR MODEL

Now the proposed method is used to analyze a bioreactor
model describing e.g. a process applied in the treatment
of waste water. Note that for such processes most models
are similar to the one studied here and thus this analysis
is valid for a great class of nonlinear systems occurring in
biological process engineering. In the following X represents
the biomass used to degrade the toxic substrate S. As the
biomass and the substrate are hard to measure, the dissolved
oxygen concentration O is considered in order to obtain an
easily measurable output of the system. The input u(t) is
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Fig. 1. Specific biomass growth rate µ(S)

given by the dilution rate. The systems equations then read:

Ẋ =µ(S)X − (Kd + u)X

Ṡ = − C1µ(S)X + u(Sin − S)

Ȯ = − (C2µ(S) + b)X+ (4)

+ u(Oin − O) + Kla(Os − O)
y =h(η) = O,

with the initial condition [X0 S0 O0]T . Note that the system
is positive, i.e. D = R

3
+. Further all parameters are positive.

Thus by defining the positive system state vector η(t) :=
[X(t) S(t) O(t)]T , (4) can shortly be rewritten as

η̇ =f(η, u), η(0) = η0 (5)

y =[0 0 1]T η.

The specific biomass growth rate µ depends on the substrate
concentration S in a non monotonic way according to a Hal-
dane kinetics. In the case of the considered bioreactor used
in the waste water treatment its S-dependence is modeled as

µ(S) =
µ0S

S2

Ki + S + Ks

(6)

and is thus noninjective. It reaches its maximum µmax < µ0

in Smax =
√

KsKi. For further studies and deduction of this
model using mass balance see [3], [5], [4] and references
therein. In [4] it has been shown that this system is stable in
the sense of Lyapunov and therefore all system trajectories
are bounded. Further it already has been studied with respect
to observability using classical methods. The main result was
that because of the non injectivity of µ(S) the observability
map Φ = [h,Lfh,L2

fh]T becomes non injective too, except
in Smax and thus can’t be used to distinguish the states. One
can derive certain cases where the observability is lost using
Φ, but it is very hard to derive a complete representation
of the dynamics on the indistinguishable manifold. Such a
global analysis is necessary for analyzing the detectability
in the sense of Definition 3, i.e. the convergence of all
indistinguishable trajectories, as well as to obtain a complete



knowledge of all cases causing indistinguishability. This
could not be obtained using Φ.

To obtain a complete representation of the indistinguish-
able dynamics we follow the proposed way and intro-
duce a copy of the system with the system state ζ(t) =
[ξ(t) σ(t) ω(t)]T ∈ D as

ζ̇ =f(ζ, u), ζ(0) = ζ0 (7)

ρ =[0 0 1]ζ,

with the initial state ζ0 = [ξ0 σ0 ω0]T . Further we introduce
the state error ε = ζ − η and suppose that the two outputs
are dynamically identical, i.e. y(t) = ρ(t), ∀t ∈ R+, ⇒
ε3 = 0. Thus we have the following DAE-representation of
the indistinguishability dynamics of (4):

η̇ =f(η, u∗)
ε̇ =f(η + ε, u∗) − f(η, u∗) (8)

0 =ε3,

using u∗(t) defined as the corresponding necessary input
to satisfy the algebraic part under the assumption of the
satisfaction by the initial conditions. The algebraic constraint
is fulfilled if O(t) and ω(t) are dynamically identical, i.e.
O(t) = ω(t), ∀t ∈ R+ and also O(n)(t) = ω(n)(t), ∀t ∈
R+, n ∈ N. This yields the following identity necessary for
fulfilling the algebraic constraint

−C2

(
µ(S + ε2)(X + ε1) − µ(S)X

)
− bε1 ≡ 0. (9)

The corresponding necessary input to reach this equivalence
under this assumption is determined as a rational function

u∗ :=
Z(X,S, ε1, ε2)
N(X,S, ε1, ε2)

, (10)

where Z(X,S, ε1, ε2) and N(X,S, ε1, ε2) are polynomials in
X,S, ε1, ε2. Using (9) the following DA-system is derived,
which lives in R

5 as the restriction to ε3 already has been
applied:

η̇ =f(η, u∗)

ε̇1 = − (
bC−1

2 + Kd + u∗)ε1 (11)

ε̇2 =
C1

C2
bε1 − u∗ε2

0 =ε3.

