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Abstract

Optimal operation of fed-batch bioreactors is an important practical issue. Since control

actions are saturation-limited, the optimal control consists usually of both singular and bang-

bang arcs. However, its realization requires good model knowledge and also the measurement

of all state variables, requirements rarely satisfied in real applications. In this paper a method

is proposed, for a class of bioreactors, to robustly optimize the operation when few measured

variables are available and the model is uncertain. Such control law is justified and its properties

analyzed. The case of a bioreactor for treating toxicants in a Waste Water Treatment Plant

is thoroughly studied, and experimental results in a lab-scale bioreactor are presented. The

method can be applied also for other applications, as in biotechnology.
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1 Introduction

Activated sludge is an aerobic biological process in which waste water is mixed with a suspension of

microorganisms to assimilate pollutants and is then settled to separate the treated effluent. It has

been traditionally applied in continuous flow processes with fixed volume tanks. The treatment of

industrial waste waters by the activated sludge process is common, but the nature of many industrial

discharges often cause operational problems in continuous flow systems. Sequencing batch reactors

(SBR) offer a number of advantages over continuous flow systems. They offer, for example, greater

flexibility in control strategy, but to be effective they require fully automated computer controls.

In general the SBR process is distinguished by three major characteristics: periodic repetition

of a sequence of well defined process phases; planned duration of each process phase in accordance

with the treatment result to be met; progress of the various biological and physical reactions in time

rather than in space.

In the SBR system all treatment takes place in a single reactor with different phases separated in

time. The cycle in a typical SBR is divided into five discrete time periods: Fill, React, Settle, Draw,

and Idle. At the beginning of each cycle, the SBR contains a certain volume of water, and activated

sludge settled at the bottom of the reactor. The cycle starts with a fill phase of distinct duration.

The fill phase may be short or long depending on the effects which are desired to be achieved.

With the beginning of the fill phase, or some time later, the aerator is turned on. The reaction

(or aeration) phase which now begins should last until the biodegradable portion of the organic

waste water constituents has been degraded. Mixer and aerator are turned off for the settle phase.

The sludge is allowed to settle under entirely quiescent conditions. A clear water zone (supernatant)
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appears which can be progressively withdrawn as the sludge blanket moves downwards. When the

low operating level is reached the draw is stopped. Excess solids are withdrawn from the bottom

at the end of the draw phase. The reactor then enters the idle phase which continues until the

beginning of the next cycle.

Many other important industrial fermentation processes, as for the production of antibiotics

and enzymes, are carried out using bioreactors operated in fed-batch mode. Since it is reasonable

to improve their performance, optimal control theory has been used to determine the best control

policy [11, 8, 7]. Such strategy can be described as a feedback control law, and it is usually necessary

to know perfectly the model of the plant, and to measure the whole state to implement it. In many

applications these two conditions are very restrictive: a perfect model and parameter knowledge

is very often unrealistic, and in biotechnology and waste water treatment it is either impossible

or very expensive to measure all state variables. In order to cope with the first problem different

robust approaches have been proposed in the literature. Most often different adaptive algorithms

identify the parameters of the (otherwise assumed well known) mathematical model, and adapt

accordingly the control strategy [1, 14, 13]. Adaptive Extremum-Seeking strategies have been also

proposed [6, 12]. Although the methodology is most appropriate for continuous reactors, where an

optimal steady state operation is searched, under suitable conditions it can also operate correctly

for fed-batch processes [3].

In this work a different approach to deal with the lack of measurements and the uncertainty

in the model, while optimizing operation, of a class of bioreactors will be proposed. The main

idea is based on the following observations. Usually, the exact optimal control, when the realistic

assumption of limited input variables is done, can be decomposed in bang-bang and singular arcs.

When this solution can be implemented via feedback the information required for the bang-bang

part is very low, and its implementation is very robust to model uncertainties. More problematic is
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the determination and implementation of the singular arc. It requires basically a good knowledge

of the model and parameters of the plant, and it is usually very sensitive to uncertainties. Our

method proposes to replace the sensitive and smooth singular control by a bang-bang one that

maintains the system trajectory around the singular surface. The optimality loss can (theoretically)

be made as small as desired [4, 7]. The advantage of this replacement is that it is usually very robust

against uncertainties and, for its implantation, a reduced quantity of information is required [7]. The

robustness of this implementation is linked to the well-known properties of Sliding Mode Control

[5, 10]. The requirement of low quantity of information is related to the fact that it is only necessary

to determine the singular surface in the state space. This surface is usually associated to some events

on internal variables. If such events could be software-sensed using just the measurable variables,

then a practical solution is feasible. Moreover, if the switching or singular surfaces are robustly

related to these variables, the approach can be made robust against model changes or uncertainties.

In the following section the class of problems for which these ideas are developed will be in-

troduced. In Section 3 the previously outlined strategy will be carried out for these problems. In

Section 4 some experimental results will be presented.

2 Model description and problem formulation

The reactor can be described by the following set of ordinary differential equations:

Ẋ (t) =

(

µ(S (t)) −
Fin (t)

V (t)

)

X (t) ,

Ṡ (t) = −
1

YX/S
µ(S (t))X (t) +

Fin (t)

V (t)
(Sin (t) − S (t)) , (1)

V̇ (t) = Fin (t) ;
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where:

X : Biomass concentration in the reactor,
[

ML−3
]

S : Substrate concentration in the reactor,
[

ML−3
]

V : Volume of water in the tank,
[

L3
]

µ(S) : Specific growth rate,
[

T−1
]

Fin : Influent water flow to the reactor,
[

L3T−1
]

Sin : Substrate concentration in the input flow,
[

ML−3
]

YX/S : Biomass/Substrate yield coefficient.

Fin, the control variable, can only take values in a positive and closed interval Fin ∈ [0, Fmax],

Fmax > 0, and all three state variables (X,S, V ) have to be positive, i.e. X ≥ 0, S ≥ 0 and V ≥ 0.

Furthermore to make the description physically meaningful it will be assumed that after a maximum

level of water in the tank Vmax has been reached the input flow Fin is automatically turned off to

avoid overflow. For any system variable φ let us denote its value at instant t as φ (t, t0, z0, F ) for

input F , being z0 the state at t0 ≤ t. It will be also assumed that YX/S is constant and that µ(S)

is defined for S ≥ 0, µ(0) = 0, is positive (i.e. µ(S) > 0 for S > 0), bounded (i.e. µ(S) ≤ M for

every S > 0 and for some positive constant M), and is once continuously differentiable. Sin will be

considered not as a constant but as a variant quantity such that Sin (t) ≥ 0.

