Key Forces Behind the Decline of Fertility: Lessons from Childlessness in Rouen before the Industrial Revolution

S. Brée and D. de la Croix

Discussion Paper 2016-14

Institut de Recherches Économiques et Sociales de l'Université catholique de Louvain

Key Forces Behind the Decline of Fertility: Lessons from Childlessness in Rouen before the Industrial Revolution

Sandra Brée¹ and David de la Croix²

March 27, 2017

Abstract

To better understand the forces underlying fertility decisions, we look at the forerunners of fertility decline. In Rouen, France, completed fertility dropped between 1640 and 1792 from 7.4 to 4.2 children. We review possible explanations and keep only three: increases in materialism, in women's empowerment, and in returns to education. The methodology is one of analytic narrative, bringing together descriptive evidence with a theoretical model. We accordingly propose a theory showing that we can discriminate between these explanations by looking at childlessness and its social gradient. An increase in materialism or, under certain conditions, in women's empowerment, leads to an increase in childlessness, while an increase in the return to education leads to a decrease in childlessness. Looking at the Rouen data, childlessness was clearly on the rise, from 4% in 1640 to 10% at the end of the 18th century, which appears to discredit the explanation based on increasing returns to education, at least for this period.

JEL Classification Numbers: J13, N33, O11

Keywords: Demographic transition, Childlessness, Quality-quantity trade-off, Forerunners, Women's empowerment

¹Centre de Recherche en Démographie et Sociétés, Université catholique de Louvain. E-mail: sandra.bree@uclouvain.be

²IRES and CORE, Université catholique de Louvain. E-mail: david.delacroix@uclouvain.be.

³Acknowledgements: The authors acknowledge the financial support of the project ARC 15/19-063 of the Belgian French-speaking Community. We thank Jean-Pierre Bardet and Paula E. Gobbi for comments on an earlier draft.

Introduction - Why the Forerunners?

The decline of fertility to close to or below replacement levels is one of the major trends seen in the last century. It started in the West, and has extended progressively to the whole world (Reher 2004). Cultural factors aside, key explanations for the drop in fertility include enrichment (in terms of income and education), decreased mortality, and better contraception. It is, however, difficult to disentangle the effect of each of these causes, as they are all endogenous and simultaneously determined. Figure 1 illustrates this point for the US.¹ It shows the inverse of fertility together with income per person, education, survival, and effectiveness of contraception. All the series increase together. Did people have fewer children because they were richer and more educated, or were they richer and more educated because they had fewer children? The simultaneity between income/education and fertility is not the only example. Child mortality is also related to wealth and fertility: obviously, richer societies are able to use their resources to make mortality decrease. Moreover, having fewer children allows parents to devote more resources to the survival of each child.² As for contraception, modern techniques emerged as a consequence of more affluent societies investing in medical progress.

Understanding fertility in the context of economic growth is, therefore, difficult. That is why, in this paper, following Livi-Bacci (1986), we propose to look at a case of fertility decline that happened before the Industrial Revolution, in a period when there was still little change in income and mortality, and when modern contraception was not available. By doing so, we hope to identify deep-rooted factors underlying and/or conditions needed to produce a decline in fertility. We focus on one case - Rouen in the 17th and 18th centuries - for which, thanks to the amount of work done by Bardet (1983), we have a wealth of information allowing us to control for a wide variety of factors.

We look for one dominant explanation for the fertility decline, which would line up with what can be observed both across time and social classes. The methodology is one of analytic narrative, bringing together descriptive evidence with a theoretical model. We proceed in two steps. First, we list the possible explanations for the decline in fertility. For many of them, we can directly observe whether or not they are good candidates. For example, there was no increase in income during the period; hence, the explanation cannot be enrichment. At the end of this first step, we are left with three remaining candidates for which there

¹Very similar pictures could be presented for other developed countries.

²This trade-off between the number of children and their survival was recognized as early as 1837: "ces essains d'enfans ne rendent que plus impossibles les soins indispensables pour leur assurer pleine vie." (D'Ivernois 1836).

Sources: Fertility rates and mortality rates are from Greenwood, Seshadri, and Vandenbroucke (2005). Gross domestic product per capita is from Maddison (2010) and average years of education are from Maddison (2001). Contraception effectiveness is from Greenwood and Guner (2010).

is little direct information to be gleaned from the data. Second, we develop a theoretical model to infer the logical implications of these explanations. For example, we show that if an increase in materialism was the main driving force behind the decline in fertility, one should also observe an increase in childlessness, and a widening of the fertility gap between the lower and upper social classes. This step allows us to discard one of the three remaining candidates, and weigh the likelihood of the two others.

In Section 1, we describe the historical context of the city of Rouen and the demographic study by Bardet (1983). Section 2 reviews the list of possible explanations for the decline in fertility in Rouen and rejects some out of hand based on direct evidence. Section 3 subjects the remaining explanations to an analytical framework, which allows us to derive the implications of each hypothesis and compare them to the data. Section 4 concludes.

1 Rouen: Context and Fertility decline

For a very long time, Rouen was the second most populated city in France, after Paris.³ During the Early Modern Period, the Atlantic trade kept the port busy. Traders and Explorers from Rouen were found far away (Cavelier de La Salle (1643–1687), from Rouen, discovered the Mississippi and gave its name to Louisiana). Beyond trade, Rouen was also an important administrative center, with its own parliament. Although it did not have a university, Rouen remained an intellectual center throughout the period. Diderot's Encyclopédie claims that Rouen is, after Paris, the city in the kingdom of France which has produced the most famous people in the sciences and fine arts. A sample list is provided, ending with one (childless) woman, Miss Catherine Bernard (1662–1712).

Rouen provides an impressive source of old civil registers in a single city, including those for 37 parishes, two hospitals, and many other institutions that kept registers. Bardet (1983) studies this wealth of information, and provides a very complete picture of the evolution of the city over the two centuries preceding the French Revolution.⁴ In the preface to Bardet's book on Rouen, Pierre Chaunu claims that Bardet's work took history out of empiricism, by providing a corpus of information linking together a wealth of coherent information around the civil register for the first time.

The family reconstitution method, also known as "Henry's method", was proposed by Fleury and Henry (1956). Thanks to the excellent quality of parish records, the method involves tracing the history of a couple by assembling a family record' tracking relevant demographic events. There is one family record for each wedding found in the parish records, which is completed with information on date of birth, marriage and death of the couple and their children (even though all of this information is not necessarily available for all couples). Two key pieces of information matter in particular: the wedding date and the ending date of observation. The wedding date is used to establish a start date for the family history, to make sure that the couple did not have any children before the first one found in the parish registers. As for the ending date of observation, it enables to be sure that the couple did not quit the city and have children in another place. A family record can be closed with the death certificate of one of the spouses, or in a census that proves that he/she is still in the city. Consequently, different types of records exist (Table 1) depending on whether the wedding date is known (M (marriage) records) or not (E (étranger=foreigner) records), and if there is an end of observation (F (fermé=closed) records) or not (O (ouvert=open)

³It was overtaken by Lyon and Marseilles around 1700, see data in Bairoch, Batou, and Chèvre (1988).

 $^{{}^{4}}$ The aggregate results are detailed in the book by Bardet (1983), but the original individual data are not made available by the author.

Types of Family records	wedding date is known	end of observation is known
${ m MF}$	yes	yes
MO	yes	no
EF	no	yes
EO	no	no

Table 1: Family records in Henry's method

records). The analysis of fertility is conducted on the basis of information from the MF sheets relating to couples that married in the city and whose end date of observation and age of the woman are known.

In total, 200,000 documents (such as birth, marriage, and death certificates) for the period 1640-1792 were sampled by taking all the names starting with the letter "B", which led to an analysis of one eighth of the total number of documents. Bardet (1983) reconstituted 5,889 families observed from their wedding to the death of one of the spouses, 4,000 incomplete families, and many isolated individuals.