From (9) one derives a relationship between ε1 and ε2:

ε1 =X
µ(S) − µ(S + ε2)
µ(S + ε2) + bC−1

2

. (12)

Thus the dynamics lives on a 4-dimensional submanifold
Ψ ⊂ R

5. From (12) one directly derives, that if X → 0
then ε1 → 0. Further that if ε2 → 0 then also ε1 → 0,
when X is bounded. Analyzing (11) it follows that the ε1-
dynamics is exponentially stable because of u(t) ≥ 0, ∀ t ∈
R+ and the positivity of all system parameters and thus

∣∣ε1(t)∣∣ ≤ ∣∣ε10∣∣ exp
(−(bC−1

2 +Kd)t
)
, defining ε10 := ε1(0).

Its analytical solution can be written as

ε1(t) = ε10 exp
(
− (bC−1

2 + Kd)t −
∫ t

0

u∗(τ)dτ
)
. (13)

With this particular solution of (11) one already knows the
analytic solution for ε2(t), which reads, using ε20 := ε2(0):

ε2(t) =ε20 exp
(
−

∫ t

0

u∗(τ)dτ
)
+

+ bC1C
−1
2 ε10

∫ t

0

exp
[
−

∫ t−τ

0

u∗(τ)dτ− (14)

− (bC−1
2 + Kd)τ −

∫ τ

0

u∗(θ)dθ
]
dτ.

On the other hand one can see that if ε1 → 0 then it follows
from (12) that µ(S + ε2) → µ(S) or, equivalently, either
ε2 → KsKi

S − S or ε2(t) → 0. Further one notices that if
ε1(t) = 0, ∀t ∈ R+, i.e. X(t) = ξ(t), ∀t ∈ R+ it follows

µ(S(t) + ε2(t)) ≡ µ(S(t)). (15)

Thus this case can be interpreted as follows: Consider a re-
duced system representation of (11) supposing the dissolved
oxygen concentration to be not considered and further X(t)
and ξ(t) as outputs of the systems (4) and (7) respectively.
Then system (11) reduces to the the dynamics of X(t), S(t)
and ε2(t), as ε1 ≡ 0. Note that the bad trajectories calculated
based on this assumption are valid in both systems because
of their equivalence under (15). The corresponding input in
this case reduces to

ũ∗ =µ(S)X
µ′(S + ε2) − µ′(S)

µ′(S + ε2)(Sin − S − ε2) − µ′(S)(Sin − S)
(16)

=µ(S)X
2S + ε2

Sin(2S + ε2) − 2KsKi
.

Using this result and the equivalence (15) the dynamics can
be reduced to

Ẋ =X
(
µ(S) − Kd − ũ∗)

ε̇2 = − ũ∗ε2. (17)

S =
1
2
( − ε2 +

√
ε22 + 4KSKi

)
.

This system now describes the indistinguishability dynamics
of (11) for the case of ε1(t) = 0 and thus represents the
asymptotic dynamics on the submanifold Ξ ⊂ Ψ which
is attractive in the sense that the extended state vector
[X S ε1 ε2]T → Ξ as ε1 → 0. Note, that by using the
algebraic constraint for S, the constitutive dynamics of (17)
turns into an autonomous system living in the plane. Based
on this interpretation we formulate the following proposition

Proposition 2: Consider the dynamics (17) on the dif-
ferentiable manifold Ξ. Further suppose Sin > Smax con-
stant, then the dynamics of ε2(t) is asymptotically stable
∀ [X0 S0 ε20]T ∈ Ξ.
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Fig. 2. Phase portrait of the indistinguishability dynamics

Proof : From (17) one can directly see that the analytical
solution of ε2(t) is

ε2(t) =ε20 exp
( −

∫ t

0

ũ∗(τ)dτ
)
. (18)

Thus if one can assure the input to be integrally unbounded,
i.e.