The objective of such a bioreactor in a Waste Water Treatment Plant (WWTP) is to bring the

concentration of the substrate in the tank S below a specified level Smin, while the volume is brought

from V0 to Vf , where 0 < V0 < Vf ≤ Vmax. Usually in practice the concentration of pollutants in the

water to be treated is not uniformly distributed, what is reflected in the fact that Sin (t) in model

(1) is not constant. For waste water treatment processes this is in fact one of the main disturbances.

We want to deal with the following physically meaningful situation: Consider that the waste water

to be treated is fed to the reactor, and that its pollutant concentration Sin is unknown and can
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change arbitrarily. It is of course of interest to optimize the efficiency of the process, defined as the

quantity of pollutant treated per unit of time. Since the process is cyclic one has to maximize the

efficiency per cycle ǫc, given by

ǫc =
C

Tc
,

i.e. the quantity of substrate degraded during the cycle C divided by Tc, the cycle time, where the

value of Tc depends on the input function Fin (t). Since under realistic situations the amount of

pollutant to be treated in the reactor C does not depend on the form it is fed, i.e. it is a constant

independent of Fin, the maximization of ǫc coincides with the minimization of the cycle time Tc

[7]. The cycle time Tc consists of a fixed period Tf , for decantation and emptying the tank, and

of the fill and reaction time Tr, which can be controlled. The cost functional to be minimized

is therefore the reaction time Tr, i. e. J [Fin] =
∫ Tr

0
dτ . Therefore the problem is to find an

time optimal control law for the input variable Fin. This is one that brings the system from a

given initial state z0 = [X0, S0, V0] to a final one zf = [Xf , Sf , Vf ], in a set of desired final states

Zf
.
= {zf | 0 ≤ Sf ≤ Smin , Vf}, in minimal time, using an admissible input function and along an

admissible trajectory.

According to the physical conditions of the system an input function is considered admissible if

0 ≤ Fin ≤ Fmax , (2)

and a trajectory is admissible if for every time t ≥ 0 it lies in the region

Ω
.
= {(X,S, V ) | 0 < Xmin ≤ X ≤ Xmax , 0 ≤ S ≤ Smax , 0 < Vmin ≤ V ≤ Vmax} , (3)

where Smax is a physically meaningful upper limit for S. Note that if X0 > 0 then X (t) > 0 for
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Figure 1: Inhibitory-type biomass specific growth rate. The dotted line depicts a measurable γ =
(aµ + b) c.

every input of the system (1). The restrictions for the volume V come from the fact that the tank

cannot be completely emptied and that it has finite physical dimensions.

Depending on the nature of the pollutants the specific growth rate µ (S) may adopt one of two

typical forms. When the substrate does not inhibit the activity of the biomass, µ (S) is monotonic,

i.e. it is characterized by the fact that dµ
dS > 0 for every S ≥ 0. A typical expression is the Monod

law given by

µ (S) =
µ0S

Ks + S
, (4)

where Ks [ML−3] is the Monod constant and µ0 [T−1] the maximum specific growth rate. For the

treatment of toxic substances, encountered for example in industrial waste waters, even for relatively

low substrate concentrations the activity of the biomass may be inhibited [9]. µ (S) is in this case

non-monotonic (see Figure 1), i.e. it is monotonically increasing ( dµ
dS > 0) up to the point S∗,

where µ (S) reaches its maximum value µ∗, and for S > S∗ the function is monotonically decreasing

( dµ
dS < 0). The prototype of this class is the Haldane law, which is described by the equation
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µ (S) =
µ0S

Ks + S + S2

KI

, (5)

where Ks [ML−3] is the Affinity constant, KI [ML−3] is the Inhibition constant and µ0 [T−1]

is the specific growth rate coefficient. The maximum value of the specific growth rate µ∗ for the

substrate concentration S∗ is characteristic for the inhibitory-type laws (see Figure 1). Because of

the complexity of the biochemical reactions involved, the functional description of the specific growth

rate is usually not well known, and the functions (4) or (5) represent only approximations. For both

kinds of specific growth rates the time optimal control strategy was found in [7]. However, the

implementation of such a control law requires, in principle, the measurement of the state variables

and a good knowledge of the model.

One of the main limitations in biotechnological processes, and particularly in WWTPs, is the

availability of on-line measurements. In general, it is difficult and expensive to measure biomass and

substrate concentrations, but it is easy to measure volume, gaseous products and dissolved oxygen

concentrations. For the aerobic WWTP described by (1) it will be assumed that only the volume

level V , and the Dissolved Oxygen Concentration O are measured, whose dynamics is given by

Ȯ (t) = −

(

1

YX/O
µ (S (t)) + b

)

X (t) + kLa (Os − O (t)) +
Fin (t)

V (t)
(Oin − O (t)) , (6)
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where:

O : Dissolved Oxygen (DO) concentration,
[

ML−3
]

YX/O : Biomass/Oxygen yield coefficient,

b : Specific endogenous respiration rate,
[

T−1
]

Oin : DO concentration in the input flow,
[

ML−3
]

Os : DO‘s saturation value,
[

ML−3
]

kLa : Oxygen mass transportation coefficient,
[

T−1
]

.

O has to be positive, i.e. O ≥ 0. It will be also assumed that YX/O, b, Oin, Os, and kLa are

known constants. Note that the DO is affected by the system dynamics (1), but that this system is

not influenced by the variations in the Oxygen concentration O. This approximation is valid when

the DO is not a limiting reactant in the degradation reaction. For this process this condition has

to be satisfied, since the behavior of the reactor undergoes a big change when anoxic or anaerobic

conditions prevail in the reactor. This condition can be assured by a properly operating aeration

system, that maintains the DO concentration above a minimal value, typically set to Omin = 2

mg/l. This one-sided coupling of the DO dynamics means that the DO is only used for measurement

purposes, and leads to the independence of the time optimal control problem from the dynamics of

O, i.e. it depends only on the state variables of (1).

The objective of this work is then to design a suboptimal time optimal control law that uses

the measurable variables (V,O) and that is robust against uncertain specific growth rate model and

uncertain parameters.