Bardet divides his sample into five broad social classes: I (gentry), II (merchants, lawyers, and bourgeois), III (shopkeepers and employees), IV (craftsmen), and V (workers). In Table 2, we report the completed fertility of women married to men in the five social groups. The drop in fertility is substantial, from more than seven children per family in 1640-1669 down to about 4 on average, and 2.7 for the highest social class in 1760-1792. The drop affects all social classes, but the change for the gentry and shopkeepers is more radical than it is for the lower groups. This is reflected in the fertility differential between the highest class and the lowest one (Δc) which first decreases and then increases in absolute value.

Social Classes					Δc	
Marriage	Gentry	Merchants	Shopkeepers	Craftsmen	Workers	
1640-1669	7.05	7.85	7.34			
1670 - 1699	4.66	6.73	6.53	7.19	7.21	-35%
1700-1729	4.53	5.11	5.51	6.29	6.09	-26%
1730 - 1759	3.87	5.31	4.81	5.48	5.67	-32%
1760 - 1792	2.71	4.27	3.28	4.84	4.84	-44%
Δ 1670-1792	-42%	-37%	-50%	-33%	-33%	

Table 2: Completed fertility by year of marriage and social class (first marriages only)

Bardet studies how this drop happened in detail. He shows that it is not so much a question of spacing between births, as one of stopping having children. Over the period considered, the mean age during the last pregnancy drops from 37.1 to 33.5 for the gentry and merchants, from 40.3 to 36.6 for craftsmen, and from 39 to 37.4 for workers (the age at marriage is about 25 for women, constant or slightly increasing over the period). Stopping is generalized and more pronounced in the groups that reduced their fertility the most. Bardet also includes a table (p. 300) presenting the percentage of childless women, by year of marriage and social class. We reproduce it in Table 3. The childlessness rate is computed based on women who married before the age of 30, and for whom we have a complete record of life events. Beyond a baseline of natural sterility of about 3% to $4\%^5$, childlessness increases over time, for all social classes, but more so for the gentry, and shopkeepers who are inclined to imitate the former.⁶

As analyzed by Baudin, de la Croix, and Gobbi (2015) in the US context, there are several causes for childlessness: natural sterility, poverty-driven childlessness, and voluntary (or opportunity-cost driven) childlessness. Bardet interprets the rise in childlessness observed in Rouen as an extreme form of contraception, i.e. as voluntary. This interpretation is consistent with the fertility numbers provided by Baudin, de la Croix, and Gobbi (2015): when childlessness is voluntary, it tends to be negatively correlated with the fertility of mothers, while when it is poverty driven, it is positively correlated with the fertility of mothers, because very poor people either have a large number of children, or none.

	Social Classes				
Marriage	Gentry	Shopkeepers	Craftsmen	Workers	
1670 - 1699	4	4	5	3	1
1700-1729	8	9	7	6	2
1730 - 1759	11	11	8	6	5
1760-1792	12	13	10	8	4
Δ 1670-1792	+8	+ 9	+ 5	+5	

Table 3: Childlessness rate by year of marriage and social class

Some authors have found that, in the early 20th century, childlessness was greatest in the times and places where fertility control was most evident (Morgan, 1991; Poston and Trent, 1982; Spencer, 1983; Brée, Eggerickx, and Sanderson, 2016). This supports the idea that childlessness is an extreme case of fertility control. Yet others, such as Rowland (2007), only attribute moderate support to the hypothesis of a link between childlessness and birth control. Moreover, Gobbi (2013) shows that the dynamics of fertility and voluntary childlessness

⁵Natural fertility does not tend to vary much across populations (see Werner (1986) and Coleman (1996)). However, sterility can be affected by venereal diseases or health problems due to abortion (Szreter 1996) Consequently, a share of sterility due to venereal diseases could come from prostitutes and could be higher in cities with numerous soldiers or sailors.

⁶A very high childlessness rate is found among the English upper class (Gobbi and Goñi (2016) and de la Croix, Schneider, and Weisdorf (2017)) for the same period, but without the same time trend.

do not necessarily imply a negative correlation between the two. For Rouen, comparing line Δ 1670-1792 in Tables 2 and 3, it is clear that the social classes that reduced fertility the most are also those for which the rate of childlessness increased the most.

Why did the citizens of Rouen decide to reduce their fertility? Any credible and global explanation should be consistent with the facts presented above:

Facts:

- 1. Completed fertility decreased for all social classes;
- 2. Differential fertility (gentry vs workers) increased;
- 3. Childlessness is negatively correlated with completed fertility both over time and across social classes.

2 Comparing Possible Explanations to Evidence

Let us now review the possible explanations for this transition. For each possible explanation, we look at direct evidence. Then, we deal with the implications for fertility and childlessness of each explanation that has not been refuted by direct evidence. For organizational purposes, we divide the possible explanations into three somewhat arbitrary classes: bio-demographic, socio-cultural, and socio-economic.

2.1 Bio-Demographic Explanations

Decrease in child mortality

In the classical theory of demographic transition, the decline in fertility is presented as a consequence of the decrease in infant mortality (Thompson 1929).⁷ Could the drop in birth rates observed be related to a reduction in child mortality during the 18th century in Rouen?

Child mortality is difficult to measure since many babies were sent out of town to be fed by mercenary wet nurses, and therefore disappear from statistics in the event of their death. Bardet estimates that 71% of babies from the gentry had their care outsourced in this way, while the proportion goes down to 41% for workers (estimation for 1740-1789, p. 300). If one

⁷While that decrease in child mortality does reduce the number of births, it does not necessarily reduce the number of surviving children, depending on how uncertainty about child survival affects household preferences. This is discussed further in Doepke (2005), Baudin (2012).

ignores this issue, the apparent mortality rate⁸ during the first year of life does not show any major trend over the period studied. In Rouen as a whole, it went from 161 per thousand between 1670 and 1699 to 150 per thousand between 1760 and 1789. There is a strong social gradient to child mortality. The small gains in apparent mortality mentioned above seem to affect workers more than the gentry. For workers, apparent mortality dropped from 249 per thousand between 1670 and 1699 to 203 per thousand between 1760 and 1789. It went from 87 per thousand between 1670 and 1699 to 98 per thousand between 1760 and 1789 for the gentry. Hence, if there was a drop in mortality, it should have benefitted the poor more. Yet even if there was a drop in child mortality that is not visible in the data because of the practice of resorting to remote wet nurses, and even if this drop was the reason behind the decline in fertility, it cannot explain why the gentry experienced even further reduced fertility, except if the uncorrected data hides a decrease in mortality for the rich.

Beyond the above argument, which is based on the social gradient of fertility and mortality, there is another argument based on the size of the effect: from Table 2, the drop in fertility over the period is of the order of two to three children. Resorting to mortality to explain this drop would require an implausibly large decline in infant mortality, of the order of what has happened over the last two centuries (see Bar and Leukhina (2010) for analyzing how much one can explain the fertility transition with the increase in child survival in England).

Wet nursing

One of Bardet and Dupâquier (1986)'s arguments to explain the low fertility is wet nursing. In Rouen, women often had their children cared for by wet nurses and, as such, did not breastfeed. This may have caused hyperfecundity amongst the women (indeed, women who do not breastfeed can become pregnant sooner after a previous birth, and therefore more often than those who do). According to Bardet, this could have prompted Rouen's women to use and know more about birth control than others. It could then have contributed to childlessness according to the hypothesis that not having children was a choice. As the intensity of the practice of wet nursing was about constant over the period, this explanation can only account for the level of fertility, but not for its change over time.