∫ t

0
u(τ)dτ → ∞ as t → ∞, its asymptotical stability

is warranted. As one can see from the algebraic constraint
on S, it is not possible for S to converge to zero on the
indistinguishable manifold Ξ. Thus µ(S(t)) > 0 ∀ t ∈ R+

holds. Further the only zero of (16) is ε2 = −2S which
contradicts (15). The positiveness of the input signal
(16) is assured if Sin > Smax and thus under this
constraint

∣∣ε2(t)∣∣ ≤ ∣∣ε20∣∣ ∀ t ∈ R+, i.e. ε2 is bounded.
Now to proof the asymptotical stability of ε2, i.e. its
attractiveness and stability in the sense of Lyapunov,
we make use of the well-known theorem of Poincaré-
Bendixson. Therefore we first remind that ũ∗ > 0 ⇔ X 	= 0.
According to the theorem mentioned there exists only three
possibilities for each trajectory in the plane: (i): it converges
asymptotically to an equilibrium point, (ii): it diverges,
i.e.

∣∣∣∣ · ∣∣∣∣ → ∞ or (iii): it converges to a limit-cycle.
The dynamics (17) has at most two equilibrium points
located on the X-axis. Thus if the trajectory converges
then ε2(t) → 0, i.e. ε2 ≡ 0 is attractive. As ε2 is non-
increasing it is further stable. If

∣∣∣∣[X(t) ε2(t)]T
∣∣∣∣ → ∞,

then ∃ κ > 0 : ũ∗(t) > κ ∀ t ∈ R+, i.e. the input is
integrally unbounded and thus limt→∞ ε2(t) = 0. The case
of a limit cycle cannot occur as ε2(t) is non-increasing. �

Thus under the above assumptions (y = X, ρ = ξ, ε1 ≡
0, Sin > Smax) system (4) is detectable. Figure 2 illustrates
the phase diagram of the indistinguishability dynamics in this
case.

It should be mentioned that there exist initial values η0 ∈
Ψ for which the input would have to be piecewise negative
and thus the according trajectories can not be maintained in
the indistinguishable manifold for all time. This is another
advantage of the proposed method, that one can analyze

the definiteness of possible indistinguishability. Completing,
it should be mentioned that detectability admits infinitely
slow convergence of trajectories and that the problem of the
existence of indistinguishable trajectories for the observation
thus does not become much better.

Since it is impossible to distinguish different trajectories
causing the same output signal, while the input is the same,
with any observer, detectability is a necessary condition for
the existence of an observer. So in this case one can try
to obtain an observation law enabling to estimate the dis-
tinguishable trajectories. However, one cannot yield conver-
gence of all observer trajectories to the system trajectories,
but nevertheless one could be able to estimate those which
are distinguishable, while having the knowledge, that all
indistinguishable will converge as it was shown.

IV. CONCLUSIONS

This paper has presented a natural way to investigating the
observability and detectability of nonlinear systems, based
on the indistingushability concept. This method is based on
the dynamical description of the indistingushable trajectories
of the system, the so called indistinguishable dynamics,
and its convergence properties. The method is applied to
the study of the detectability properties of a biological
reactor with inhibitory kinetics, that is frequently used in
e.g. the treatment of waste water. It could be shown that
there exist indistinguishable trajectories and according bad
input functions and thus the system is not observable. The
corresponding identities as well as the analytical solutions
for the error dynamics were derived. Further detectability
conditions have been deduced by classical stability analysis.
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