For monotone specific growth rates as (4) the time optimal control [7] is very simple: fill with

Fin = Fmax until the the reactor is full, i.e. V = Vf , and then switch to Fin = 0 until the degradation

is completed, i.e. S = Smin. In this case the implementation of the optimal control strategy requires

neither measurements of state variables nor knowledge of system parameters, except that the specific
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growth rate is monotone, and a mean to detect the end of the reaction phase is provided. For this

reason, and to simplify the presentation, only the case of non-monotone specific growth rates as (5)

will be considered. Note that for the plant (1), when the control variable attains its minimum value

Fin = 0, then the substrate concentration decreases, since Ṡ < 0. When the control variable attains

its maximum value Fin = Fmax, however, it is not always true that Ṡ > 0. It will be assumed that

Assumption 1 For a given a constant value Ŝ > 0, when the maximum input flow is applied,

Fin (t) = Fmax, the substrate concentration in the reactor increases, i.e.

dS

dt

∣

∣

∣

∣

Fin=Fmax

= −
1

YX/S
µ(S (t))X (t) +

Fmax

V (t)
(Sin (t) − S (t)) > ε , (7)

for every S (t) ≤ Ŝ, and every V and X in the region Ω, and for some ε > 0.

Note that if in Assumption 1 Ŝ ≤ S∗, then no inhibitory effect of the substrate appears caused

by the filling, and the behavior of the reactor corresponds to one with monotonic specific growth

rate. In the next section only the case Ŝ ≥ S∗ will be analysed. From (7) it follows that Sin > Ŝ

has to be satisfied, and that Ŝ will be reached in finite time, except when V = Vf is reached before.

Since the first term in (7) is negative, i.e. it is the substrate degradation rate, the injection rate of

substrate, i.e. the second term in (7), has to be strong enough to compensate the first one.

3 Control Strategy

In this section the design of a control law that satisfies the imposed requirements will be explained

in three steps. First the exact time optimal control (TOC) will be presented. It can be only

implemented if the model is perfectly known and all state variables are available for measurement.

In a second step two control strategies are described, to approximate the time optimal solution

arbitrarily well. They are robust against model uncertainties of the plant, and only require the
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measurement of the substrate concentration S, in the first case, or a monotonic function of the the

specific growth rate f (µ), in the second one. Since these controllers are based on the detection of

some Events in the process, they will be named Event-Driven TOC (ED-TOC).

However, since neither S nor a function f (µ) are available for measurement, these control strate-

gies cannot be directly realized. Nevertheless using the variables measured on-line, i.e. volume V

and DO concentration O, its time derivative Ȯ, the control variable Fin and the knowledge of the

parameters kLa, Os and Oin, that can be easily estimated off or on-line, the signal

η (t) = kLaV (t) (Os − O (t)) + Fin (t) (Oin − O (t)) − V (t) Ȯ (t) (8)

can be calculated. From (6) it is easy to see that this signal corresponds to an output function of

the system (1) given by

η = h (X,S, V ) ,

(

1

YX/O
µ (S) + b

)

B , (9)

where B (t) = V (t)X (t) is the total biomass in the reactor. If B would be a constant, then

h (X,S, V ) would serve as the function f (µ) introduced before, and an approximate and robust

ED-TOC could be implemented based on the measurement of η (t). Although for bioreactors in the

WWTP the total biomass B changes very little during a degradation cycle, and the conditions for

the ED-TOC are practically satisfied, it is also true that B changes in time. For this reason in a

third step the realization of the ED-TOC control law that uses the available measurement η (t), and

its suboptimal operation and robustness are studied.

Because of the dynamics of the DO in the process, it is possible to filter the noisy signal O and

its derivative can be well approximated using differentiation algorithms for its use in (8). Finally,

note that it is not necessary to know the values of YX/O, b and B in (9) to estimate η (t) from (8).
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3.1 Exact Time Optimal Control (TOC) law

The following result from [7] gives the feedback law that solves the time optimal control problem

for a generic class of Inhibitory-type specific growth rates, when the whole state is available.

Theorem 2 [7] Let µ (S) be positive (i.e. µ(S) > 0 for S > 0), µ(0) = 0, bounded (i.e. µ(S) ≤ M

for every S > 0 and for some positive constant M) and once continuously differentiable. Further-

more, let µ (S) be a Inhibitory-type function, i.e. it is monotonically increasing ( dµ
dS > 0) up to the

point S∗, where the maximum value µ∗ is reached, and for S > S∗ the function is monotonically

decreasing ( dµ
dS < 0). If Assumption 1 is satisfied with Ŝ > S∗ for V0 ≤ V ≤ Vf , Sin > S∗ and

Fsin ≤ Fmax, then the time optimal control problem for the system (1) will be uniquely solved by the

feedback control law:

Fopt =































0 if V ≥ Vf or S > S∗

Fsin if S = S∗

Fmax if S < S∗

(10)

where Fsin is the control function that achieves that S = S∗, i.e.

Fsin (t) =
µ∗V (t)X (t)

YX/S (Sin (t) − S∗)
. (11)

When V ≥ Vf and S ≤ Smin the reaction phase is finished.

This control law has (generically) three arcs: a first bang arc to bring the substrate concentration

S to S∗, then a singular arc to maintain this substrate concentration until the reactor is full, and a

third bang arc to degrade the rest of the substrate. The reaction phase finishes when V = Vf and

S ≤ Smin, where Smin is some (small) rest substrate value. The information required to implement

the bang arcs is low: it is only necessary to know the value of S∗, and if S > S∗ or if S < S∗.
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However, the implementation of the singular arc requires much more knowledge on the model and

measuring the internal variables: the (exact) values of YX/S , S∗, µ∗, the measurement of the state

variables S, V , X, and the measurement of the substrate concentration in the input flow Sin (t).

This is rarely satisfied in practice.

Let the function T (F, z0) represent the time necessary to bring the initial state z0 to the target

set Zf = {(X,S, V ) | S ≤ Smin ∧ V ≥ Vf} using F as input (the other model parameters are fixed).

Topt (z0) = T (Fopt, z0) corresponds to the optimal path, i.e. Topt (z0) ≤ T (F, z0) for every admissible

F . Note that in the state space Ω the surfaces defined by S = S∗ and V = Vf are, respectively, a

singular and a switching surface.

3.2 Approximated optimal control law

Theorem 20.2 in [4] states that any trajectory of a nonlinear system can be arbitrarily well approxi-

mated by another one generated using a bang-bang control law. So, it is possible to approximate the

time optimal trajectory generated by the control law (10) with a bang-bang one. That corresponds

in this case to the approximation of the trajectory along the singular arc with a bang-bang one [7].