Increase in age at marriage

In principle, an increase in the mean age at marriage could be responsible for both a drop in fertility and an increase in childlessness. The latter arises because fecundity declines with age (in particular after 35). There is however no evidence of such a trend in Rouen. The

 $^{^{8}\}mathrm{The}$ number of deaths of children under one year old observed in the city divided by the number of births.

mean age at (first) marriage fluctuated around 25 years for women, with no trend.⁹

Change in migration

Bardet compares the fertility of migrants in Rouen to that of natives (i.e. born in Rouen). Even if one out of every two husbands was born outside the city, the fertility of his marriage was no different than that of a native born (tab 117). The people who came from the countryside seemed to adopt the urban behavior very quickly; though we should keep in mind that fertility was higher in the city than in the countryside in the 17th century, and so the decline in the 18th century really only led to an achievement of the same fertility level as the one observed in the countryside. Given the similarity between migrants' and natives' fertility, changes in migration rates, if any, did not affect the average fertility rate.

Another possible effect of migration is related to the emigration of Huguenots following the revocation of the Edict of Nantes in 1685. Before the revocation, the share of baptisms of Protestant children culminated at 6.9% in 1620-1639. Two thirds of these families chose to emigrate, either in anticipation or quickly after the revocation (p219). At the level of the city, this represents a small portion of the population, which cannot generate significant composition effects. Moreover, during the 17th century, the fertility of Catholic and Protestant married women was quite similar (7.32 vs 7.14).

New method of contraception

According to Collier (2007), in "1666, the year of the Great Fire of London, the English Birth Rate Commission officially documented the condom's popular use throughout the country by explaining that the significant decrease in births at the time was due to the use of "condons." This is the first time that this spelling, or anything close to it, was used in an official government document." In the same book, it is also noted that promiscuous aristocrats used the condom invented under Charles II (1630-1685) as a means of preventing the spread of sexually transmitted diseases. Its cost, however, prevented the masses from using it as a contraceptive device (Le Bras 1986; McLaren 1990), and the fertility decline was related more to marriage postponement, abstinence, and coitus interruptus (Seccombe 1992; Szreter 1996). Some authors have also argued that breastfeeding was used as a way to increase the time between births (Carlsson 1966). In 1671, Madame de Sevigné, as noted by Vénard and Ariès (1954), also mentioned "restringents," which is a medical term referring to something that tightens the belly; she clearly used this word in a way suggestive of contraception. Still, for the lower classes, the large drop in fertility observed in Rouen

 $^{^9\}mathrm{From}$ page 255 of Bardet (1983), the mean age at first marriage for women with a known birth certificate is: 1670–1699: 24.4, 1700–1729: 26.2, 1730–1759: 24.9, and 1760–1789: 26.1.

appeared with no change in the method of contraception.

2.2 Socio-Cultural Explanations

In explaining changes in fertility over of the last two centuries, scientists are divided between those who believe that fertility was not subject to (economic) choice or control and those who believe it was (Lee 2015). This divide overlaps with another partition between socioeconomic theories of the fertility decline on the one hand and diffusion/adaptation views on the other (Carlsson 1966). In spite of this, researchers today almost all agree that both the adjustment to socioeconomic modernization and the mortality decline (adaptation), as well as cultural effects and the diffusion process, slowed down or speeded up by cultural factors (diffusion), are all important to explain the fertility transition.

It is interesting to note that among the first observers interested in childlessness, the demographers of the interwar period had already drawn associations between low fertility and childlessness processes that now tend to be associated with the second demographic transition, namely secularization, individualism, rising consumption, and the emancipation of women, which can be summarized as modernization (Van Bavel 2010). For example, Landry (1934) situates his discussion of the demographic revolution in the context of increased welfare, driven by innovation in technology and industry, with many inventions of household goods that encouraged people to increase their consumption.

Secularization

There is a vast literature linking the decline in fertility and the process of secularization. In a comparative study of the Belgian, Danish, German, Italian, Dutch, and Swiss provinces, Lesthaeghe and Wilson (1986) show that the moral acceptance of birth control that developed as a result of secularization was a necessary condition for fertility decline. Moreover, there is a large body of evidence suggesting that, compared to other groups, Catholics have managed to maintain relatively high levels of fertility (Sander 1992; McQuillan 2004; Praz 2006). Other contributions have shown that Protestants were forerunners in fertility decline as compared to Catholics (Perrenoud 1974; McQuillan 2006). Using 20th-century data, Adsera (2006) shows that, in a secular society, belonging to a religion predicts both a higher fertility norm and higher actual fertility. Baudin (2015) reports similar findings based on French data.

Concerning the French decline in fertility, Bardet (1998) argues that the collapse of ecclesiastical institutions was the most significant transformation of this period. Moreover, it is in the departments where Christianization was most deeply rooted that the declining birth rate was highest (Bardet and Van de Walle 2000). Yet this theory has been criticized, in particular by Binion (2000) who rejects the religious cause because "the English of the time (not among others) were just as libertine as French, while their American contemporaries knew rather a religious revival."

Bardet provides several indications that secularization was on the rise during the 18th century. We have no evidence of different levels of secularization across social classes in Rouen, but we do know that in Paris, where religious practice was already very low in the 18th century (Chaunu, Foisil, and de Noirfontaine 1998), secularization in the 19th century was higher among workers than among the richest segment of the population (Jacquemet, 1984, Laroulandie, 1997, Boudon, 2001, Brée, 2016). If there is such strong evidence of a higher degree of secularization among workers, then the secularization argument should be rejected based on fertility differentials, since the upper classes were those which underwent the greatest reduction in fertility. However, since the evidence does not pertain to Rouen in the 18th century, there is room for further discussion, which we will turn to in the modelling part.

Increase in materialism

Could an increase in materialism explain why households desired fewer children or even stopped wanting children altogether? Did certain kinds of new (luxury) goods become accessible or desirable, and was being childfree a requirement to procure them? Van de Walle and Van de Walle (1972) identify two major arguments that were advanced by authors of the 18th and 19th centuries to explain why women did not want children. The first of these arguments was that women did not want to experience the physical changes of pregnancy, and the second was that women wanted to preserve their freedom and avoid the burden of a pregnant belly. Implicit in these two arguments is the desire to avoid losing one's place in society – not to be kept away from salons and high society. This would then only have concerned the elite. This priority given by couples to their careers and a luxurious lifestyle is also one of the arguments put forward by researchers in the interwar period who tried to account for the very high levels of childlessness (Van Bavel and Kok 2010).

In the absence of any hard evidence on this phenomenon prompting us to reject the argument that follows from it, we keep it as a possible explanation in our model.

Increase in divorce

Divorce implies a material cost imposed on former couples and may lead to a lower number of children per women. Divorce was, however, illegal in France before the French Revolution. It is interesting to note that, as soon as it was allowed by the new constitution in 1792, 1,046 couples made use of this option in Rouen and separated, which gives a divorce rate of 3% (Phillips 1976).¹⁰ This is an indication of the early 'modern' character of its inhabitants. In the city, a divorced woman could work and was better able to survive than she would have been in the countryside where she would have had no roof over her head and no job, Bardet notes. Yet even in cities, women had a hard time living alone due to the low wages, and were sometimes forced into prostitution to survive, especially during periods of unemployment and upon the arrival of a new child (Fuch 1992). The ability to divorce, however, came too late to have any explanatory power in terms of the continuous drop in fertility and the increase in childlessness between 1670 and 1790.

2.3 Socio-Economic Explanations

Economists have always defended the view that fertility responds to incentives and, hence, that economic conditions matter to economic decision-making. On the side of demographers, Caldwell (1976, 1982) reintroduced the role of economic factors into demography, without abandoning cultural factors. He advocated taking into account couples' decision-making process, which he analyzed in terms of costs and benefits. Children's education required a significant investment and had an economic and emotional cost: intergenerational wealth flows then changed directions to benefit children (Caldwell, 1976) in the transition from a productive family model to a capitalist mode of production.

Change in income

Income has always been considered as a key determinant of fertility. According to the "Malthusian" view, first elaborated by Bruckner (1768), fertility can be expected to rise and fall as income increases and decreases.

The view that fertility increases in relation to income is supported by some empirical studies of pre-industrial times, but was contradicted by the large decline in birth rates after some countries industrialized at the end of the 19th century and the beginning of the 20th century. The failure of Malthus's simple model of fertility led economists to consider decisions pertaining to family size as being outside the scope of their research. However, as noted by Becker (1993), the trouble with the Malthusian approach is not its use of economics per se, but rather its use of an economics that is inappropriate for modern life. It neglects the fact that the time spent on childcare becomes more expensive when countries are more productive. Indeed, time becomes more valuable as goods become more abundant. The higher

¹⁰Divorce, however, became illegal again in 1816, and people wanting to divorce had to wait until 1884 when a new divorce law was passed. See de la Croix and Mariani (2015) for a political economy theory of the adoption of divorce laws in Western Europe.

Source	1500	1600	1650	1700	1750	1800-1820
Rouen population (Bardet)		60233	81931	63940	67425	80000
Rouen population (Bairoch et al.)	40000	70000		50000	66000	80000
GDP per capita (France)	727	841		910		1135
Workers' real wage (Paris)	0.12	0.05	0.05	0.06		

Table 4: Measures of income in Rouen

value of time increases the cost of children, thereby reducing the demand for large families.

What do we know about trends in income in Rouen before the Industrial Revolution? In a Malthusian context, the size of cities is often taken as a measure of wealth. Table 4 shows two estimates of the city size from 1500 to 1800. The first one is by Bardet (1983), the second one by Bairoch, Batou, and Chèvre (1988). According to both measures, the population fluctuated between 60,000 and 80,000, with no trend. Table 4 also shows estimates of French GDP per capita by Maddison (2010). There is a slightly positive trend, with an annual growth rate in real income of 0.14% over the period 1500-1820. The average income estimated by Maddison may, however, hide a diversity of situations. The next line in Table 4 shows the real wage (in terms of barley) of workers in the building industry in Paris computed by Baulant (1971). This shows a rather sharp loss of purchasing power at the beginning of the period, followed by a stabilization.

Unless Rouen experienced a very specific trend in income during this period which did not translate into city growth, available evidence supports the view that income was stagnant between 1500 and 1800.

Increase in the return to education

Again, Becker (1993) says of the Malthusian model: "It also fails to consider that the greater importance of education and training in industrialized economies encourages parents to invest more in the skills of their children, which also raises the cost of large families. The growing value of time and the increased emphasis on schooling and other human capital explain the decline in fertility as countries develop, and many other features of birth rates in modern economies."

This is the view that was pushed by Galor (2012) (building on his previous work) as the fundamental reason for the decline in fertility: industrialization brought about increased demand for skilled workers and "the rise in the future demand for the children's human capital [led] to a pure substitution effect, which [induced] parents to substitute quality for

quantity of children."¹¹

These views echo a perspective developed by historians (Ariès, 1960; Flandrin, 1973) according to which there was a shift in the 19th century in parental views away from the 'useful child' to the 'precious child' - precious because of the cost of the education then needed to climb the social ladder (Praz 2005). One could also link the return to education to the new role that children acquired in that century. Ariès (1980) argues that the fertility transition was due to a revolution in sensitivity: couples simply started caring more about the welfare of their children and their living conditions. Thus, parents invested emotionally as well as financially in the welfare of their children.

We do not know whether such a change could have occurred so early in Rouen. In principle, the Industrial Revolution had not yet reached France. However, this explanation should not be discarded too easily. An increase in the return to education might have also been generated by non-industrial factors, such as the professionalization of the army, the rise of a technocratic administration, etc. With the military revolution,¹² for example, being a nobleman was no longer sufficient in and of itself to become an officer; passing examinations became the rule. The change in children's "status" is also a fairly unobserved variable. Hence, in the absence of hard evidence against this mechanism, in the next section, we will analyze its theoretical consequences for fertility and childlessness and compare them to the data.

Women's empowerment

Women's power can be measured along several dimensions, and each dimension has its own effect on fertility (see de la Croix and Vander Donckt (2010)). Essential dimensions in today's economies are: political empowerment, educational attainment, economic participation and opportunity, and health and survival.

With regard to political empowerment, it seems fair to say that the observable political power of women was nil, at least when measured with the indices we use today, such as the number of seats in parliament, or in the municipal council in the case of a city.

For educational attainment, marriage registers can be used to evaluate the basic level of literacy through the quality of someone's signature. Bardet shows this information in Table

 $^{^{11}\}mathrm{See}$ Doepke (2015) for a survey on the emergence of the concept of the quality-quantity trade-off, and Klemp and Weisdorf (2016) and Galor and Klemp (2016) for evidence of the mechanism on historic parish reconstitution data from England and Quebec.

¹²Until the 17th century, noblemen assumed positions of command (regardless of their competence). Over the period 1600–1700, armies grew considerably in size, requiring more competent officers. For instance, in 1675, Louis XIV made power dependent on merit and seniority (rather than on social class or birth).

	Men	Women	Women/Men	Men-Women
1670	57	34	0.60	23
1680	63	36	0.57	27
1690	61	39	0.64	22
1700	58	41	0.71	17
1710	65	45	0.69	20
1720	63	47	0.75	16
1730	64	48	0.75	16
1740	66	49	0.74	17
1750	65	48	0.74	17
1760	67	50	0.75	17
1770	69	53	0.77	16
1780	70	54	0.77	16
1790	67	53	0.79	14

Table 5: Percentage of good quality signatures - marriage registers

	Gentry	Shopkeepers	Craftsmen	Workers
1670-99	0.94	0.79	0.61	0.55
1700-29	0.95	0.86	0.77	0.48
1730-59	0.96	0.82	0.77	0.55
1760-92	0.97	0.91	0.83	0.61
Δ 1670-1792	+0.03	+0.12	+0.22	+0.06

Table 6: Percentage of brides able to sign compared to grooms

104, from which we can compute a gender gap. Table 5 conveys a clear message: the educational gap between (married) men and women shrunk over the period.

This decrease in the educational gender gap seems to have affected all social classes. Table 6 shows the evolution of the gender gap by social class. All ratios are higher at the end of the period. The improvement is generalized.

With regard to the gender gap in economic participation and opportunity, we use the database of famous people built by de la Croix and Licandro (2015). This database includes famous people that appear in the encyclopedias and dictionaries upon which the *Index Biobibliographicus Notorum Hominum* is built. We extracted all those related to Rouen, either through birth, or through occupation or death. We looked at them one by one to identify the women. The results are presented in Table 7. Prior to the 18th century, only a few women were found. Then, the share of women among famous people increases to 10%-12%. Although some of the new occupations held by women do not necessarily correspond to our idea of highly skilled jobs (like playing the role of a soubrette in theater, for example), it is

Death date	Women	Men	% Women
<1400	3	157	2%
1400 - 1600	4	594	1%
1600 - 1649	1	215	0%
1650 - 1699	4	280	1%
1700 - 1749	15	257	6%
1750 - 1799	46	345	12%
1800-1849	85	578	13%
1850-1899	62	544	10%

 Table 7: Famous people in Rouen

fair to conclude that the gender gap in economic participation and opportunity started to shrink in the 18th century.

The health and survival gender gap depends partly on maternal mortality. Maternal mortality was about 10 for 1,000 births, with a slight social gradient (8.8 for the gentry and 12.8 for workers). There is a small improvement in survival after 1750, from 11 over the period 1700-1749 to 9.3 over the period 1750-1800 (Bardet, p. 366). On the whole, the proportion of married women who died during delivery declines over time, but rather because of the drop in the birth rate than improvements in medicine. It is 3.9% for the period 1760-1792.

On the whole, there is converging evidence that the gender gap in Rouen started to shrink along the educational, occupational, and health dimensions during the 18th century. This may have affected fertility in a variety of ways. For example, Caldwell (1981) attributes, among other things, the decline of French fertility to schooling for both sexes which may have produced greater equality between partners in a couple, thereby increasing the efficacy of coitus interruptus. However, this explanation is based on the assumption that women inherently desire fewer children than men. Yet this assumption is not necessary for women's empowerment to have an effect on fertility. Alternatively, the reduction in the education gender gap makes women's time more valuable, thereby increasing the opportunity cost of having children. This is the way we model women's empowerment in the analytical framework.