Since the performance criterion does not depend on the input function, and it is continuous with

respect to the trajectories, then the optimal index is arbitrarily nearly reached by the approximated

trajectory. For the problem at hand this has also been directly demonstrated by [7].

Approximate control laws can be generated in different forms. They differ basically in the infor-

mation required to implement them. Some examples will be discussed in the following paragraphs.
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3.2.1 Suboptimal control law using S

If S is measurable and S∗ is known, selecting values 0 < Sl < S∗ < Sh (see Figure 1) allow

implementing the following bang-bang control law [7]

Fapp =















0 if V ≥ Vmax or S ≥ Sh

Fmax if S ≤ Sl

. (12)

When S ≤ Smin and V ≥ Vf the reaction phase is finished and the next phase (settling) may be

started.

Note that if Assumption 1 is satisfied with Ŝ > Sh, then when Fin = Fmax the substrate

concentration S grows until S = Sh. There the control is switched to Fin = 0, so that, since

dS

dt
= −

1

YX/S
µ(S)X < 0 , ∀z ∈ Ω� {S = 0} , (13)

S decreases until S = Sl, when the control is again switched to Fin = Fmax. Therefore, whatever the

initial condition the system trajectory tends to the set Sl ≤ S ≤ Sh, stays there until the reactor

gets full, and then reaches the final set Zf , finishing the reaction phase. It is important to note

that the trajectory is confined to the set Sl ≤ S ≤ Sh, independently of and without knowledge of

the parameters and/or the exact form of the growth rate and of the value of the input substrate

concentration Sin. Making Sh − Sl sufficiently small the optimal trajectory can be approximated

arbitrarily well.

Theorem 3 [7] Suppose that system 1 is given, that Assumption 1 is satisfied with Ŝ > Sh, that

S is measured and that S∗ is known. Then replacing the optimal control law Fopt of (10) by the

approximate control law Fapp of (12) the time to reach the target, from any initial condition z0 ∈ Ω,
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is

T (Fapp, Sl, Sh, z0) = Topt (z0) + ∆ (Sl, Sh) ,

with ∆(Sl, Sh) continuous and finite and ∆ → 0 as Sh, Sl → S∗. This means that the target will

be reached in finite time, and the time along the approximate trajectory can be made as near to the

optimal one as desired. This is true for any form of the growth rate (positive if S positive), for

unknown Sin and for any positive value of the parameter YX/S.

Proof. This is Theorem 16 in [7]. A sketch is given here for completeness, but for details see [7].

It is easy to see that the time spent by the portions of the optimal and of the approximate trajectories

when S is outside the set Sl ≤ S ≤ Sh is the same, and so ∆ (Sl, Sh) corresponds to the increased

time the approximate trajectory spends in Sl ≤ S ≤ Sh. Define µ̄ = min (µ (Sl) , µ (Sh)) ≤ µ∗ as the

minimal value the specific growth rate can have while the trajectory is in the interval Sl ≤ S ≤ Sh.

Since µ̄ > 0 it is easy to see, from the dynamics of (1), that the trajectory has to leave this set in

finite time. This time depends on Sh, Sl and as (Sh − Sl) → 0 it coincides with the optimal one, i.e.

T (Fapp, Sl, Sh, z0) → Topt (z0), and therefore ∆ (Sl, Sh) → 0.

An explicit expression for ∆ (Sl, Sh) is complicated and will not be given here (see [7] for more

details). However, a rough calculation is the following: the time the optimal control spends in the

set Sl ≤ S ≤ Sh is approximately proportional to 1/µ∗, whereas the one spent by the suboptimal

one is almost proportional to 1/µ̄, with µ̄ = min (µ (Sl) , µ (Sh)). Therefore ∆ (Sl, Sh) is roughly

proportional to (1/µ̄ − 1/µ∗). Note that the suboptimal control law is robust against model and

parameter uncertainties and/or changes. Moreover, it requires little information from the system:

only S needs to be measured and S∗ and the instant when V = Vf need to be known.
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Figure 2: Event Driven Time Optimal Control scheme

Tag Trigger Estimation Meaning

e1.0 dγ/dt ≤ 0 S < S∗ Not inhibited
e2.1 γ ≤ Pγ∗

k S = Sh Must wait
e1.2 γ ≤ Pγ∗

k S = Sl Must fill
e3 V ≥ Vf (measured) Tank full
e4 γ < γend S < Smin End of reaction

Table 1: ESS events for fed-batch processes

3.2.2 Robust Suboptimal control law using f (µ) (ED-TOC)

Since S is not available, the previous control cannot be implemented. In this section it will be shown

that, when instead of S a strictly monotonic increasing and continuous but unknown function of

µ is available, i.e. γ = f (µ), as for example f (µ) = (aµ + b) c, for a, b, c unknown constants,

a, c > 0, it is possible to derive a control law that approximates arbitrarily well the optimal one.

The motivation for this is that h (X,S, V ) in (9), that can be calculated using measured signals

through (8), is such a function, when the total biomass B is assumed constant. This is a good

approximation for WWTPs. The approximate optimal control law (12) can be realized using the

signal γ, as illustrated in Figure 2. First an Events Software Sensor (ESS) extracts from signal γ

the occurrence of some events, that change the state of the Event Driven Time Optimal Controller

(ED-TOC), a finite state machine that provides the control actions for the influent pump. Table 1

shows the events estimated by the ESS, and the finite state ED-TOC is depicted in Figure 3.
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Figure 3: Finite State Transitions for ED-TOC

To understand the ESS consider the maximum γ∗ = maxS≥0 f (µ (S)) = f (µ∗), and that a value

0 < P < 1 of the near-optimality control parameter, has been selected. In what follows it will be

assumed that γ∗ is constant. The limits of the interval Sl ≤ S ≤ Sh, where the trajectory has to be

maintained by the controller, are defined by the equations f (µ (Sl)) = f (µ (Sh)) = Pγ∗. Making P

close to one renders Sl, Sh close to S∗. Figure 1 shows the relation between Sl, Sh, γ∗ and P for the

case γ = f (µ) = (aµ + b) c. If Assumption 1 is satisfied with Ŝ > Sh, and because the monotone

increasing (decreasing) behavior of S (t) when it goes from Sl to Sh (from Sh to Sl, respectively),

it is clear that γ (t) increases from γl = f (µ (Sl)) (γh = f (µ (Sh))) until maximum γ∗ and then

decreases until γh (γl respectively) (see Figure 1).