2.4 Intermediate Conclusion

Several explanations have been rejected because of the absence of change during the period under consideration: contraception, wet nursing, age at marriage, income, and divorce. Other explanations have been rejected because they are not consistent with the fact that changes were more pronounced among the higher social groups; they include: mortality and secularization. As such, three explanations without any direct evidence for or against them remain: increase in materialism, women's empowerment, and increase in return to education. Secularization will also be further discussed in the context of the model.

3 Analytical Framework

Our strategy is now to use economic theory to highlight the logical implications for households' choices of these three changes and show that we can discriminate between them by looking at childlessness and investment in education. Here, we will assume that households are interested in three goods, beyond those related to subsistence consumption, which is not modeled: a luxury consumption good, the number of children (fertility), and the quality of children (as evidenced by their education). Preferences are such that it may be optimal for them to decide not to have children at all. We will also assume that households differ in their preference for children, allowing for the existence of an equilibrium in terms of the proportion of the population that decides to be childless. The model abstracts from other causes of childlessness.

The purpose of the model is to derive the effect of exogenous changes on the three endogenous variables: fertility, childlessness, and education. It also derives implications for the social gradient in these variables. The increase in materialism will be modeled by a decrease in the price of the luxury good. This implies that this good becomes more accessible to households. With regard to women's empowerment, different ways of modeling are possible. We concentrate on economic empowerment, including a reduction in the gender education gap. This kind of change implies an increase in the opportunity cost associated with having children. Finally, the increase in the return to education will be modeled by a change in the household's preferences, giving more weight to the quality of children.

Our theoretical approach is quite novel. Since Becker (1960)'s economic analysis of fertility, economists have disregarded the possibility of childlessness as a choice. However, they have stressed that education and fertility decisions are interrelated. On the contrary, the two existing economic models of voluntary childlessness (Gobbi (2013) and Baudin, de la Croix, and Gobbi (2015)) do not incorporate choices pertaining to education.

Let us now present this formally. Consider a unitary household *i* of social class *j*. Preferences are defined over a basket $\{x_{ij}, n_{ij}, h_{ij}\}$, which represents its own consumption, the number of children, and the quality of children (health and education). They are described by the following utility function:

$$u(x_{ij}, n_{ij}, h_{ij}) = \ln(\bar{x} + x_{ij}) + \gamma_{ij} \frac{n_{ij}}{1 - \beta} \frac{h_{ij}^{\beta}}{\beta}.$$

 γ_i is the preference for children, distributed in the population according to a density function $f(\gamma)$, independent of social class. Hence, households of the same social class vary by their preference for children γ . The parameter $\beta \in (0, 1)$ measures the returns to quality in the utility. The constant parameter $\bar{x} > 0$ reflects the idea that x_{ij} is a luxury good which is not required for survival.

The individual's budget constraint is

$$p_x x_{ij} + p_n(\omega_j) n_{ij} + n_{ij} h_{ij} = \omega_j,$$

where p_x is the price of the final good, ω_j is the income, and $p_n(\omega_j)$ is the cost of children. This cost includes the spending on goods needed to rear a child and the time cost. The time cost is an opportunity cost, when rearing a child takes time away from the professional activity. Assuming that the amount of time needed to rear a child is the same for all households, the total time cost is proportional to the lost income ω_j , and is hence higher for the upper social classes. The household also buys some education and health good, h_{ij} , the same amount for each child (for simplicity); the spending on quality is thus $n_{ij}h_{ij}$. h_{ij} and is taken as the numeraire.

To better understand the role of parameter β , it is useful to define the total education spending as $s_{ij} = n_{ij}h_{ij}$. Substituting h_{ij} by s_{ij}/n_{ij} in the utility function and the budget constraint, the problem of the household becomes:

$$\max \ln(\bar{x} + x_{ij}) + \gamma_{ij} \frac{n_{ij}^{1-\beta}}{1-\beta} \frac{s_{ij}^{\beta}}{\beta} \quad \text{s.t.} \quad p_x x_{ij} + p_n(\omega_j) n_{ij} + s_{ij} = \omega_j, \quad x_{i,j}, n_{ij} \ge 0.$$

Here, it appears clearly that the last term of the utility is a geometric average of quantity n_{ij} and total spending s_{ij} whose weights are $1 - \beta$ and β respectively.

The model is solved in detail in Appendix A. A first result is that, depending on its preferences and on exogenous variables, the household can be in three different situations. In the Malthusian regime, the household does not consume luxury goods and all resources are directed towards spending on children. In the interior regime, the household spends both on luxury goods and children. In the childfree regime, the household decides not to have children at all. The top left panel of Figure 2 shows which regime households belong to depending on their preference for children and their social class. The graph is made under the assumption that the cost of children p_n is increasing with ω_j . The figure shows that the low social classes are more likely to fall into the Malthusian regime. The middle class will sort depending on their preference for children. Those with the highest γ_i will be in the Malthusian regime. The intermediate γ_i households are in the interior regime, and only those with a very low γ_i remain childless. In the upper social class, the proportion of the latter increases further.

Figure 2: Different regimes as a function of γ_i and social class j & comparative static results

When the price of the luxury good p_x decreases, the consumption of luxury goods by those who have already bought some increases. Fewer resources are spent on children by those in the interior regime, and fertility declines.¹³ Those in the Malthusian regime are not affected by the change, as they do not consume any luxury goods. Moreover, the regime borders change, as indicated in the top right graph, and more low γ_i households will become childless as the area covered by the childfree regime widens. Hence, on the whole, when p_x goes down, fertility drops and childlessness rises. These effects are stronger for the upper classes that consume luxury goods.

Women's empowerment in the form of an increased opportunity cost of having children has the same effects as the increase in materialism along some dimensions. Fertility decreases for those in the interior regime. The regime borders change in a similar way (bottom left panel). Childlessness increases, in particular for the upper social class. The difference is that fertility also drops for those in the Malthusian regime. Hence, there should not be an increase in the fertility gap between the rich and the poor. Moreover, spending on the quality of children increases for all households with children – this is the quality-quantity trade-off stressed in the literature (Doepke 2015).

When the return to education increases (β), parents put more weight on the quality of their children. Households in the interior regime reduce their fertility levels in order to be able to spend more on quality. Fertility in the Malthusian regime is reduced too. The regime borders change as indicated in the bottom right panel. There are more people in the Malthusian regime, and fewer people in the childfree regime (this is the result stressed in Aaronson, Lange, and Mazumder (2014)). It is likely that fertility on the whole is reduced (unless there are many households in the Malthusian regime). The intuitive explanation for the drop in childlessness is as follows: when the return to education increases, it makes sense to reduce the number of children to invest more in their quality, but not to the point of having no children at all, in which case education is purposeless. This stresses a fundamental difference between being childless and having few children. Moreover, having better prospects for one's children may also lead some otherwise childless people to procreate.

Before summarizing the results, let us discuss the possible effect of secularization. There is no straightforward way of modelling religion and religiosity in a canonical economic model. Several approaches have been proposed and the interpretation depends on the one chosen. A first approach is to assume religion affects the resource constraint of households. Berman, Iannaccone, and Ragusa (2012) show that fertility across European countries is related to the population density of nuns, who are likely to provide services to families, alleviating childrearing costs. If this is the case, secularization would imply increasing the cost of children, hence leading to the same consequences as women's empowerment. A second approach is

¹³In general, this is true as long as substitution effects dominate income effects.

Hypothesis	modelling	effect on	effect on	effect on $\%$	effect on Δc
		fertility	education	childless	fertility
Increase in	Luxury good	\searrow	0	7	7
materialism	cheaper $p_x \downarrow$				
Women's empowerment	Opportunity cost of children p_n higher	\searrow	\nearrow	7	~
Increase in return to education	Households value education more $\beta \uparrow$	\searrow	\nearrow	\searrow	~
Data		\searrow	7	\nearrow	\searrow then \nearrow

 Table 8: Theoretical implications of shocks

to assume that religion affects preferences directly. Cavalcanti, Parente, and Zhao (2007) explicitly model an afterlife period (heaven or hell) in an overlapping generation set-up, and show that beliefs about how to maximize one's chances of going to heaven affect capital accumulation. Assuming that Catholicism preaches in favor of a sober life as the pathway to heaven, secularization would be similar to the rise in materialism described above. Finally, de la Croix and Delavallade (2017) view religion as affecting the preference for children along its two dimensions, quality and quantity. This would correspond to parameters γ_i and β in our set-up. For East Asia, they find that Catholics have higher γ_i and lower β than people with no religious affiliation. Here, secularization resembles a rising weight on the quality of children, like the rise in the return to education. Secularization could thus be seen as reinforcing our three hypothetical scenarios.

Table 8 summarizes these results. On the whole, one can reject the 'increase in return to education' explanation on the basis that if it were accurate, we would have observed a drop in childlessness.¹⁴ As explained by Aaronson, Lange, and Mazumder (2014), "Intuitively, it is necessary to have at least one child in order to invest in the quality of children. Consequently, fertility along the extensive margin increases as the opportunity to invest in child quality expands." The 'increase in materialism' hypothesis fits well with the demographic data, but should imply no change in education. Although we do not observe the investment in education directly, we observe better outcomes in terms of the ability to sign, which may cast doubt on this hypothesis (although something else could be at play in terms of education). Finally, the 'women's empowerment' hypothesis fits well with the demographic and educational outcomes (as already noticed by Perrin (2013) for France). It should, however,

¹⁴It is interesting to note that in de la Croix (2012), p. 48-65, the early drop in fertility in Rouen is related to the rise in the return to schooling. Yet, at the time, de la Croix did not look at childlessness, which would have discredited this mechanism.

not lead to substantial changes in differential fertility across groups (unless one assumes that such empowerment only applied to the upper classes), when, in reality, fertility differentials were on the rise at the end of the period considered.

4 Conclusion

To better understand the forces underlying fertility decisions, we look at the forerunners of fertility decline, and in particular those who remained childless. Childlessness indeed is an important aspect of the decline of fertility as theories concerning a decrease in the number of children people have do not always apply to not having children at all. In particular, we have shown that the increase in the return to education cannot provide an explanation for the increase in childlessness (except if childlessness is considered as the product of too effective contraception, a hypothesis that can probably be dismissed given the methods used in the 17th and 18th centuries). The increase in childlessness could be a consequence of an increase in materialism, according to which the elite participates in new luxury activities and upper class women do not wish to be excluded from social life due to pregnancy or children. As this mechanism only affects the upper classes, it is consistent with the widening fertility differential and childlessness differential across social classes. In a similar vein, the evolution of women's empowerment, and more generally, the evolution of the role and place of women in society, could lead to similar effects, provided this empowerment benefits the upper classes more. To conclude, analyzing the reasons for childlessness can help to interpret trends in fertility. To do so, one needs to combine sound knowledge of the data and their context, together with simple economic theory to highlight the consequences of potential mechanisms.

We cannot be sure that the example of Rouen allows us to draw general conclusions about France or other European countries (external validity). However, it is certain that looking at social gradients in childlessness helps to unravel the trade-offs at work in the historical population.

References

Aaronson, Daniel, Fabian Lange, and Bhashkar Mazumder. 2014. "Fertility Transitions along the Extensive and Intensive Margins." American Economic Review 104 (11): 3701–24 (November).

- Adsera, Alicia. 2006. "Marital fertility and religion in Spain, 1985 and 1999." *Population Studies* 60 (2): 205–221.
- Ariès, Philippe. 1960. L'enfant et la vie familiale sous l'ancien régime. Paris: Plon.
- ———. 1980. "Two Successive Motivations for the Declining Birth Rate in the West." *Population and Development Review* 6:645–650.
- Bairoch, Paul, J. Batou, and P. Chèvre. 1988. The population of European Cities from 800 to 1850. Genève: CIEH.
- Bar, Michael, and Oksana Leukhina. 2010. "Demographic Transition and Industrial Revolution: A Macroeconomic Investigation." *Review of Economic Dynamics* 13 (2): 424–451 (April).
- Bardet, Jean-Pierre. 1983. Rouen au XVII^e et XVIII^e siècles. Paris: SEDES.
 - . 1998. "La France en déclin." In *Histoire des populations de l'Europe, tome* 2: la révolution démographique 1750-1914, edited by Jean-Pierre Bardet and Jacques
 Dupâquier, 287–325. Paris: Fayard.
- Bardet, Jean-Pierre, and Jacques Dupâquier. 1986. "Contraception, les Français, les premiers, mais pourquoi ?" *Communication* 44:3–34.
- Bardet, Jean-Pierre, and Etienne Van de Walle. 2000. "À propos de l'article de Rudolf Binion. Marianne au foyer. Révolution politique et transition démographique en France et aux États-Unis." *Population* 55 (2): 387–394.
- Baudin, Thomas. 2012. "The Optimal Trade-Off Between Quality and Quantity with Unknown Number of Survivors." *Mathematical Population Studies* 19 (2): 94–113.
- ———. 2015. "Religion and Fertility: The French Connection." *Demographic Research* 32:397–420.
- Baudin, Thomas, David de la Croix, and Paula E. Gobbi. 2015. "Fertility and Childlessness in the US." *American Economic Review* 105:1852–1882.
- Baulant, Micheline. 1971. "Le salaire des ouvriers du bâtiment Paris, de 1400 à 1726." Annales. Économies, Sociétés, Civilisations 26 (2): 463–483.
- Becker, Gary. 1960, September. "An Economic Analysis of Fertility." In Demographic and Economic Change in Developed Countries, NBER Chapters, 209–240. National Bureau of Economic Research, Inc.
 - ———. 1993. "The Economic Way of Looking at Behavior." *Journal of Political Economy* 101 (3): 385–409.

- Berman, Eli, Laurence R. Iannaccone, and Giuseppe Ragusa. 2012, August. "From Empty Pews to Empty Cradles: Fertility Decline Among European Catholics." Technical Report 18350, National Bureau of Economic Research, Inc.
- Binion, Rudolf. 2000. "Marianne au foyer. Révolution politique et transition démographique en France et aux États-Unis." *Population* 55 (1): 81–104.
- Boudon, Jean-Olivier. 2001. Paris, capitale religieuse sous le second Empire. Paris: Cerf.
- Brée, Sandra. 2016. La fécondité à Paris et dans sa région au XIXe siècle. Paris: INED.
- Brée, Sandra, Thierry Eggerickx, and Jean-Paul Sanderson. 2016. "Low fertility, childlessness and family changes during the first half of the 20th century in France and Belgium." forthcoming, Quetelet Journal.
- Bruckner, John. 1768. A philosophical Survey of the Animal Creation, an Essay. London: Johnson and Payne. translated from the French.
- Caldwell, John Charles. 1976. "Toward a Restatement of Demographic Transition Theory." *Population and Development Review* 2:321–366.
- ———. 1981. "The mechanisms of demographic change in historical perspective." *Population studies* 35:5–27.
- ———. 1982. Theory of fertility decline. Population and Social Structure. London, New York: Academic Press.
- Carlsson, Gösta. 1966. "The Decline of Fertility: Innovation or Adjustment Process." *Population Studies* 20 (2): 149–174.
- Cavalcanti, Tiago, Stephen Parente, and Rui Zhao. 2007. "Religion in macroeconomics: a quantitative analysis of Weber's thesis." *Economic Theory* 32 (1): 105–123 (July).
- Chaunu, Pierre, Madeleine Foisil, and Franoise de Noirfontaine. 1998. Le basculement religieux de Paris au XVIIIe sicle : essai d'histoire politique et religieuse. Paris: Fayard.
- Coleman, David, ed. 1996. Europe's population in the 1990s. Oxford, UK: Oxford University Press.
- Collier, Aine. 2007. The Humble Little Condom: A History. New York: Prometheus Books.
- de la Croix, David. 2012. *Fertility, Education, Growth, and Sustainability*. Cambridge UK: Cambridge University Press.
- de la Croix, David, and Clara Delavallade. 2017. "Religions, Fertility, and Growth in South-East Asia." *International Economic Review*. forthcoming.
- de la Croix, David, and Omar Licandro. 2015. "The Longevity of Famous People from Hammurabi to Einstein." *Journal of Economic Growth* 20:263–303.