The initial state of the ED-TOC at k = 0 for t = t0 = 0 is always σ0 (see Fig. 3), for which

Fin = 0. If the plant initial state S (0) is such that S (0) > S∗ then S (t) decreases and γ̇ (t) > 0 until

S∗ is reached. After that γ̇ (t) < 0, indicating that S < S∗ and the ESS produces the event e1.0 (see

Table 1) and the ED-TOC switches to the state σ1 (see Fig. 3), where Fin = Fmax. If S (0) < S∗

then this transition occurs immediately. In this state γ (t) increases until γ∗ and then decreases.

When S (t) reaches Sh, γ (t) = Pγ∗ and the event e2.1 is produced by the ESS (see Table 1) and

the ED-TOC switches to the state σ2 (see Fig. 3), where Fin = 0. Note that the detection of e2.1

17



requires the knowledge of γ∗. To avoid this, i.e. if γ∗ is unknown, the ESS estimates a maximum of

f (µ) in real time, as γ∗
κ (t) = maxτ∈(tk,t) f (µ (S (τ))) for τ ∈ (tk, t), were tk is the instant when the

last k-th state change in the ED-TOC took place. Being in σ2 the S (t) decreases and γ (t) increases

until γ∗ and then decreases. When S (t) reaches Sl, γ (t) = Pγ∗ and the event e1.2 is produced by

the ESS (see Table 1) and the ED-TOC switches to the state σ1 (see Fig. 3). A cycling between σ1

and σ2 will happen until the tank is filled, where the event e3 will take place and the state σ3 will

be reached. The reaction finishes when event e4 is produced and the state σ4 is reached. After this

the rest of the batch sequence (settling, draw. . . ) may be completed and afterwards a whole new

cycle may be started. It should be noted that the ED-TOC does not require the knowledge of the

exact shape of µ or f (µ), or the values of γ∗, Sl or Sh to operate correctly. For this control strategy

a result similar to Theorem 3 applies.

Theorem 4 Suppose that system (1) is given, that a continuous and strictly monotone increasing

function f (µ) of µ is available, and Assumption 1 is satisfied with Ŝ > Sh. Assume, furthermore,

that γ∗ is constant for each batch cycle, but unknown. Then replacing the optimal control law (10)

by the ED-TOC law the time to reach the target from any initial condition z0 ∈ Ω is

TEDTOC (P, z0) = Topt (z0) + ∆ (P ) + δ (14)

with ∆(P ) continuous and finite and ∆ → 0 as P → 1, i.e. the target will be reached in finite time,

as near to the optimal one as desired, up to a small value δ ≥ 0, depending on the test state σ0. This

is true for any form of the growth rate (positive if S positive), of the function f (µ), for unknown

Sin and for any value of the parameter YX/S.

Proof. Since the ED-TOC is simply a realization of the same control law of the previous Theorem

3 using γ (t) instead of S (t), the main part of the proof is identical to the proof of the previous
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Theorem. The value δ ≥ 0 is introduced by the initial test (Figure 3) when S (0) < S∗, since in this

case during the the time it takes the ESS to determine the first event the wrong input Fin = 0 will

be applied. Although theoretically δ = 0, in practice a positive value is preferred to let the signals

stabilize. The robustness derives from the fact that the ESS can estimate correctly the events even

if low information on the plant is known.

Note that the approximate control law is robust against model and parameter uncertainties and

changes. Moreover, it requires low information from the system: only γ = f (µ) and the instant

when V = Vf have to be known, and the finishing value γmin given. It is important to note that

the trajectory converges to the set Sl ≤ S ≤ Sh independently of and without knowledge of the

parameters, the exact form of the growth rate, of f (µ) and of the value of Sin.

3.3 Robust general near-optimal control law

In the previous paragraph the ED-TOC, a time suboptimal control law, was introduced. If estima-

tions in Table 1 are exact, the reaction time of the ED-TOC can be made as near to time optimality

as desired by selecting appropriately the parameter P . However, this property depends strongly on

the availability of an exact value for γ. If there is some measurement noise or perturbation, if the pa-

rameters vary in time or as function of some other state variables, then Theorem 4 is no longer valid

as estimations in Table 1 might have errors. In this Section it will be shown that, under reasonable

circumstances, the estimation errors are tolerably low and so the approximated control still behaves

correctly and robustly. The tradeoff is that optimality cannot be arbitrarily well approximated.

In particular, the case will be considered when the practically possible measurement η (t), given

by (9) for the system (1), is used in the ED-TOC instead of γ (t) in Figure 2 and Table 1. Note

that h (X,S, V ) is not in the form required by Theorem 4 when B is not supposed to be constant.

However, the available signal η (t) = h (X (t) , S (t) , V (t)) can be written in the form η = γB, where
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γ = f (µ) is a signal that satisfies the conditions of Theorem 4 to realize the ED-TOC. Since the

total biomass B = XV satisfies Ḃ = µB, it follows that B (t) = B (t0) exp
(

∫ t

t0
µ (S (τ)) dτ

)

, i.e.

it is a monotone increasing function of time. Recall that the operation of the ED-TOC based on

γ (t) uses the fact that after γ (t) reaches its maximum value γ∗ it decreases until the value Pγ∗,

when the control is switched. When η (t) = γ (t)B (t) is used in the ED-TOC the droop of γ (t)

after reaching γ∗ will not be followed by η (t) because of the increase of B (t), and the ED-TOC will

not be able to correctly take a control decision using η (t) instead of γ (t). However, if this masking

effect is only temporary, and η (t) does reach a maximum ηmax and then decreases until the value

Pηmax, then it is possible to use η (t) in the ED-TOC. The next Theorem gives sufficient conditions

for this to happen.

To state the Theorem consider an ”underlying” ED-TOC based on γ operating with a value

0 < P̄ < 1, so that the conditions of Theorem 4 are satisfied. If γ∗ = maxS≥0 f (µ (S)) = f (µ∗)

the equations f (µ (Sl)) = f (µ (Sh)) = P̄ γ∗ define the limits of the interval Sl ≤ S ≤ Sh. Define as

Th the maximum possible time to reach Sh initiating at S∗ when Fin = Fmax. Similarly, assign Tl

to the maximum possible time to reach Sl from S∗ when Fin = 0, and denote Tmax = max (Th, Tl).

The basic idea of the following result is that if the biomass growth during Tmax is small enough, then

η (t) will fall down, following γ (t), and can be used instead of γ (t) in the ED-TOC (see Figure 2).

If the parameter P in the ED-TOC (see Table 1) is selected as P = P̄ exp (µ∗Tmax) < 1, bigger than

P̄ , then the behavior of the ED-TOC based on η is basically the same as that of the ”underlying”

ED-TOC based on γ with parameter P̄ . Let ϕ′ represents the derivative of ϕ with respect to its

argument.

Theorem 5 Suppose that system (1) is given, with continuously differentiable µ, and that η =

f (µ)B is available for measurement, with B the total biomass and f (µ) a continuously differen-

tiable and strictly monotone increasing function of µ. Assume, furthermore, that γ∗ = max f (µ) is
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unknown, but constant, for each batch cycle. Suppose that µ′ > 0 and that f − f ′µ′X0 < 0 when

evaluated at S = 0, with X0 the initial biomass concentration in the reactor. Suppose a 0 < P̄ < 1

is selected, so that the conditions of Theorem 4 are satisfied, that the corresponding Tmax is finite,

that P̄ < exp (−µ∗Tmax) and that Assumption 1 is satisfied with Ŝ > Sh. Under these conditions if,

in Table 1, γ is replaced by η, and the parameter P is set to P = P̄ exp (µ∗Tmax), then the ED-TOC

law operates correctly and the time to reach the target from any initial condition z0 is

TROB (P, z0) ≤ TEDTOC

(

P̄ , z0

)

+ Ξ , (15)

for some Ξ ≥ 0.

Proof. Suppose that the ED-TOC is in σ0, and therefore Fin = 0. γinf = f (µ (0)) is a lower

bound for γ (t). Along a trajectory of the plant

η̇ = (γ̇ + µf (µ))B =

(

−
f ′µ′B

V0YX/S
+ f (µ)

)

µB . (16)

From (1) it is found that, when Fin = 0, then d
(

B + YX/SV S
)

/dt = 0, and therefore B at any time

can be expressed as a function of S, B (t) = B0 + YX/SV0 (S0 − S (t)). Given the initial conditions

η̇ in (16) is a function of S, and η̇ (S = 0) = 0, since µ (0) = 0. Differentiating (16) with respect to

S and evaluating at S = 0 gives dη̇ (0) /dS = µ′B
(

f − f ′µ′B
V0YX/S

)∣

∣

∣

S=0
. By hypothesis this quantity

is negative, so that in a neighborhood of S = 0 the derivative η̇ becomes negative. Since for every

value S ≥ S∗ the time derivative η̇ > 0 ( because Ṡ < 0) is positive, it follows that η̇ will become

negative for some value S < S∗. And so for every initial condition of the reactor the ED-TOC will

wait until η̇ ≤ 0, at some S < S∗, to go to the state σ1, and this will occur in finite time.

Now assume that the ED-TOC is in state σ1, and S < S∗. Since Fin = Fmax the substrate S

will increase, and it will take the values S (t∗) = S∗ and S (t∗ + th) = Sh, for some positive t∗, th.
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Correspondingly, γ (t) will grow until γ (t∗) = γ∗ and then decrease until γ (t∗ + th) = P̄ γ∗. The

behavior of η (t) is such that it will increase until η (t∗) = γ∗B (t∗) and then it will reach η (t∗ + th) =

P̄ γ∗B (t∗ + th). However, it is not clear that η (t∗ + th) < η (t∗), since B (t) is increasing. But since

its increment is bounded by B (t) ≤ B (t∗) exp (µ∗ (t − t∗)), it follows that

η (t∗ + th) ≤ P̄ γ∗B (t∗) exp (µ∗th) = P̄ exp (µ∗th) η (t∗) .

If P̄ exp (µ∗th) < 1 then η (t∗ + th) < η (t∗) and the maximum of η (t) will be reached in the interval

t ∈ [t∗, t∗ + th]. If the parameter P of the ED-TOC is such that 1 > P ≥ P̄ exp (µ∗th), then the

control will switch before Sh has been reached.

When the ED-TOC is in state σ2, and S > S∗, Fin = 0 and the substrate S will decrease

reaching S (t∗) = S∗ and S (t∗ + tl) = Sl, for some t∗, tl > 0. Correspondingly, γ (t) will grow until

γ (t∗) = γ∗ and then decrease until γ (t∗ + tl) = P̄ γ∗. The same previous analysis shows that if

P̄ exp (µ∗tl) < 1 then η (t∗ + tl) < η (t∗) and the maximum of η (t) will be reached in the interval

t ∈ [t∗, t∗ + tl]. If the parameter P of the ED-TOC is such that 1 > P ≥ P̄ exp (µ∗tl), then the

control will switch before Sl has been reached. Note that the previous analysis shows that when the

ED-TOC is in σ0, and the initial condition is S0 ≥ S∗, the ED-TOC will go to state σ1 before Sl

has been reached.

The values th and tl depend on the particular trajectories. If there exist Th = sup {th}, and Tl =

sup {tl}, i.e. upper bounds for all possible transit times, then if P̄ exp (µ∗Tl) < 1 and P̄ exp (µ∗Th) <

1 it is possible to select 1 > P ≥ P̄ exp (µ∗Tmax), where Tmax = max {Tl, Th}, so that the ED-TOC

will cycle between σ1 and σ2, and the substrate will be confined in the region Sl ≤ S ≤ Sh. When the

tank is full the ED-TOC will go to state σ3, where η (t) will finally decrease until the end condition

η ≤ ηend has been reached and the ED-TOC switches to state σ4.

The inequality (15) is the result of two facts. First that the proposed control law assures that
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Sl ≤ S ≤ Sh, and therefore TEDTOC

(

P̄ , z0

)

is an upper bound for the reaction time. Second, the

term Ξ is introduced by the extra delay in the test and the end phases of the ED-TOC.

It follows from (15) that, except for the term Ξ, that can be small, the reaction time for the

ED-TOC based on η is smaller than that of the ED-TOC based on γ. To complete the previous

Theorem, in the next Lemma explicit bounds for Tmax will be given, in terms of some parameters

of the plant. Note that Tmax depends on the selected value of P̄ .