- de la Croix, David, and Fabio Mariani. 2015. "From Polygyny to Serial Monogamy: A Unified Theory of Marriage Institutions." *Review of Economic Studies* 82 (2): 565–607.
- de la Croix, David, Eric Schneider, and Jacob Weisdorf. 2017. "Decessit sine Prole -Childlessness, Celibacy, and Survival of the Richest in Pre-Industrial England." CEPR Working Paper.
- de la Croix, David, and Marie Vander Donckt. 2010. "Would Empowering Women Initiate the Demographic Transition in Least-Developed Countries ?" Journal of Human Capital 4:85–129.
- D'Ivernois, Sir Francis. 1836. Sur la Fécondité et la Mortalié Proportionnelles des Peuples Considérées comme Mesure de leur Aisance et de leur Civilisation. Genève: Imprimerie de la Bibliothèque Universelle.
- Doepke, Matthias. 2005. "Child mortality and fertility decline: Does the Barro-Becker model fit the facts?" Journal of Population Economics 18 (2): 337–366 (06).
- ———. 2015. "Gary Becker on the Quantity and Quality of Children." *Journal of Demo*graphic Economics 81:59–66.
- Flandrin, Jean-Louis. 1973. "L'attitude l'égard du petit enfant et les conduites sexuelles dans la civilisation occidentale : structures anciennes et évolution." Annales de démographie historique 1973 (1): 143–210.
- Fleury, Michel, and Louis Henry. 1956. Des registres paroissiaux à l'histoire de la population. Manuel de dépouillement et d'exploitation de l'état civil ancien. Paris: Ined.
- Fuch, Rachel. 1992. Poor and pregnant in Paris. Brunswick: Rutgers University Press.
- Galor, Oded. 2012. "The demographic transition: causes and consequences." *Cliometrica* 6:1–28.
- Galor, Oded, and Marc Klemp. 2016. "The Biocultural Origins of Human Capital Formation." unpublished.
- Gobbi, Paula E. 2013. "A model of voluntary childlessness." *Journal of Population Economics* 26 (3): 963–982 (July).
- Gobbi, Paula E., and Marc Goñi. 2016. "Childless Aristocrats. Fertility, Inheritance, and Persistent Inequality in Britain (1550-1950)." unpublished.
- Greenwood, Jeremy, and Nezih Guner. 2010. "Social Change: the Sexual Revolution." International Economic Review 51 (4): 893–923.
- Greenwood, Jeremy, A. Seshadri, and Guillaume Vandenbroucke. 2005. "The Baby Boom and Baby Bust." *American Economic Review* 95 (1): 183–207.

Jacquemet, Gérard. 1984. Belleville au XIXe sicle. Paris: EHESS.

- Klemp, Marc, and Jacob Weisdorf. 2016. "Fecundity, Fertility and the Formation of Human Capital." unpublished.
- Landry, Adolphe. 1934. La révolution démographique : études et essaies sur les problèmes de population. Paris: INED (reedited 1982).
- Laroulandie, Fabrice. 1997. Les ouvriers de Paris au XIXe siècle. Paris: Christian.
- Le Bras, Hervé. 1986. "Coït interrompu, contrainte morale et héritage préférentiel." *Communications* 44 (1): 47–70.
- Lee, Ronald. 2015. "Becker and the Demographic Transition." Journal of Demographic Economics 81:67–74.
- Lesthaeghe, Ron, and Chris Wilson. 1986. Modes of production secularization and the pace of the fertility decline in Western Europe 1870-1930. Princeton New Jersey: Princeton University Press.
- Livi-Bacci, Massimo. 1986. "Social Group Forerunners of Fertility Control in Europe." In The Decline of Fertility in Europe, edited by Ansley Coale and Susan Cotts Watkins, 182–200. Princeton: Princeton University Press.
- Maddison, Angus. 2001. The World Economy: A Millennial Perspective. Development Centre Studies. Paris: OECD.
- ——. 2010, March. "Historical Statistics." Groningen Growth and Development Center.
- McLaren, Angus. 1990. A history of contraception: from antiquity to the present day. Cambridge, Massachusetts and Oxford, England: Basil Blackwell.
- McQuillan, Kevin. 2004. "When Does Religion Influence Fertility?" Population and Development Review 30 (1): 25–56.
- ———. 2006. "The evolution of religious differences in fertility: Lutherans and Catholics in Alsace, 1750–1860." In *Religion and the Decline of Fertility in the Western World*, edited by Renzo Derosas and Frans van Poppel, 133–146. Dordrecht: Springer Netherlands.
- Morgan, Phillip S. 1991. "Late nineteenth- and early twentieth-century childlessness." American Journal of Sociology 97:779–807.
- Perrenoud, Alfred. 1974. "Malthusianisme et protestantisme: un modèle démographique wébérien." Annales. Économies, Sociétés, Civilisations 29 (4): 975–988.
- Perrin, Faustine. 2013. "Gender equality and economic growth in the long-run: a cliometric analysis." Ph.D. diss., Université de Strasbourg; Scuola superiore Sant'Anna di studi universitari e di perfezionamento (Pisa, Italy).

- Phillips, Roderick. 1976. "Demographic Aspects of Divorce in Rouen, 1792-1816." Annales de Démographie Historique, pp. 429–441.
- Poston, Dudley L., and Katherine Trent. 1982. "International variability in childlessness: A descriptive and analytical study." *Journal of Family Issues* 3:473–491.
- Praz, Anne-Françoise. 2005. De l'enfant utile à l'enfant préieux Filles et garçons dans les cantons de Vaud et Fribourg, 1860 et 1930. Lausanne: Antipodes.
- ———. 2006. "State institutions as mediators between religion and fertility: A comparison of two Swiss regions, 1860-1930." In *Religion and the decline of fertility in the Western World*, edited by Renzo Derosas and Frans Van Poppel, 147–176. Dordrecht: Springer.
- Reher, David S. 2004. "The demographic transition revisited as a global process." *Population, space and place* 10 (1): 19–41.
- Rowland, Donald T. 2007. "Historical Trends in Childlessness." *Journal of Family Issues* 28 (10): 1311–1337.
- Sander, William. 1992. "Catholicism and the Economics of Fertility." *Population Studies:* A Journal of Demography 46:477–489.
- Seccombe, Wally. 1992. "Men's 'marital rights' and women's ' wifely duties': Changing conjugal relations in the fertility decline." In *The European experience of declining fertility 1850-1970*, edited by John Gillis, Louise Tilly, and David Levine, 66–84. Oxford, England: Basil Blackwell.
- Spencer, Gregory Kincaid. 1983. "Childlessness and one-child fertility: A comparative and historical analysis of international data." Ph.D. diss., University of California, Berkeley.
- Szreter, Simon. 1996. Fertility, class and gender in Britain, 1860-1940. Cambridge, UK: Cambridge University Press.
- Thompson, Warren S. 1929. "Population." American Sociological Review 34 (6): 959–975.
- Van de Walle, Etienne, and Francine Van de Walle. 1972. "Allaitement, stérilité et contraception : les opinions jusqu'au XIXe siècle." *Population* 27 (4): 685–701.
- Van Bavel, Jan. 2010. "Subreplacement fertility in the West before the baby boom: Past and current perspectives." *Population Studies* 64 (1): 1–18.
- Van Bavel, Jan, and Jan Kok. 2010. "Pioneers of the Modern Life Style? Childless Couples in Early Twentieth Century Netherlands." Social Science History 34:47–72.
- Vénard, André, and Philippe Ariès. 1954. "Deux contributions l'histoire des pratiques contraceptives : I. Saint François de Sales et Thomas Sanchez. II. Chaucer et Madame de Sévigné." *Population* 9 (4): 683–698.