Lemma 6 Define the parameters

β ,
FmaxYX/S

BMµ∗
(Sinf − Sh) , ̺ ,

YX/S

XM
(Sh − S∗) , (17)

where Sinf is the minimum value of Sin (t), during the relevant time interval, XM is the maximum

biomass concentration in the reactor, and BM = XMVf . If ̺ > 0 the equation

1 − exp (µ∗Th) + βµ∗Th = ̺ (18)

has non negative solutions Th if and only if the inequalities

β > 1 , 0 < ̺ ≤ 1 + β (lnβ − 1) (19)

are fulfilled. Moreover, there is exactly one solution in the interval 0 ≤ µ∗Th ≤ lnβ. Let Tl be given

by the expression

Tl =
(S∗ − Sl)VfYX/S

µ (Sl)B0
, (20)

where B0 is the initial total biomass in the reactor. Then Tmax = max (Th, Tl) is finite.

Proof. Consider first that Fin = 0, S = S∗, and that the biomass concentration is X. Since
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S decreases it will be in the interval S ∈ [Sl, S
∗], where the minimal degrading rate is µl = µ (Sl).

And so S has to reach Sl in a maximal time given by tl =
(S∗−Sl)YX/S

µlX
. An upper bound Tl for tl is

therefore given by (20). Consider now that Fin = Fmax, S = S∗, that the biomass concentration is X̄,

and that the volume is V̄ . From (1) it follows that d (V S) /dt = − µB
YX/S

+FmaxSin, V (t) = V̄ +Fmaxt,

and Ḃ = µB. A lower bound for the growth of V S is obtained taking in the previous equations the

maximum value of µ = µ∗, and the minimum value of Sin = Sinf . An upper bound for B is B (t) =

B̄ exp (µ∗t), with B̄ = V̄ X̄, and a lower bound Z for S is found solving the differential equation

d (V Z) /dt = −µ∗B̄ exp(µ∗t)
YX/S

+ FmaxSinf . Integrating for t ∈ [0, th], and considering that Z (th) = Sh,

Z (0) = S∗ it is obtained
(

V̄ + Fmaxth
)

Sh = S∗V̄ +B̄ (1 − exp (µ∗th)) /YX/S+FmaxSinfth. Therefore

an upper bound Th for th can be found solving the equation (18). Set T , µ∗Th, and the left hand

side of (18) as the function g (T ) , 1− exp (T ) + βT . Note that g (0) = 0, limT→∞ g (T ) = −∞ and

g′ (T ) = − exp (T )+β is a monotone decreasing function. If β ≤ 1, g (T ) ≤ 0 for all T ≥ 0. If β > 1,

g (T ) grows monotonically in the interval T ∈ [0, ln β], reaches a maximum g (lnβ) = 1 − β + β lnβ

at T = lnβ and decreases monotonically for T > lnβ. If ̺ = 0, T = 0 is a solution of (18) for every

β. For ̺ > 0 it is then necessary and sufficient that inequalities (19) are satisfied for the existence

of a positive solution for T . In this case two solutions exist, and the smaller one satisfies T ≤ lnβ.

Note that the first condition in (19) assures that S can reach Sh.

The calculation of feasible values of P̄ in Theorem 5 can be made recursively: set P̄ and calculate

Tmax using Lemma 6, and then check if the expression P̄ < exp (−µ∗Tmax) is satisfied. Alternatively,

the last expression is an implicit inequality for P̄ , since Tmax is a function of P̄ . In general no much

can be said about its solution set. There are several possibilities, as for example that there is no P̄

or that only values of P̄ much smaller than 1 satisfy the inequality. In the first case the ED-TOC

based on η cannot be assured to operate, and in the second one its reaction time can be very far

away from the time optimality. In fact it can be shown that time optimality cannot be arbitrarily
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set by any ED-TOC based on η.

Lemma 7 Suppose that conditions (19) in Lemma 6 are satisfied for some P̄ ∗ ∈ [0, 1]. Then it

follows that P̄ exp
(

µ∗Tmax

(

P̄
))

> 1 in some interval P̄ ∈
(

P̄max, 1
)

.

Proof. Consider the function r
(

P̄
)

, P̄ exp
(

µ∗Tmax

(

P̄
))

. The function is continuous for

P̄ ∈ [0, 1], since Sl

(

P̄
)

and Sh

(

P̄
)

are continuous, and so are Tl

(

P̄
)

and Th

(

P̄
)

as solutions

of (20) and (18), respectively. Moreover, r (1) = 1 since Tmax (1) = 0. It will be shown that

r
(

P̄
)

> 1 in some interval P̄ ∈
(

P̄max, 1
)

. This will be done by taking the derivative of r
(

P̄
)

and

showing that it is negative for values of P̄ to the left of 1, where it is defined. Where it exists

r′
(

P̄
)

=
(

1 + µ∗P̄ T ′
max

(

P̄
))

exp
(

µ∗Tmax

(

P̄
))

. T ′
max

(

P̄
)

is either T ′
h

(

P̄
)

or T ′
l

(

P̄
)

, where it is

defined. From (20), (18), (17) and f (µ (Sl)) = f (µ (Sh)) = P̄ γ∗ one obtains

T ′
l

(

P̄
)

= −
VfYX/S

B0

[µ (Sl) + (S∗ − Sl)µ′ (Sl)]

µ2 (Sl)
S′

l

(

P̄
)

,

̺′
(

P̄
)

=
YX/S

XM
S′

h

(

P̄
)

, β′
(

P̄
)

= −
FmaxYX/S

BMµ∗
S′

h

(

P̄
)

,

T ′
h

(

P̄
)

=

YX/S

XM
+ Th

(

P̄
) FmaxYX/S

BM

µ∗
[

β
(

P̄
)

− exp
(

µ∗Th

(

P̄
))]S′

h

(

P̄
)

,

S′
l

(

P̄
)

=
µ∗

f ′ (µ (Sl))µ′
(

Sl

(

P̄
)) , S′

h

(

P̄
)

=
µ∗

f ′ (µ (Sh))µ′
(

Sh

(

P̄
)) ,

where this derivatives are defined. Since from (19) β > 1, β
(

P̄
)

− exp
(

µ∗Th

(

P̄
))

> 0 for P̄ near

to 1. It is clear that these derivatives are not defined for P̄ = 1. But since S′
l

(

P̄
)

> 0 for P̄ ∈ [0, 1)

and limP̄→1− S′
l

(

P̄
)

= ∞, and S′
h

(

P̄
)

< 0 for P̄ ∈ [0, 1) and limP̄→1− S′
h

(

P̄
)

= −∞, it follows that

T ′
l

(

P̄
)

< 0 and T ′
h

(

P̄
)

< 0 for P̄ ∈ [0, 1) and limP̄→1− T ′
h

(

P̄
)

= limP̄→1− T ′
l

(

P̄
)

= −∞. Since

r
(

P̄
)

is continuous this implies that r
(

P̄
)

> 1 in some interval P̄ ∈
(

P̄max, 1
)

.

The interpretation of this Lemma is that for every ED-TOC based on η there is a pay-off: the

reaction time cannot be better than that one obtained using γ with P̄ = P̄max.
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However, there is a condition, satisfied in practical applications (see the Experimental results in

the next Section), for which the full performance of the ED-TOC based on γ is nearly recovered

when η is used. This is the case since P̄max ≈ 1, and so there is no important loss of time optimality.

Corollary 8 Consider that the conditions of Theorem 5 and Lemma 6 are satisfied. Then P̄max is

near to 1 if Fmax or Sinf and B0/Vf are large enough.

Proof. Set a desired value of P̄max. This fixes the values of Sl and Sh. From P̄max exp
(

µ∗Tmax

(

P̄max

))

=

1 an upper bound for Tmax

(

P̄max

)

is obtained. The solution Th of (18) can be upper bounded by

̺/ (µ∗ (β − k)) for some k > 0. From this last expression and equation (20) the conclusion follows

easily.

If the conditions of Corollary 8 are robustly satisfied, i.e. for the whole family of plant models,

then the ED-TOC based on η is similar to the ED-TOC based on γ and the results of Theorem 4 are

recovered, i.e. the ED-TOC based on η is robust and can be brought very near to time optimality.

Note that the previous Lemmata and the Corollary can be used to design the parameters of the

process, so that the control strategy operates correctly.

Remark 9 In the next section experimental results for a WWTP ([2]) are presented. The successful

operation of the ED-TOC can be interpreted using the analysis in this section, and in particular in

the Corollary 8. Alternatively, they can be also understood using the results in Section 3.2.2 since

the change in B during one cycle is so small that it can be practically considered as constant. This

is the case, since the amount of toxic that can be treated is small compared to B0. Although the

analysis in this paper has been limited to an application in WWTP, the results can be applied to

some biotechnological processes. In this case the change in B is usually large. Even for such a case

simulation results show the effectiveness of the ED-TOC [3].

Remark 10 No noise analysis has been carried out but it can be done in a similar fashion as the
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proof of Theorem 5.

Remark 11 In practice, derivatives for Equation (6) and Table 1 are not available. They are

calculated using numerical real-time methods. This introduces some time delays and distortion in

the derivative signal. The same is true for signals generated using real practical sensors devices. A

way to deal with such time delays is given in [2]. Distortions could be treated theoretically in the

same way as noise.

Remark 12 When the specific growth rate µ (S) is of monotonic-type (non-inhibitory), then the

TOC consists in setting Fin = Fmax until the reactor is full, and then applying Fin = 0 until

S ≤ Smin. When the ED-TOC is applied to such a process, it behaves as expected from the TOC.

The same is true if Assumption 1 is not satisfied for any Ŝ > S∗. In this case the TOC and the

behavior of the ED-TOC is the one of a bioreactor with a Monod-type specific growth rate.

4 Experimental results

A 7 L laboratory scale bioreactor acclimated with sludge taken from a municipal WWTP was used to

degrade 4-chlorophenol (4CP). The usual influent toxicant concentration for traditional sequencing

batch processing is Sin = 350 mg4CP/L. Applying more than twice such quantity would greatly

inhibit and stress the biomass, increasing the needed treating time nonlinearly. Applying higher

toxicant concentrations might even inhibit and/or disable the bioreactor permanently. By using the

ED-TOC strategy, instead, the biomass was never stressed or inhibited. A linear increase relation

of treating time with respect to Sin was observed in a series of experiments for increasing Sin,

even when making it as high as 7000 mg4CP/L. Theoretically, treating time was near 95% of the

optimal-time, in all series, for a programmed P = 0.9

Figure 4 shows one experimental kinetic for the 4CP degradation case, using η (t) in Equation
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Kinetics of event-driven fed-batch at 428 mg/Lt
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Figure 4: Experimental kinetics using ED-TOC in WWTP. Operating Parameters P = 0.9; influent
toxicant concentration Sin = 428 mg4CP/L

(8) for ED-TOC implementation. Toxicant substrate concentration S inside the bioreactor (see 4CP

in Figure 4, triangular marks) was measured off-line from manually taken samples and was not used

for control purposes. Up to S = 200 mg4CP/L it is considered normal and safe for the biomass.

A model identification exercise later revealed a 95% confidence interval of ±7.4% for S∗ = 13.99

mg4CP/L. Figure 4 shows that S was kept oscillating around S∗, in an acceptably low concentration

range, by properly turning on and off the influent pump (Figure 4, dotted line). Such behavior shows

the effectiveness of the ED-TOC strategy.

Biomass was B0 = 1.4 g exhibiting an increase of less than 2% during the reaction. Its value was

not used by the controller. Values of S, Sin and S∗ were not used either. Another perturbation comes

from the online sensor used to measure Dissolved Oxygen (Figure 4, continuous line). It introduced

appreciable second order delay effects, and some noise, to the state variable O. It follows that some

delays and signal distortion are to be expected when calculating η (Figure 4, discontinuous line) in

(8) for using it in ED-TOC. But thanks to ED-TOC robustness the system did cope smoothly with
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all this perturbations and uncertainties.

5 Conclusions

A methodology for the robust and practical implementation of optimal control strategies for a class

of nonlinear processes has been introduced. When the control law is composed of bang-bang and

singular arcs the basic idea is to replace the singular arc with a bang-bang control. This makes

the control robust and requires a reduced quantity of information. This general idea is developed

here for a class of fed-batch bioreactors, in particular for its application to Waste Water Treatment,

although the control law can also be applied in biotechnology.

The use of measurable variables giving minimal indirect information is shown to be effective for

software-sensing events related to the crossing of the singular surface of the process. This allows the

controller to generate bang-bang cycles to approximate the singular arcs of the optimal solution.

Experimental results in a laboratory scaled bioreactor for the treatment of toxic organic sub-

stances demonstrate the applicability of the proposed control strategy in a real system.
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