Werner, Barry. 1986. "Trends in first, second, third and later births." *Population Trends* 45:26–33.

A Solving the Model

The household maximizes utility subject to her budget constraint and the non-negativity constraints:

$$\max \ln(\bar{x} + x_{ij}) + \gamma_{ij} \frac{n_{ij}^{1-\beta}}{1-\beta} \frac{s_{ij}^{\beta}}{\beta} \quad \text{s.t.} \quad p_x x_{ij} + p_n(\omega_j) n_{ij} + s_{ij} = \omega_j, \quad x_{i,j}, n_{ij} \ge 0.$$

Three regimes are possible: the interior regime with x_{ij} , $n_{ij} > 0$, a Malthusian regime with no luxuries and $x_{ij} = 0$, $n_{ij} > 0$, and a child-free regime $x_{ij} > 0$, $n_{ij} = 0$.

Interior Regime. We start with the interior regime with both x_i and n_i positive. In that case, the first order conditions can be solved as:

$$x_i = \frac{\beta p_n}{\gamma \varrho p_x} - \bar{x}, \tag{1}$$

$$n_{ij} = (1-\beta) \frac{p_x \bar{x} + \omega_j}{p_n} - \frac{\beta}{\gamma_i \varrho}, \qquad (2)$$

$$h = \varrho^{1/\beta}, \tag{3}$$

where

$$\varrho = \left(\frac{\beta \ p_n}{1-\beta}\right)^\beta$$

is a monotonic transformation of the relative cost of quantity p_n over quality.

The demand for luxury good x_i is decreasing in its price p_x and increasing in the cost of children quantity p_n . The demand for quality h_i only depends on its cost relative to quantity, and is thus a positive function of the price p_n . It does not depend on the price of luxuries p_x .

Fertility, i.e. the demand for quantity of children n_i , depends positively on income ω_j for given p_n . If the cost of children is a time cost, p_n is proportional to income, say $p_n = \phi \omega_j$. In that case, fertility varies negatively with income. Moreover,

Proposition 1 Fertility in the interior regime decreases in its own price p_n , increases with the price of the luxury good p, and decreases with the return to education β if and only if

$$\frac{2\beta - 1 + (1 - \beta)\ln\varrho}{\gamma\varrho} < n.$$

The indirect utility is this regime is:

$$V_{ij} = \ln \frac{\beta p_n}{\gamma_i \varrho p} + \frac{\gamma_i \varrho}{\beta p_n} \left(p_x \bar{x} + \omega_j \right) - 1.$$

Child-free Regime. Now consider the regime where the household is childless and consumes luxury goods. In that case, $x_i = \omega_j/p$, $n_i = 0$ and $h_i = 0$. The indirect utility is:

$$W_j = \ln\left(\frac{\omega_j}{p} + \bar{x}\right).$$

Malthusian regime. Finally, consider the regime where the household does not consume luxury good: $x_i = 0$. In that case, the first order conditions can be written as:

$$n_j = (1 - \beta) \frac{\omega_j}{p_n},$$

$$h = \varrho^{1/\beta}.$$

And the indirect utility function is:

$$Z_{ij} = \ln \bar{x} + (1 - \beta)\gamma_i \ \varrho^{-\frac{1-\beta}{\beta}} \ \omega_j$$

In this regime, we have:

Proposition 2 Fertility in the Malthusian regime is unaffected by the price of the luxury good p_x and decreases with its own price p_n and with the return to education β .

From the comparisons of the indirect utilities, we can infer bounds on γ_i delimiting the different regimes.

Proposition 3 There exists

$$\tilde{\gamma}_j = \frac{\beta p_n}{\varrho(p_x \, \bar{x} + \omega_j)}, \quad and \quad \hat{\gamma} = \frac{\beta p_n}{\varrho \, p_x \, \bar{x}},$$

with $\tilde{\gamma} < \hat{\gamma}$, such that:

1. if $\gamma < \tilde{\gamma}_j$, $x_{ij} > 0$ and $n_{ij} = 0$ (child-free regime), 2. if $\tilde{\gamma}_j \le \gamma \le \hat{\gamma}$, $x_{ij} > 0$ and $n_{ij} > 0$ (interior regime), 3. if $\hat{\gamma} < \gamma$, $x_{ij} = 0$ and $n_{ij} > 0$ (Malthusian regime). Proof: from Equation 1, γ_i needs to be larger than $\tilde{\gamma}$ for x_i to be positive. Moreover, the difference $V_{ij} - W_j$ is given by:

$$V_{ij} - W_j = \ln\left(\frac{\beta p_n}{\gamma_i \varrho(p_x \bar{x} + \omega_j)}\right) + \frac{\gamma_i \varrho(p_x \bar{x} + \omega_j)}{\beta p_n} - 1$$

The derivative of this difference with respect to γ_i is

$$\frac{\partial (V_{ij} - W_j)}{\partial \gamma_i} = \varrho \frac{p_x \bar{x} + \omega_j}{\beta p_n} - \frac{1}{\gamma_i}$$

At the point $\gamma_i = \tilde{\gamma}$, the indirect utilities are equal: $V_{ij} = W_j$. When γ_i increases above $\tilde{\gamma}$, V_{ij} increases and W_j stays constant, hence the interior regime dominates the corner regime $x_i = 0$ for all $\gamma_i > \tilde{\gamma}$.

From Equation (2), γ_i needs to be larger than $\hat{\gamma}$ for n_i to be positive. Moreover, the difference $V_{ij} - Z_{ij}$ is given by:

$$V_{ij} - Z_{ij} = \ln \frac{\beta p_n}{\gamma_i \varrho p_x \bar{x}} + \frac{\gamma_i \varrho}{\beta p_n} \left(p_x \bar{x} + \omega_j \right) - 1 - \beta \gamma_i \, \varrho^{-\frac{1-\beta}{\beta}} \, \omega_j$$

The derivative of this difference with respect to γ_i is

$$\frac{\partial (V_{ij} - Z_{ij})}{\partial \gamma_i} = -\frac{1}{\gamma} + \frac{\varrho}{\beta p_n} \left(p_x \bar{x} + \omega_j \right) - \beta \ \varrho^{-\frac{1-\beta}{\beta}} \ \omega_j$$

At the point $\gamma_i = \hat{\gamma}$, the indirect utilities are equal: $V_{ij} = Z_{ij}$. When γ_i decreases below $\tilde{\gamma}$, $V_{ij} - Z_{ij}$ increases, hence the interior regime dominates the corner regime $n_i = 0$ for all $\gamma_i < \hat{\gamma}$.

Figure 2 plots the two thresholds $\hat{\gamma}$ and $\tilde{\gamma}$ as a function of γ_i and ω_j .

The childlessness rate χ in the economy is given by:

$$\chi = F(\tilde{\gamma}),$$

where $F(\dots)$ is the cumulative distribution function of γ_i . Hence, when there exogenous changes in parameters, childlessness varies in the same direction as $\tilde{\gamma}$.

Proposition 4 The childlessness rate $F(\tilde{\gamma})$ increases with the price p_n and decreases with the price of luxuries p_x . It decreases with the return to education β if and only if:

$$1 - 2\beta - (1 - \beta)\ln\varrho < 0$$

Proof: Let us compute

$$\frac{\partial \tilde{\gamma}}{\partial \beta} = \frac{p_n (1 - 2\beta - (1 - \beta) \ln \varrho)}{(1 - \beta) \varrho (p_x \bar{x} + \omega_j)}$$

The proposition follows. \blacksquare

Institut de Recherches Économiques et Sociales Université catholique de Louvain

> Place Montesquieu, 3 1348 Louvain-la-Neuve, Belgique

ISSN 1379-244X D/2016/3082/14